Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = nocturnal water consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10696 KB  
Article
Dynamics of Nocturnal Evapotranspiration in a Dry Region of the Chinese Loess Plateau: A Multi-Timescale Analysis
by Fengnian Guo, Dengfeng Liu, Shuhong Mo, Qiang Li, Fubo Zhao, Mingliang Li and Fiaz Hussain
Hydrology 2025, 12(7), 188; https://doi.org/10.3390/hydrology12070188 - 10 Jul 2025
Viewed by 1017
Abstract
Evapotranspiration (ET) is an important part of agricultural water consumption, yet little is known about nocturnal evapotranspiration (ETN) patterns. An eddy covariance system was used to observe ET over five consecutive years (2020–2024) during the growing season in a [...] Read more.
Evapotranspiration (ET) is an important part of agricultural water consumption, yet little is known about nocturnal evapotranspiration (ETN) patterns. An eddy covariance system was used to observe ET over five consecutive years (2020–2024) during the growing season in a dry farming area of the Loess Plateau. Daytime and nocturnal evapotranspiration were partitioned using the photosynthetically active radiation threshold to reveal the changing characteristics of ETN at multiple time scales and its control variables. The results showed the following: (1) In contrast to the non-significant trend in ETN on the diurnal and daily scales, monthly ETN dynamics exhibited two peak fluctuations during the growing season. (2) The contribution of ETN to ET exhibited seasonal characteristics, being relatively low in summer, with interannual variations ranging from 10.9% to 14.3% and an annual average of 12.8%. (3) The half-hourly ETN, determined by machine learning methods, was driven by a combination of factors. The main driving factors were the difference between surface temperature and air temperature (Ts-Ta) and net radiation (Rn), which have almost equivalent contributions. Regression analysis results suggested that Ta was the main factor influencing ETN/ET at the monthly scale. This study focuses on the nighttime water loss process in dry farming fields in Northwest China, and the results provide a basis for rational allocation and efficient utilization of agricultural water resources in arid regions. Full article
(This article belongs to the Section Hydrology–Climate Interactions)
Show Figures

Figure 1

18 pages, 10759 KB  
Article
Magnitude, Seasonality, and Drivers of Nocturnal Water Use in Three Subtropical and Tropical Plantations in Southern China
by Zhanpeng Sun, Hongfeng Xu, Side Wang, Haohui Lin, Qinghai Song, Yun Li, Dengsheng Lu and Yaoliang Chen
Forests 2025, 16(3), 529; https://doi.org/10.3390/f16030529 - 17 Mar 2025
Viewed by 641
Abstract
Nocturnal water consumption (NWC), known as including stem refilling (SR) and nocturnal transpiration (NT), has been documented in many plant species, but we do not yet have a clear understanding of species differences and the biotic and abiotic regulation of this phenomenon, especially [...] Read more.
Nocturnal water consumption (NWC), known as including stem refilling (SR) and nocturnal transpiration (NT), has been documented in many plant species, but we do not yet have a clear understanding of species differences and the biotic and abiotic regulation of this phenomenon, especially for subtropical and tropical plantations. In this study, we examine the magnitude, seasonality, and biotic and abiotic regulation of NWC, SR, and NT in three widely planted subtropical and tropical species, Eucalyptus spp., Hevea brasiliensis, and Castanopsis hystrix, through the measured sap and meteorological variables. Stand-level NWC and SR differ significantly among the three plantations, where the mean daily NWC and SR of Eucalyptus spp. (2022–2023), Hevea brasiliensis (2014), and Castanopsis hystrix (2022–2023) are 0.08 mm and 0.05 mm, 0.36 mm and 0.28 mm, and 0.14 mm and 0.12 mm, respectively. Their stand-level NT values are 0.03 mm, 0.08 mm, and 0.02 mm, respectively. Additionally, distinct differences in the seasonality of NWC, SR, and NT are observed among the three plantations, with higher values during spring and autumn and lower values in summer and winter. SR is identified as the predominant role in NWC for all the plantations. VPD is identified as the primary meteorological factor driving NWC, SR, and NR in Eucalyptus spp. and Hevea brasiliensis plantations, while no prominent abiotic variables show the main driver in Castanopsis hystrix. Our findings reveal important implications for the NWC of tropical plantations related to soil–plant–atmosphere equilibrium and hydrology modeling. Full article
Show Figures

