Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = non-chemically amplified resists

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2221 KB  
Review
Gel-Based Approaches to Vegan Leather: Opportunities and Challenges in Mimicking Leather Properties
by Soon Mo Choi, Do Hyun Lee, Sun Mi Zo, Ankur Sood and Sung Soo Han
Gels 2025, 11(6), 395; https://doi.org/10.3390/gels11060395 - 27 May 2025
Viewed by 1725
Abstract
Recently, increased global awareness of environmental sustainability and ethical consumerism has amplified the demand for sustainable alternatives to animal-derived leather. Traditional leather manufacturing faces significant ethical and ecological challenges, including greenhouse gas emissions, excessive water consumption, deforestation, and toxic chemical usage. Vegan leather [...] Read more.
Recently, increased global awareness of environmental sustainability and ethical consumerism has amplified the demand for sustainable alternatives to animal-derived leather. Traditional leather manufacturing faces significant ethical and ecological challenges, including greenhouse gas emissions, excessive water consumption, deforestation, and toxic chemical usage. Vegan leather has emerged as a promising solution, predominantly fabricated from petroleum-based synthetic materials such as polyurethane (PU) and polyvinyl chloride (PVC). However, these materials have sustainability limitations due to their non-biodegradability and associated environmental burdens. To overcome these issues, this review critically explores the feasibility of developing vegan leather using gel-based materials derived from natural and synthetic polymers. These materials offer precise structural controllability, excellent biodegradability, and the potential for significantly improved mechanical performance through hybridization and nanocomposite strategies. Despite their promising attributes, gel-based materials face significant limitations, including insufficient tensile strength, poor abrasion resistance, susceptibility to swelling, limited long-term stability, and challenges in scaling up for industrial production. This paper outlines the structural and physical properties required for viable leather substitutes, reviews opportunities provided by gel-based materials, addresses associated technical challenges, and proposes comprehensive strategies for enhancing mechanical properties and developing sustainable, eco-friendly production processes. Future research directions emphasize hybrid composite development, nanoparticle integration, circular manufacturing processes, and multi-disciplinary collaboration to establish gel-based vegan leather as a viable, sustainable, and market-competitive alternative to conventional animal leather. Full article
(This article belongs to the Special Issue Gel-Related Materials: Challenges and Opportunities)
Show Figures

Graphical abstract

19 pages, 5656 KB  
Review
Recent Advances in Positive Photoresists: Mechanisms and Fabrication
by Muhammad Hassaan, Umama Saleem, Akash Singh, Abrar Jawad Haque and Kaiying Wang
Materials 2024, 17(11), 2552; https://doi.org/10.3390/ma17112552 - 25 May 2024
Cited by 13 | Viewed by 10497
Abstract
Photoresists are fundamental materials in photolithography and are crucial for precise patterning in microelectronic devices, MEMS, and nanostructures. This paper provides an in-depth review of recent advancements in positive photoresist research and development, focusing on discussion regarding the underlying mechanisms governing their behavior, [...] Read more.
Photoresists are fundamental materials in photolithography and are crucial for precise patterning in microelectronic devices, MEMS, and nanostructures. This paper provides an in-depth review of recent advancements in positive photoresist research and development, focusing on discussion regarding the underlying mechanisms governing their behavior, exploring innovative fabrication techniques, and highlighting the advantages of the photoresist classes discussed. The paper begins by discussing the need for the development of new photoresist technologies, highlighting issues associated with adopting extreme ultraviolet photolithography and addressing these challenges through the development of advanced positive-tone resist materials with improved patterning features, resolution, and sensitivity. Subsequently, it discusses the working mechanisms and synthesis methods of different types and subtypes of photoresists, starting from non-chemically amplified, organic, and inorganic–organic hybrid photoresists and progressing to dry film resists, with an emphasis on the upsides of each. The paper concludes by discussing how future research in the field of lithography—prioritizing concerns related to environmental impacts, improved photoresist material and properties, and utilization of advanced quantum technology—can assist with revolutionizing lithography techniques. Full article
Show Figures

