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Abstract: Buildings play an active role in the global energy consumption and are required to not
only minimize their energy use, but also generate energy in a sustainable manner. The integration
of renewable energies in building elements can improve their overall performance, as they are able
to replace common construction materials, while offering both electrical and thermal energy. The
scope of this paper is to present the first results of an experimental study of a Building-Integrated
Photovoltaic system combined with a water storage tank (BIPV-WS), a combined integration not
extensively studied yet. Both layers are separated by a ventilated air cavity, and the thermal behavior
of the system was analyzed experimentally in real functioning conditions. The water tank performs
as a thermal storage, maintaining a regular temperature of about 20–30 ◦C during a typical winter
day of Lisbon for a period of 11 h. Moreover, through the ventilation of the air cavity, the heat
provided by the solar panel was naturally recovered to the indoors of the building, while keeping the
temperature high enough to heat up the water. During summer, the ventilated BIPV-WS enabled
beneficial nocturnal heat loss while delaying diurnal space heating.

Keywords: water storage; nZEB; integrated façades; building-integrated photovoltaic
system; buildings

1. Introduction

Current studies and political trends on climate change made it imperative to reduce
the human dependency on conventional energy source emitters of greenhouse gases (GHG).
Designing energy efficient and affordable integrated solutions for buildings that deal with
summer and winter climate challenges represents a very ambitious target. Moreover,
the increasing energy consumption, shrinking resources, and rising energy costs have a
significant impact on the standard of living for future generations. In this situation, the
development and adoption of alternative renewable energy systems and technologies
integrated in residential and non-residential buildings have to be a priority. In addition to
this, with the publication of the recast of the Energy Performance of Buildings Directive in
May 2010, Zero Energy performance targets for all buildings were set [1]. The integration of
solar energy systems into buildings becomes imperative in this context. As is well known,
a Zero Energy Building design does not only mean the adoption of energy efficiency
measures, but also the integration of renewable energy systems in order to balance the
building energy consumption [2]. The advantages of photovoltaic (PV) systems integration
in buildings envelope are numerous, resulting in a growing interest of these technologies
in building design and construction from electricity generation solutions to offset building
demands, building materials, and components [3–5].

Approximately 16% of the solar energy incident on PV systems is successfully con-
verted to electricity, while the remainder is absorbed and transformed into heat [6,7]. Thus,
integrating photovoltaic systems in façades enables not only electricity generation, but also
the ability to make use of the generated heat [8–10].
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Numerical studies have been performed that corroborate the role of the additional heat
provided by building-integrated photovoltaic systems in increasing occupants thermal
comfort [11,12]. In addition, experimental studies also have been performed to prove
the benefits of the building-integrated photovoltaic systems [13–15]. Combining solar
energy building-integrated system with thermal storage, such as when using phase-change
materials, was also found to be an effective solution for reducing peak loads and controlling
associated temperature fluctuations [3,16].

Efficiencies of this kind of system were often calculated to better understand the
thermal behavior and efficiency of the overall system and also the electric efficiency of
the PV-integrated panel. Agrawal and Tiwari [7] evaluated a rooftop-integrated photo-
voltaic thermal system for diverse configurations, making use of the heat generated by the
PVs to maintain a higher room temperature and assist space heating. Additionally, the
authors of [17] validated and simulated a building-integrated photovoltaic (BIPV) Trombe
wall system, achieving improved electrical and thermal efficiencies of 4.5% and 27.2%,
respectively. Charron and Athienitis [18] analyzed the BIPV combined thermal–electric
efficiency for diverse configurations, attaining efficiencies of over 55% for finned BIPVs,
presenting an increase of 80% when compared to a BIPV configuration with airflow on
one side of the PV without fins (30%), similar to the data provided in [17]. The presented
finned BIPV configuration [18] would attain similar thermal–electric results as BIPVs with
airflow on both sides, favoring electricity production over further increased heat retention.
Pereira [19] studied the performance of a similar BIPV with thermal storage properties
using PCM (BIPV-PCM) through a MATLAB/SIMULINK thermal network, attaining about
10% thermal efficiency and 20% overall efficiency.