Figure 1

12 pages, 3175 KB  
Article
Impact of Fruit Load on the Replenishment Dynamics of Internal Water Reserves in Olive Trees
by Efthymios Kokkotos, Anastasios Zotos, Vassilios Triantafyllidis and Angelos Patakas
Agronomy 2024, 14(5), 1026; https://doi.org/10.3390/agronomy14051026 - 11 May 2024
Cited by 1 | Viewed by 1773
Abstract
Stem refilling has been studied in many forest species, but its impact on olive trees remains underexplored. This study aims to examine the effect of varying fruit loads on stem refilling rates in olive trees. The experiment was conducted in a commercial olive [...] Read more.
Stem refilling has been studied in many forest species, but its impact on olive trees remains underexplored. This study aims to examine the effect of varying fruit loads on stem refilling rates in olive trees. The experiment was conducted in a commercial olive orchard over two years, characterized by a biennial bearing cycle with minimal fruit production in 2021 (“OFF” year) and maximal fruit production in 2022 (“ON” year). Sap flow sensors measured the water volume differences traversing the apex and base of main branches in two experimental trees. Tree water status was monitored using psychrometers, and soil moisture content was continuously recorded. Results suggest that alternate bearing significantly affects the stem refilling process, while soil moisture availability also plays a pivotal role. During the “ON” year, water reserve consumption increased to 63.6% compared to the “OFF” year to meet the water requirements of developing fruits. Replenishment occurred at various times throughout the 24 h period, including early morning, afternoon, and night when stomatal conductance measurements indicated stomatal closure. During the “ON” year, olive trees experienced intense nocturnal replenishment of reserves, regardless of soil moisture, water vapor pressure deficit, or fruit development stage. These findings offer novel insights into olive trees’ rehydration dynamics that can be used to optimize irrigation scheduling and improve water use efficiency. Full article
(This article belongs to the Special Issue Plant–Water Relationships for Sustainable Agriculture)
Show Figures

Figure 1

17 pages, 4991 KB  
Article
Nocturnal Water Use Partitioning and Its Environmental and Stomatal Control Mechanism in Caragana korshinskii Kom in a Semi-Arid Region of Northern China
by Wei Li, Yu Zhang, Nan Wang, Chen Liang, Baoni Xie, Zhanfei Qin, Ying Yuan and Jiansheng Cao
Forests 2023, 14(11), 2154; https://doi.org/10.3390/f14112154 - 30 Oct 2023
Cited by 4 | Viewed by 2046
Abstract
As an important aspect of plant water consumption, nocturnal water use (En) behavior provides reliable information on the effect of plantation carbon and water budgets at stand and regional scales. Therefore, quantifying En and its environmental and stomatal controlling [...] Read more.
As an important aspect of plant water consumption, nocturnal water use (En) behavior provides reliable information on the effect of plantation carbon and water budgets at stand and regional scales. Therefore, quantifying En and its environmental and stomatal controlling mechanisms is urgent to establish adaptation strategies for plantation management in semiarid regions. With the help of the sap flow technique, our study investigated the seasonal variations in canopy transpiration and canopy conductance in a Caragana korshinskii Kom plantation. Environmental variables were measured concurrently during the growing seasons of 2020 and 2021. The results indicated that the average En values were 0.10 mm d−1 and 0.09 mm d−1, which accounted for 14% and 13% of daily water use, respectively, over two years. The proportions of nocturnal transpiration (Tn) to En were approximately 49.76% and 54.44%, while stem refilling (Re) accounted for 50.24% and 45.56% of En in 2020 and 2021, respectively, indicating that C. korshinskii was able to draw on stored stem water to support transpiration. En was predominantly affected by nocturnal canopy conductance (Gcn), air temperature (Tan) and wind speed (u2-n). In contrast, Gcn and Tan explained the highest variation in Tn and nocturnal vapor pressure (VPDn), and u2-n explained the highest variation in Re. Total effects of the five environmental and stomatal variables explained 50%, 36% and 32% of En, Tn and Re variation, respectively. These findings could enable a better understanding of nocturnal water use dynamics and their allocation patterns in C. korshinskii plantations on the Bashang Plateau. Moreover, our results reveal the water use strategies of artificial shrubs and highlight the importance of incorporating nocturnal water use processes into large-scale ecohydrological models in semiarid regions. Full article
(This article belongs to the Special Issue Water Cycle and Energy Balance Measurements in Forests)
Show Figures