Figure 1

13 pages, 2177 KB  
Article
Highly Sensitive Multiplex Detection of Molecular Biomarkers Using Hybridization Chain Reaction in an Encoded Particle Microfluidic Platform
by Iene Rutten, Devin Daems, Karen Leirs and Jeroen Lammertyn
Biosensors 2023, 13(1), 100; https://doi.org/10.3390/bios13010100 - 6 Jan 2023
Cited by 10 | Viewed by 3847
Abstract
In the continuous combat against diseases, there is the need for tools that enable an improved diagnostic efficiency towards higher information density combined with reduced time-to-result and cost. Here, a novel fully integrated microfluidic platform, the Evalution™, is evaluated as a potential solution [...] Read more.
In the continuous combat against diseases, there is the need for tools that enable an improved diagnostic efficiency towards higher information density combined with reduced time-to-result and cost. Here, a novel fully integrated microfluidic platform, the Evalution™, is evaluated as a potential solution to this need. Encoded microparticles combined with channel-based microfluidics allow a fast, sensitive and simultaneous detection of several disease-related biomarkers. Since the binary code is represented by physically present holes, 210 different codes can be created that will not be altered by light or chemically induced degradation. Exploiting the unique features of this multiplex platform, hybridization chain reaction (HCR) is explored as a generic approach to reach the desired sensitivity. Compared to a non-amplified reference system, the sensitivity was drastically improved by a factor of 104, down to low fM LOD values. Depending on the HCR duration, the assay can be tuned for sensitivity or total assay time, as desired. The huge potential of this strategy was further demonstrated by the successful detection of a multiplex panel of six different nucleic acid targets including viruses and bacteria. The ability to not only discriminate these two categories but, with the same effort, also virus strains (human adenovirus and human bocavirus), virus subtypes (human adenovirus type B and D) and antibiotic-resistant bacteria (Streptococcus pneumonia), exemplifies the specificity of the developed approach. The effective, yet highly simplified, isothermal and protein-enzyme-free signal amplification tool reaches an LOD ranging from as low as 33 ± 4 to 151 ± 12 fM for the different targets. Moreover, direct detection in a clinically relevant sample matrix was verified, resulting in a detection limit of 309 ± 80 fM, approximating the low fM levels detectable with the gold standard analysis method, PCR, without the drawbacks related to protein enzymes, thermal cycling and elaborate sample preparation steps. The reported strategy can be directly transferred as a generic approach for the sensitive and specific detection of various target molecules in multiplex. In combination with the high-throughput capacity and reduced reagent consumption, the Evalution™ demonstrates immense potential in the next generation of diagnostic tools towards more personalized medicine. Full article
(This article belongs to the Special Issue Biosensors Based on Microfluidic Devices)
Show Figures

Figure 1

34 pages, 7460 KB  
Review
Evolution in Lithography Techniques: Microlithography to Nanolithography
by Ekta Sharma, Reena Rathi, Jaya Misharwal, Bhavya Sinhmar, Suman Kumari, Jasvir Dalal and Anand Kumar
Nanomaterials 2022, 12(16), 2754; https://doi.org/10.3390/nano12162754 - 11 Aug 2022
Cited by 172 | Viewed by 23045
Abstract
In this era, electronic devices such as mobile phones, computers, laptops, sensors, and many more have become a necessity in healthcare, for a pleasant lifestyle, and for carrying out tasks quickly and easily. Different types of temperature sensors, biosensors, photosensors, etc., have been [...] Read more.
In this era, electronic devices such as mobile phones, computers, laptops, sensors, and many more have become a necessity in healthcare, for a pleasant lifestyle, and for carrying out tasks quickly and easily. Different types of temperature sensors, biosensors, photosensors, etc., have been developed to meet the necessities of people. All these devices have chips inside them fabricated using diodes, transistors, logic gates, and ICs. The patterning of the substrate which is used for the further development of these devices is done with the help of a technique known as lithography. In the present work, we have carried out a review on different types of lithographic techniques such as optical lithography, extreme ultraviolet lithography, electron beam lithography, X-ray lithography, and ion beam lithography. The evolution of these techniques with time and their application in device fabrication are discussed. The different exposure tools developed in the past decade to enhance the resolution of these devices are also discussed. Chemically amplified and non-chemically amplified resists with their bonding and thickness are discussed. Mask and maskless lithography techniques are discussed along with their merits and demerits. Device fabrication at micro and nano scale has been discussed. Advancements that can be made to improve the performance of these techniques are also suggested. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