By choosing high thermal capacity materials, sensible heat storage allows the heat to
be stored with minimal increase in temperature. While, for example, concrete elements do
present these advantages, water possesses higher thermal capacity and has been the subject
of study for both wall and roof components, proving to be an effective and economical
solution that can improve the indoor thermal comfort while reducing energy demand and
usage of concrete of the building [20]. As such, sensible heat storage through a water tank
can provide control of the associated temperature fluctuation through the whole integrated
system while presenting lower initial capital cost when compared with innovative materials
such as PCM.

This paper presents the first experimental investigation of a Building-Integrated
Photovoltaics combined with a water storage tank (BIPV-WS) as part of a façade of the
Solar Building XXI. The experiment is part of the current research project NZEB_LAB,
of which the aim is to promote testing and development of all the applications of solar
energy in buildings, with this work being part of the Research Activity 2.1 “Experimental
investigation of new applications, solar energy innovative systems (laboratory and real
building), and building and integrated solar systems energy flexibility.”

This study is focused on two research outcomes: the improvement of the indoor ther-
mal comfort, the reduction of the energy demands, and the improvement of the efficiency
of the photovoltaic system by limiting the temperature rise inside the system. These two
objectives can be achieved by ventilating the air cavity behind the PV module (BIPV). The
heat released in the conversion process from PV can be successfully recovered and used
for indoor heating through natural ventilation during the heating period or evacuated to
the exterior and avoid overheating during the cooling period. On the other hand, the inte-
gration of a water tank is used for leveling the indoor and outdoor temperature difference
and the rapid stabilization of PV modules’ temperature, which in turn improves PV solar
energy conversion efficiency [17–19,21]. The design of such a system is a complex task that
requires a detailed investigation of the heat and mass transfer phenomena related to the
prefabricated module.

This paper addresses the preliminary investigation phase of this system, which con-
sists in the first experimental results obtained.
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2. Case Study and Experimental Design Description

Designing, developing and testing new solutions of façade integrated elements is one
of the main objectives of the research activities integrated in the framework of NZEB_LAB
Research Infrastructure on Solar Energy Systems, located in Lisbon, Portugal [22]. This re-
search infrastructure, financed by the National Laboratory of Energy and Geology (LNEG),
integrates experimental capacities and equipment in the area of solar systems (Solar En-
ergy Laboratory) and materials (Laboratory of Material and Coatings) and the Solar XXI
building—a Nearly Zero Energy Building (NZEB) office facility—functions as a living lab
and is used to test solutions for building façades in a real environment.

2.1. Solar XXI Building

The Solar XXI building is one of the main testing platforms of the NZEB_LAB infras-
tructure, where building façade prototypes can be installed and tested in a real environment
(Figure 1).

Energies 2021, 14, x FOR PEER REVIEW 3 of 19 
 

 

This paper addresses the preliminary investigation phase of this system, which con-

sists in the first experimental results obtained. 

2. Case Study and Experimental Design Description 

Designing, developing and testing new solutions of façade integrated elements is one 

of the main objectives of the research activities integrated in the framework of NZEB_LAB 

Research Infrastructure on Solar Energy Systems, located in Lisbon, Portugal [22]. This 

research infrastructure, financed by the National Laboratory of Energy and Geology 

(LNEG), integrates experimental capacities and equipment in the area of solar systems 

(Solar Energy Laboratory) and materials (Laboratory of Material and Coatings) and the 

Solar XXI building—a Nearly Zero Energy Building (NZEB) office facility—functions as a 

living lab and is used to test solutions for building façades in a real environment. 

2.1. Solar XXI Building 

The Solar XXI building is one of the main testing platforms of the NZEB_LAB infra-

structure, where building façade prototypes can be installed and tested in a real environ-

ment (Figure 1). 

Solar XXI was built in Lisbon in 2006 as a demonstration project [23] of the National 

Laboratory of Energy and Geology (LNEG), with the objective to be an example of a solar, 

low-energy building using passive systems both for heating and cooling (ground cooling) 

towards an NZEB [13,24]. The building integrates several passive solutions for energy de-

mand reduction in winter and summer. The main façade is south oriented and has a BIPV 

system 10 cm away from the masonry wall [14], allowing air circulation and providing 

heat recovery into the indoor space, which assists the heating in wintertime. In summer, 

a ground cooling system (earth tubes) is used to cool the building, together with the solar 

protection through Venetian blinds and night cooling strategies through the ventilation 

with building openings, including a central skylight [25]. 