Figure 1

24 pages, 4732 KB  
Article
Water Storage and Use by Platycladus orientalis under Different Rainfall Conditions in the Rocky Mountainous Area of Northern China
by Xiao Zhang, Xinxiao Yu, Bingbing Ding, Zihe Liu and Guodong Jia
Forests 2022, 13(11), 1761; https://doi.org/10.3390/f13111761 - 26 Oct 2022
Cited by 6 | Viewed by 2387
Abstract
Tree water transport and utilization are essential for maintaining ecosystem stability in seasonally arid areas. However, it is not clear how Platycladus orientalis absorbs, consumes via transpiration, and stores water under varying precipitation conditions. Therefore, this study used stem sap flow thermal dissipation [...] Read more.
Tree water transport and utilization are essential for maintaining ecosystem stability in seasonally arid areas. However, it is not clear how Platycladus orientalis absorbs, consumes via transpiration, and stores water under varying precipitation conditions. Therefore, this study used stem sap flow thermal dissipation probes and hydrogen and oxygen isotope tracing technology to observe different water control treatments in a P. orientalis plantation. We found that the average daily sap flow of P. orientalis under different water control treatments had the following order: no rainfall (NR) < half rainfall (HR) < double rainfall (DR) < natural rainfall (AR). The percentage of nocturnal sap flow was as follows: AR (13.34%) < NR (19.62%) < DR (20.84%) < HR (30.90%). The percentage of water storage was NR (4.13%) < AR (4.49%) < DR (6.75%) < HR (9.29%). The sap flow of P. orientalis was primarily affected by vapor pressure deficit and solar radiation, with a degree of influence of DR < NR < HR < AR. The response of P. orientalis sap flow to environmental factors differed due to the soil changes in relative extractable water (REW) before and after precipitation. During high REW conditions, environmental factors have a higher impact on sap flow. The source of water absorbed changed regularly with the precipitation gradient. When soil water content increased, the water source used by P. orientalis gradually changed to shallow soil. Compared to before and after precipitation, there was no significant change except for NR. P. orientalis could regularly adjust the activities of transpiration water consumption, water storage, and absorption. This adaptive property is conducive to survival through extreme drought stress. Full article
(This article belongs to the Special Issue Sap Flow Measurements—A Tool To Talk with Trees)
Show Figures

Figure 1

21 pages, 11990 KB  
Article
Multiple-Temporal Scale Variations in Nighttime Sap Flow Response to Environmental Factors in Ficus concinna over a Subtropical Megacity, Southern China
by Muhammad Hayat, Chunhua Yan, Jiao Xiang, Bowen Xiong, Longjun Qin, Alamgir Khan, Bei Wang, Mohsin Khan, Zhendong Zou and Guoyu Qiu
Forests 2022, 13(7), 1059; https://doi.org/10.3390/f13071059 - 5 Jul 2022
Cited by 11 | Viewed by 3284
Abstract
With ongoing climate change and rapid urbanization, the influence of extreme weather conditions on long-term nocturnal sap flow (Qn) dynamics in subtropical urban tree species is poorly understood despite the importance of Qn for the water budgets and development plantation. [...] Read more.
With ongoing climate change and rapid urbanization, the influence of extreme weather conditions on long-term nocturnal sap flow (Qn) dynamics in subtropical urban tree species is poorly understood despite the importance of Qn for the water budgets and development plantation. We continuously measured nighttime sap flow in Ficus concinna over multiple years (2014–2020) in a subtropical megacity, Shenzhen, to explore the environmental controls on Qn and dynamics in plant water consumption at different timescales. Nocturnally, Qn was shown to be positively driven by the air temperature (Ta), vapor pressure deficit (VPD), and canopy conductance (expressed as a ratio of transpiration to VPD), yet negatively regulated by relative humidity (RH). Seasonally, variations in Qn were determined by VPD in fast growth, Ta, T/VPD, and meteoric water input to soils in middle growth, and RH in the terminal growth stages of the trees. Annual mean Qn varied from 2.87 to 6.30 kg d−1 with an interannual mean of 4.39 ± 1.43 kg d−1 (± standard deviation). Interannually, the key regulatory parameters of Qn were found to be Ta, T/VPD, and precipitation (P)-induced-soil moisture content (SMC), which individually explained 69, 63, 83, and 76% of the variation, respectively. The proportion of the nocturnal to the total 24-h sap flow (i.e., Qn/Q24-h × 100) ranged from 0.18 to 17.39%, with an interannual mean of 8.87%. It is suggested that high temperatures could increase transpirational demand and, hence, water losses during the night. Our findings can potentially assist in sustainable water management in subtropical areas and urban planning under increasing urban heat islands expected with future climate change. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