9 pages, 710 KB  
Article
Occurrence of Resistance to ALS Inhibitors in European Cyperus esculentus L.: Characterisation and Implications for Management
by Laura Scarabel, Silvia Farinati and Maurizio Sattin
Agronomy 2020, 10(8), 1133; https://doi.org/10.3390/agronomy10081133 - 4 Aug 2020
Cited by 6 | Viewed by 3481
Abstract
Yellow nutsedge (C. esculentus) is a perennial geophyte and invasive weed which is very difficult to control in rice and other irrigated row crops. Acetolactate synthase (ALS) inhibitors are the most commonly used herbicides to control sedges in rice. Failure to [...] Read more.
Yellow nutsedge (C. esculentus) is a perennial geophyte and invasive weed which is very difficult to control in rice and other irrigated row crops. Acetolactate synthase (ALS) inhibitors are the most commonly used herbicides to control sedges in rice. Failure to control C. esculentus was recently reported in a rice field in north-western Italy. The resistance status of this C. esculentus population was determined through a whole-plant bioassay. The mechanism underlying the resistance was elucidated, and the available chemical and non-chemical control options were discussed. The population proved to be resistant to halosulfuron and azimsulfuron at the recommended field rate. The ALS trancripts amplified from resistant and susceptible plants revealed the presence of a Pro197-to-Arg amino acid substitution in resistant plants, indicating that the resistance mechanism is target-site mediated. This is the first confirmation of herbicide resistance in C. esculentus in Europe. Resistance management should be based on an integrated approach, through the combination of diversified cultural and agronomic practices that can limit its spread and propagation through tubers. Full article
(This article belongs to the Special Issue Biology and Integrated Management of Rice Weeds)
Show Figures

Figure 1

12 pages, 6293 KB  
Article
Low-Concentration Ammonia Gas Sensors Manufactured Using the CMOS–MEMS Technique
by Wei-Chun Shen, Po-Jen Shih, Yao-Chuan Tsai, Cheng-Chih Hsu and Ching-Liang Dai
Micromachines 2020, 11(1), 92; https://doi.org/10.3390/mi11010092 - 15 Jan 2020
Cited by 40 | Viewed by 5329
Abstract
This study describes the fabrication of an ammonia gas sensor (AGS) using a complementary metal oxide semiconductor (CMOS)–microelectromechanical system (MEMS) technique. The structure of the AGS features interdigitated electrodes (IDEs) and a sensing material on a silicon substrate. The IDEs are the stacked [...] Read more.
This study describes the fabrication of an ammonia gas sensor (AGS) using a complementary metal oxide semiconductor (CMOS)–microelectromechanical system (MEMS) technique. The structure of the AGS features interdigitated electrodes (IDEs) and a sensing material on a silicon substrate. The IDEs are the stacked aluminum layers that are made using the CMOS process. The sensing material; polypyrrole/reduced graphene oxide (PPy/RGO), is synthesized using the oxidation–reduction method; and the material is characterized using an electron spectroscope for chemical analysis (ESCA), a scanning electron microscope (SEM), and high-resolution X-ray diffraction (XRD). After the CMOS process; the AGS needs post-processing to etch an oxide layer and to deposit the sensing material. The resistance of the AGS changes when it is exposed to ammonia. A non-inverting amplifier circuit converts the resistance of the AGS into a voltage signal. The AGS operates at room temperature. Experiments show that the AGS response is 4.5% at a concentration of 1 ppm NH3; and it exhibits good repeatability. The lowest concentration that the AGS can detect is 0.1 ppm NH3 Full article
(This article belongs to the Special Issue 10th Anniversary of Micromachines)
Show Figures