The BIPV system consists of 76 multi-crystalline silicone modules that have an area 

of about 96 m² with 12 kW peak power installed [25]. Productivity is about 1004 kWh/kW 

[24,25]. Although the building is an office building, on the ground floor, two test rooms 

(Figure 2b) are prepared for integrating and testing façade prototypes. 

 

Figure 1. Solar XXI building. Figure 1. Solar XXI building.

Solar XXI was built in Lisbon in 2006 as a demonstration project [23] of the National
Laboratory of Energy and Geology (LNEG), with the objective to be an example of a solar,
low-energy building using passive systems both for heating and cooling (ground cooling)
towards an NZEB [13,24]. The building integrates several passive solutions for energy
demand reduction in winter and summer. The main façade is south oriented and has a BIPV
system 10 cm away from the masonry wall [14], allowing air circulation and providing
heat recovery into the indoor space, which assists the heating in wintertime. In summer, a
ground cooling system (earth tubes) is used to cool the building, together with the solar
protection through Venetian blinds and night cooling strategies through the ventilation
with building openings, including a central skylight [25].

The BIPV system consists of 76 multi-crystalline silicone modules that have an area of
about 96 m2 with 12 kW peak power installed [25]. Productivity is about 1004 kWh/kW [24,25].
Although the building is an office building, on the ground floor, two test rooms (Figure 2b)
are prepared for integrating and testing façade prototypes.
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Figure 2. Prototype integrated in the façade [15]: (a) outside view; (b) inside view—test room.

2.2. BIPV-WS Prototype Description

The BIPV-WS prototype was installed on a main façade of Solar XXI in late winter
2019, and since then, has been tested in real conditions. The modules consist of an outer
layer (Atersa ESPMC150 PV panel [26]) and an inner layer (water tank), separated by an
air cavity which can be ventilated. As previously mentioned, these systems should be
designed to operate according to the needs of the building and the climate conditions.

During the daytime in the heating season, the heat converted by the PV panels was
naturally recovered through the air cavity, through natural ventilation, and conducted
to the adjacent space through the internal vents (Figure 3). During the nighttime, the
ventilation vents were closed, and the heat stored in the water tanks allowed to keep the
indoor space temperature warm (over 20 ◦C) and prevent heat losses.
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Figure 3. BIPV-WS prototype configuration [15].

In the summer, the system operates by ventilating the air cavity through the exterior
vents (Figure 3) to release the heat accumulated and prevent overheating.

The main characteristics of the prototype are described in Table 1.
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Table 1. Properties of the prototype components.

System Layer Properties

PV
The PV polycrystalline module has a peak power, Pmax, of about

150 (Wp), a Short Circuit Current (ISC) of 8.69 (A), and an Open Circuit
Voltage (VOC) of 22.7 (V).

Air cavity The air cavity cross section has a rectangular shape with 1.75 m width
and 0.1 m depth, and the cavity has a height of 0.66 m.

Water tank Water tank of 1.50 m of width and height of 0.54 m (60 L) with compact
polycarbonate walls of 0.01 m thickness (k = 0.2 W/mK [27]).

2.3. Experimental Setup

The BIPV-WS prototype is completely monitored on all surfaces and in the inner air
cavity in order to understand the thermal behavior of the system. Interior and exterior
air temperatures are also monitored as well as the solar global radiation using a weather
station installed on the roof of Solar XXI (Figure 4).
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For the assessment of the thermal behavior of the prototypes, PT100 2 × 2.3 mm
sensors of class B were placed in each layer of the prototype, which measure the average
temperature in 10-min intervals. Three different type of sensors were used, depending on
their application, and with characteristics displayed in Table 2.

Table 2. Applied sensors.