16 pages, 3024 KB  
Article
Enrofloxacin Dose Optimization for the Treatment of Colibacillosis in Broiler Chickens Using a Drinking Behaviour Pharmacokinetic Model
by Robin Temmerman, Ludovic Pelligand, Wim Schelstraete, Gunther Antonissen, An Garmyn and Mathias Devreese
Antibiotics 2021, 10(5), 604; https://doi.org/10.3390/antibiotics10050604 - 19 May 2021
Cited by 18 | Viewed by 6841
Abstract
Enrofloxacin is frequently administered via drinking water for the treatment of colibacillosis in broiler chickens. However, the EMA/CVMP has urged to re-evaluate historically approved doses, especially for antimicrobials administered via drinking water. In response, the objectives of this study were two-fold. First, to [...] Read more.
Enrofloxacin is frequently administered via drinking water for the treatment of colibacillosis in broiler chickens. However, the EMA/CVMP has urged to re-evaluate historically approved doses, especially for antimicrobials administered via drinking water. In response, the objectives of this study were two-fold. First, to evaluate the pharmacokinetics (PK) of enrofloxacin following IV, PO and drinking water administration. Second, to predict the efficacy of a range of doses in the drinking water for the treatment of APEC infections. For the first objective, PK parameters were estimated by fitting a one-compartmental model with a zero-order IV infusion and an oral absorption lag function to the simultaneously modelled IV and PO data. After fixing these parameter values, a drinking behaviour pharmacokinetic (DBPK) model was developed for the description and prediction of drinking water PK profiles by adding three model improvements (different diurnal and nocturnal drinking rates, inter-animal variability in water consumption and taking account of dose non-proportionality). The subsequent simulations and probability of target attainment (PTA) analysis predicted that a dose of 12.5 mg/kg/24 h is efficacious in treating colibacillosis with an MIC up to 0.125 μg/mL (ECOFF), whereas the currently registered dose (10 mg/kg/24 h) reaches a PTA of 66% at ECOFF. Full article
Show Figures

Figure 1

19 pages, 7785 KB  
Article
Thermal Behavior of a BIPV Combined with Water Storage: An Experimental Analysis
by José Marco Lourenço, Laura Aelenei, Miguel Sousa, Jorge Facão and Helder Gonçalves
Energies 2021, 14(9), 2545; https://doi.org/10.3390/en14092545 - 29 Apr 2021
Cited by 8 | Viewed by 2800
Abstract
Buildings play an active role in the global energy consumption and are required to not only minimize their energy use, but also generate energy in a sustainable manner. The integration of renewable energies in building elements can improve their overall performance, as they [...] Read more.
Buildings play an active role in the global energy consumption and are required to not only minimize their energy use, but also generate energy in a sustainable manner. The integration of renewable energies in building elements can improve their overall performance, as they are able to replace common construction materials, while offering both electrical and thermal energy. The scope of this paper is to present the first results of an experimental study of a Building-Integrated Photovoltaic system combined with a water storage tank (BIPV-WS), a combined integration not extensively studied yet. Both layers are separated by a ventilated air cavity, and the thermal behavior of the system was analyzed experimentally in real functioning conditions. The water tank performs as a thermal storage, maintaining a regular temperature of about 20–30 °C during a typical winter day of Lisbon for a period of 11 h. Moreover, through the ventilation of the air cavity, the heat provided by the solar panel was naturally recovered to the indoors of the building, while keeping the temperature high enough to heat up the water. During summer, the ventilated BIPV-WS enabled beneficial nocturnal heat loss while delaying diurnal space heating. Full article
(This article belongs to the Special Issue Building Thermal Envelope - New Trends and Applications)
Show Figures

Figure 1

Back to TopTop