Figure 1

21 pages, 161 KB  
Review
Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers
by Riccardo A. A. Muzzarelli
Mar. Drugs 2010, 8(2), 292-312; https://doi.org/10.3390/md8020292 - 21 Feb 2010
Cited by 382 | Viewed by 24858
Abstract
Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods [...] Read more.
Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/-) classification. On the other hand, isolated, purified chitin is a plain polysaccharide that, at the nano level, presents itself as a highly associated structure, recently refined in terms of regularity, nature of bonds, crystallinity degree and unusual colloidal behavior. Chitins and modified chitins exert a number of beneficial actions, i.e., (i) they stimulate macrophages by interacting with receptors on the macrophage surface that mediate the internalization of chitin particles to be degraded by lysozyme and N-acetyl-β-glucosaminidase (such as Nod-like, Toll-like, lectin, Dectin-1, leukotriene 134 and mannose receptors); (ii) the macrophages produce cytokines and other compounds that confer non-specific host resistance against bacterial and viral infections, and anti-tumor activity; (iii) chitin is a strong Th1 adjuvant that up-regulates Th1 immunity induced by heat-killed Mycobacterium bovis, while down- regulating Th2 immunity induced by mycobacterial protein; (iv) direct intranasal application of chitin microparticles into the lung was also able to significantly down-regulate allergic response to Dermatophagoids pteronyssinus and Aspergillus fumigatus in a murine model of allergy; (v) chitin microparticles had a beneficial effect in preventing and treating histopathologic changes in the airways of asthmatic mice; (vi) authors support the fact that chitin depresses the development of adaptive type 2 allergic responses. Since the expression of chitinases, chitrotriosidase and chitinase-like proteins is greatly amplified during many infections and diseases, the common feature of chitinase-like proteins and chitinase activity in all organisms appears to be the biochemical defense of the host. Unfortunately, conceptual and methodological errors are present in certain recent articles dealing with chitin and allergy, i.e., (1) omitted consideration of mammalian chitinase and/or chitotriosidase secretion, accompanied by inactive chitinase-like proteins, as an ancestral defensive means against invasion, capable to prevent the insurgence of allergy; (2) omitted consideration of the fact that the mammalian organism recognizes more promptly the secreted water soluble chitinase produced by a pathogen, rather than the insoluble and well protected chitin within the pathogen itself; (3) superficial and incomplete reports and investigations on chitin as an allergen, without mentioning the potent allergen from crustacean flesh, tropomyosine; (4) limited perception of the importance of the chemical/biochemical characteristics of the isolated chitin or chitosan for the replication of experiments and optimization of results; and (5) lack of interdisciplinarity. There is quite a large body of knowledge today on the use of chitosans as biomaterials, and more specifically as drug carriers for a variety of applications: the delivery routes being the same as those adopted for the immunological studies. Said articles, that devote attention to the safety and biocompatibility aspects, never reported intolerance or allergy in individuals and animals, even when the quantities of chitosan used in single experiments were quite large. Therefore, it is concluded that crab, shrimp, prawn and lobster chitins, as well as chitosans of all grades, once purified, should not be considered as "crustacean derivatives", because the isolation procedures have removed proteins, fats and other contaminants to such an extent as to allow them to be classified as chemicals regardless of their origin. Full article
(This article belongs to the Special Issue Marine Chitin and Chitosan)
Back to TopTop