Sensor Application Temperature Range (◦C)

Omega
PR-10-2-M45-100-ST Surface [−50, 200]

Omega
SA2F-RTD-3-100-A-10M Emersion and Air [−200, 600]

RS Pro
376-1477 Environment [−10, 40]
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Together with the PT100 thermometer, which displays an uncertainty of ±0.05 ◦C, the
total tolerance of these sensors increases linearly with the temperature, according to the
following Equation (1):

∆T = ± (0.35 + (5 × T)/1000), for T ε [0, 100] °C, (1)

Following the equation, in a scenario where the PV surface temperature is 60 ◦C,
the maximum error will be ±0.65 ◦C, which proves the accuracy of the sensors for an
experimental study.

The distribution of the sensors throughout the internal layers can be represented by
their cross-section, as shown in Figure 3, together with the nomenclature provided in
Table 3.

Table 3. Nomenclature of the experimental setup (temperature sensors).

Sensor Position Temperature

T1 Exterior environment Text
T2 PV external surface TPV,ext
T3 PV internal surface TPV,int
T4 Air cavity Tair
T5 Water tank internal surface Twt,int
T6 Water tank Twater
T7 Water tank external surface Twt,ext
T8 Interior environment Tint
T9 Air cavity top Tair,top

T10 Air cavity bottom Tair,bot

3. Experimental Analysis and Results
3.1. Weather Analysis and Experimental Campaign

The BIPV-WS was tested during the winter and summer seasons. Figure 5 and Table 4
present the measured indoor and outdoor environmental conditions during the months
of February and August 2020, where Tint is the measured interior temperature of the
test room, and Text and Radiation are the exterior temperature and global horizontal
radiation measured by the weather station in Figure 4, respectively. Further data on the
local environmental conditions throughout 2020 are presented in Appendix A.
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Table 4. Monitored local environmental conditions in 2020 [38.772 ◦N, 9.178 ◦W].

Month February August

0–24 h

Text,ave 14.0 22.0
Text.min 7.0 15.2
Text,max 25.4 36.0

9–20 h

Text,ave 16.7 25.0
Text.min 10.5 18.2
Text.max 25.7 36.0

Radiationave 277 572
Radiationmax 847 1166

In order to present a detailed analysis of the thermal behavior of the BIPV-WS system,
reference days for heating and cooling period were selected, characterized by high inci-
dent irradiance levels, and typical environment temperature, that best demonstrated the
performance of the BIPV-WS prototype. The prototype was also tested according to two
different operation modes, corresponding to the ventilated air cavity and the non-ventilated
air cavity.

As such, from the collected weather data, February 21st, for the ventilated air cavity,
and February 24th, for the non-ventilated cavity, were selected for the heating period
(Figure 6a,b). For the cooling period, August 22nd, for the non-ventilated cavity, and
August 30th, for the ventilated air cavity, were selected (Figure 6c,d).

As previously mentioned, these systems should be designed to operate differently in
the heating season (ventilated through interior vents for heat recovery from the ventilated
air cavity or non-ventilated air cavity, conserve the heat inside the air cavity, and diminish
the heat losses) compared with the cooling period, where the ventilation was provided
through external ventilation vents. The results are presented in the following section
according to the season and respective operation scenario.
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3.2. BIPV-WS Winter Thermal Behaviour Results

In the first analysis, the temperature profiles of each integrating layer of the BIPV-
WS system are presented for both scenarios related with the ventilated air cavity and
non-ventilated air cavity (Figure 7). Figure 7 illustrates the cross-section of the BIPV-WS
prototype, and the temperature profiles across the prototype at different hours of the day.
The component with the highest temperature differential throughout the day was the
PV, which presented a difference between the maximum and minimum temperature of
39.7 ◦C in the ventilated scenario and 45.6 ◦C for the non-ventilated scenario. It is worth
mentioning that the natural ventilation of the air cavity dropped the peak PV temperature
by about 6 ◦C in the peak radiation hour.
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By comparing Figure 7a,b, the air cavity temperature reflects the influence of ven-
tilation. Although at the beginning and the end of the day the temperature of the air
cavity presented similar values in both evaluated scenarios, in the peak radiation hour, the
temperature difference was up to 13 ◦C.

During the day, the water tank temperature presented temperatures between 16.8 ◦C
and 26.3 ◦C for the ventilated air cavity, and 18.9 ◦C and 30.5 ◦C for the non-ventilated air
cavity. On the other hand, it can be observed that the maximum temperature difference
between the external and internal water tank surfaces was about 6.6 ◦C for the ventilated
scenario and 9.6 ◦C for the non-ventilated scenario.

In the ventilated scenario, the air circulated between the indoor thermal zone and the
BIPV-WS thermal zone through the opening of interior vents and free air circulation. In
this scenario, the interior vents were opened at 10:42 h and closed at 18:00 h.

The ventilation of the air cavity effects can be observed in the temperature profile of
the air cavity and water temperature. In Figure 8, these temperatures are presented for
both ventilated and non-ventilated air cavities.
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Regarding the behavior of an air cavity, it can easily be observed that the temperature
dropped down after opening the interior vents and ventilation was started, compared with
the non-ventilated scenario, where the temperature inside the closed cavity continuously
rose. The difference of maximum values of the temperature inside the air cavity was about
14 ◦C at the peak radiation hour between the ventilated and non-ventilated scenarios,
demonstrating the ventilation effect in the air cavity temperature. Moreover, observing the
water temperature profile, it can also be observed that the difference between the maximum
values in the ventilated and non-ventilated air cavities was about 5 ◦C.

The third aspect to be analyzed is the effect of the water heat storage capacity on the
thermal behavior of the BIPV-WS in both the ventilated and non-ventilated scenarios. In
the ventilated air cavity scenario, the water tank reached a peak temperature of 26.3 ◦C,
at 16:50 h, and maintained the temperature above 20 ◦C for the remainder of the day. A
delay of about 2 h between the maximum exterior temperature and water temperature
(peak delay PD-21/02) can be observed in Figure 8. In the non-ventilated cavity scenario,
the effect of water inertia can also be verified, with a delay of about 4 h between the peak
temperature of the water and the outside temperature (PD-24/02).

The thermal behavior of the water tank temperature was highly influenced by the PV
temperature, as expected. In the following, the analysis of the water temperature function
of PV temperature is presented for both ventilated and non-ventilated air cavities.
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In Figure 9, it can be observed that the PV temperature started rising from sunrise
(SR) at 7:20 h, reaching above 40 ◦C around 10:00 h in both scenarios. When the ventilation
vents were opened (OV), around 10:40 h, the PV temperature showed a drop in the
ventilation scenario, while in the non-ventilated scenario (ventilation vents remain closed),
the PV temperature continuously rose, reaching a maximum temperature of 51.8 ◦C, with
a peak radiation (PR) at 13:30 h, 6 ◦C higher than the maximum PV temperature in the
ventilated scenario.
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On the other hand, it can be observed that the water temperature followed the PV
temperature trend, although with a significantly low variation during the day, due to
its high thermal inertia. In this charging phase, the water temperature slowly increased
from 8:40 h (16.9 ◦C) to a peak temperature of 30.5 ◦C in the non-ventilated scenario, 4 ◦C
higher than in the ventilated scenario. Moreover, it is worth mentioning that the water
temperature remained above 20 ◦C even after sunset (SS), when the discharging phase
started, for about 11 h in the ventilated scenario and 12 h in the non-ventilated scenario,
evidencing the thermal storage potential and solution for limiting heat losses.

3.3. BIPV-WS Summer Thermal Behaviour Results

Although the non-ventilated scenario is usually not considered as a solution for the
summer period with the presented climate conditions, due to possibilities of overheating,
an analysis was performed for a comparison with the ventilated scenario.

Similarly, for the winter season, an analysis of the temperature profiles of each inte-
grating layer of the BIPV-WS system was performed for both ventilation scenarios. During
the cooling season, air circulates during the whole day between the BIPV-WS air cavity
and the outside, through the opening of the exterior vents. The graphical representation
of these temperatures at different time steps on these sunny days allows drawing several
conclusions. The temperature profiles through the system cross section for both summer
days, representing non-ventilated and ventilated scenarios, respectively, are presented in
Figure 10 for different periods of the day.

The exterior temperature on the two summer days chosen for testing for ventilated
and non-ventilated scenarios were slighting different, about 2 ◦C at different hours along
the day. However, it can be observed that the surface temperatures generally maintained
the same difference between both scenarios. The indoor temperature also did not verify
differences between both scenarios.
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The ventilation of the air cavity effects can also be observed in the summer conditions,
in the temperature profile of the air cavity. In Figure 11, these temperatures are presented
for both scenarios.

It can be observed that the difference between the maximum air cavity temperature in
both scenarios was about 4 ◦C, during the peak radiation hour; thus, the air ventilation
successfully released the produced heat to the exterior.

A delay of about 4 h between the maximum exterior temperature and water tempera-
ture in both scenarios (PD-22/08 and PD-30/08) can be observed in Figure 11.

During the day, the water tank temperature presented temperatures between 22.4 ◦C
and 29.4 ◦C in the non-ventilated scenario and between 20 ◦C and 27.5 ◦C in the ventilated
scenario. In both scenarios, the peak water temperature was reached around the same time
period (17:00 h).

Between 00:00 h and 08:30 h, in the non-ventilated scenario, the cavity air temperature
remained between 19 ◦C and 20 ◦C, which caused the temperature of the water to decrease
from 25.5 ◦C to 23.5 ◦C. In the ventilated scenario, the cavity air temperature was lower,
enabling the temperature of the water tank to decrease further.
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By comparing the water temperature with the indoor space temperature, in the
ventilated scenario, the results show that the water temperature remained below the
office air temperature until 12:30 h. In the non-ventilated scenario, the water temperature
remained below the office air temperature between 03:30 h and 11:00 h, indicating less
beneficial office nocturnal heat loss in the non-ventilated scenario.

In the cooling season, the thermal behavior of the water temperature was quite similar
to its behavior during the heating period.

In Figure 12, the analysis of the water temperature function of the PV temperature
is presented for the non-ventilated air cavity scenario (a) and the ventilated air cavity
scenario (b).
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The PV temperature started rising from sunrise (SR) up to 50 ◦C at 13:00 h in both
scenarios. Compared with the same periods in February, an increase of PV and water
temperature was verified, although this increase was slower as a consequence of a different
sun position in the cooling and heating seasons. The PV temperature started to decrease at
15:00 h, registering about 20 ◦C around sunset (SS) for both scenarios.

Regarding the water temperature, it can be observed that the increasing temperature
related with the charging phase was lower than in the heating period for both the ventilated
and non-ventilated scenarios, equivalent to a 2 ◦C difference between SR and PR.

The water temperature reached the maximum value at 17:00 h with temperatures of
30 ◦C and 27.5 ◦C for the non-ventilated and ventilated scenarios, respectively, remaining
around this temperature for the rest of the day, cooling down only after the sun had
completely set.

Although the water temperature showed high values during the day time, it can be
observed that in the discharging phase starting at SS, the water temperature dropped down
from 25.3 ◦C to 22.4 ◦C between 00:00 h and 06:00 h in the non-ventilated scenario and
from 22.7 ◦C to 20 ◦C in the ventilated scenario.

3.4. BIPV-WS Performance Results

As mentioned, these systems were designed to make use of thermal and electrical
energy, increasing the amount of total useful energy produced by the PV panels. For the
evaluation of the energy and thermal performance of the BIPV-WS system, the electrical
and thermal efficiency was calculate using the following expressions used in [19]:

ηe =
P

G × A
, (2)
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ηt =
qint + qv

G × A
, (3)

In Equation (2), the electrical efficiency is defined as the quotient between the power
produced (P) and the incident solar radiation rate (G) multiplied by the superficial area
(A). In Equation (3), the thermal efficiency is the quotient between the thermal gains
into the acclimatized space through the wall (qint) by conduction and through ventilation
(qv). As such, to distinguish the thermal efficiencies for the cooling and heating peri-
ods, Equations (4) and (5) were used, taking into account a global analysis of the system
during insolation:

ηt.winter =
∑(qint + qv)

∑(G × A)
, (4)

ηt,summer =
∑(qv − qint)

∑(G × A)
, (5)

The thermal gains through the water tank were determined through the contributions
of the convective and radiative heat transfer of the water tank interior surface, presented in
Equations (6)–(10) [28]:

qint,conv = Ahwt,int(Twt,int − Tint), (6)

qint,rad = Aεσ
(

Twt,int
4 − Tint

4
)

, (7)

hwt,int =
NuLk

L
, (8)

NuL = 0.68 +
0.67RaL

1/4[
1 +

(
0.492

Pr

)9/16
]4/9 , (9)

RaL =
gβ(Twt,int − Tint)L3

υα
, (10)

where qint,conv and qint,rad represent the heat transfer into the test room by the interior water
tank wall by convection and radiation, respectively. Twt,int is the water tank interior surface
temperature and Tint the temperature of the indoor space. hwt,int represents the convection
coefficient, ε the emissivity of the interior surface, and σ the Stefan–Boltzmann constant. To
determine the convection coefficient, the Nusselt number, NuL, is multiplied by the film air
thermal conductivity and divided by the vertical plate’s length. As the flow is laminar, the
Nusselt number is determined using Equation (9), a function of the Rayleigh number, RaL,
and the Prandtl number, Pr. In Equation (10), the Rayleigh number is a function of, aside
from the mentioned variables, the gravity acceleration g and the film air thermal properties,
such as the thermal expansion coefficient β, the kinematic viscosity υ, and the thermal
diffusivity α. The thermal gains through ventilation were calculated by Equation (11) [29],
consisting of the balance of enthalpy gain and loss:

qv =
.
vρCp(Tair − Tint), (11)

where the airflow rate (
.
v) is multiplied by the air specific heat (Cp) and air density (ρ) and

the difference between the air entering and leaving the acclimatized space. To determine
the airflow rate, Equation (12) [30] was used:

.
v = CD A

√
2gh(Tair − Tint)

Tair
, (12)

where CD is the discharge coefficient, A the airflow area, g the standard gravity acceleration
and h the vertical distance between the inlet and outlet midpoints. This equation provides
an approximate relation, as losses at the chamber entrance and exit, resulting from the
curvature of the airflow path, are not accounted for.



Energies 2021, 14, 2545 14 of 19

Furthermore, PV electrical efficiency increases as the module temperature
decreases [17,31], shown in Equation (13), attaching an additional benefit to BIPV with
airflow configurations:

ηe = ηR(1 − β(TPV − TNOCT)), (13)

where ηR describes the PV reference efficiency, β describes the temperature coefficient (k−1),
TPV is the measured PV cell temperature (◦C), and TNOCT represents the cell Nominal
Operating Cell Temperature (◦C).

3.4.1. BIPV-WS Winter Performance

During the winter, the thermal energy produced by the PV panels can be utilized to
aid the indoor space heating, reducing the energy needs from active heating systems, while
also lowering the PV cell temperature. Following Equation (13), and using data from [26]
and the measured PV cell temperature, the BIPV-WS electrical efficiency was calculated for
both ventilated and non-ventilated air cavity scenarios, during the period of the ventilation
and irradiation. The results are presented in Figure 13.

In Figure 13, it can be observed that the ventilated cavity scenario had a higher ηe/ηR
ratio than the non-ventilated cavity scenario, ensuring increased PV power production.
Moreover, data for the ventilated cavity scenario indicated an electrical efficiency higher
than the reference efficiency. This is because, through natural ventilation due to the opening
of the vents (OV), the PV cell temperature was maintained below the indicated NOCT
of 47 ◦C.

As mentioned, one of the objectives is to use the heat recovered in the conversion
process for interior space heating through ventilation. For the evaluation of the thermal
capabilities of the BIPV-WS, the thermal efficiency of the system using Equation (4) was
calculated for both scenarios and during the ventilation and insolation time. The results
are presented in Figure 14.
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Figure 14. BIPV-WS thermal efficiency behavior for winter conditions.

Taking into account the thermal gains and the solar radiation throughout insolation,
for the ventilated scenario, the BIPV-WS registered a thermal efficiency of 7.99%, while for
the non-ventilated scenario, the thermal efficiency reached 1.53%, demonstrating that the
ventilation mode provided more heating into the adjacent space.

3.4.2. BIPV-WS Summer Performance

In Figure 15, an analysis of the BIPV-WS electric efficiency is presented for the ven-
tilated air cavity and the non-ventilated air cavity modes, during insolation. Similar to
the winter scenario, it can be observed that the ventilated air cavity scenario had a higher
ηe/ηR ratio than the non-ventilated air cavity scenario, due to the lower measured cell tem-
perature. The ventilation effect was more notable during the afternoon, as the atmosphere
air cooled down and ensured improved PV cell cooling, improving cell electrical efficiency
and power production.
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While heating is usually undesired during the cooling period, it is worth studying the
BIPV-WS thermal performance for the summer through Equation (5). Figure 16 presents
the thermal efficiency of BIPV-WS prototype during the analyzed summer days. Taking
into account the thermal gains during insolation, the ventilated configuration presented a
thermal efficiency of 40.03%, while the non-ventilated configuration presented a thermal
efficiency of −3.84%. The negative thermal efficiency presented in the non-ventilated air
cavity scenario stemmed from the thermal energy being transferred into the adjacent space,
which is undesired. Conversely, the thermal efficiency in the ventilated air cavity scenario
resulted from the thermal energy being successfully discharged to the outdoors.
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4. Conclusions

In this research, an experimental investigation of a Building-Integrated Photovoltaic
prototype combined with a water storage tank (BIPV-WS) as part of a façade of the build-
ing Solar XXI was performed. This investigation is part of the current research project
NZEB_LAB, of which the aim is to promote testing and development of all applications of
solar energy in buildings.

The thermal behavior of each layer of the prototype was analyzed for typical clear
winter and summer days in Lisbon, Portugal, taking into account the temperatures of the
PV module, the air cavity, and the water tank. The behavior of the water tank as a storage
element was also analyzed through a temperature analysis.

For winter conditions, it was observed that not only the prototype would supply the
office space with heated air, but also the water storage proved to be an effective thermal
storage component, keeping a temperature above 20 ◦C for about 11 h after its peak
temperature, reducing heat losses to the exterior after sunset.

For summer conditions, the water tank proved to successfully prevent indoor space
heating during the morning and aid in delaying the space heating through thermal stor-
age, reducing the potential cooling needs during occupation and increasing occupant
thermal comfort.

In both scenarios, the PV panel temperature reduction was observed in the ventilated
configuration, due to airflow and natural convection, increasing the PV module’s electrical
efficiency, while also reducing the risk of overheating when compared with non-ventilation
configuration. In both scenarios, the thermal efficiency presents superior values in the
ventilated configuration (almost 8% in the heating period and about 40% in the cooling
period) compared with the non-ventilated configuration (1.5% in the heating period and
3.8% in the cooling period).
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This work provides an additional assessment of BIPV-WS as a solution to reducing
heat losses and heating needs in the winter, and also as a thermal damper during the
summer, delaying heating during occupation and reducing acclimatization needs.

Being an experimental study with a monitoring campaign conducted over a relatively
short period of time during winter and summer in order to assure the same environmental
conditions for both ventilated and non-ventilated operation modes, the wider applicability
of the specific findings from this study should be questioned. Future research will need to
address the yearly operation and performance.
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Appendix A

Table A1. Monitored local environmental conditions in 2020 [38.772 ◦N, 9.178 ◦W].

Month 1 2 3 4 5 6 7 8 9 10 11 12

0–24 h

Text,ave 11.6 14.0 14.1 15.0 18.7 19.8 24.4 22.0 22.4 17.2 15.1 12.1
Text,min 2.7 7.0 6.0 5.2 11.1 12.1 15.2 15.2 14.4 9.1 7.8 0.7
Text,max 20.1 25.4 27.7 25.1 35.6 33.8 41.5 36.0 37.2 29.0 25.1 21.0

9–20 h

Text,ave 13.3 16.7 16.6 17.5 21.8 22.7 28.7 25.0 25.8 19.8 17.0 13.7
Text,min 3.8 10.5 7.0 8.9 12.5 13.9 18.0 18.2 16.3 12.4 8.9 5.2
Text,max 20.1 25.7 27.7 25.1 35.6 33.8 41.5 36.0 37.2 29.0 25.1 21.0

Radiationave 184 277 391 394 543 627 668 572 456 320 187 167
Radiationmax 744 847 1170 1275 1244 1414 1024 1166 1065 986 728 723
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