Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = nmr cryoporometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3731 KiB  
Article
NMR Characterization of Graphene Oxide-Doped Carbon Aerogel in a Liquid Environment
by Dávid Nyul, Mónika Kéri, Levente Novák, Hanna Szabó, Attila Csík and István Bányai
Gels 2025, 11(2), 129; https://doi.org/10.3390/gels11020129 - 11 Feb 2025
Viewed by 772
Abstract
In this study, we report the findings of a morphological analysis of a resorcinol–formaldehyde (RF)-based carbon aerogel (CA) and its graphene oxide (GO)-doped version (CA-GO), prepared for possible applications as an electrode material. Beyond some electron microscopic and N2 sorption investigations, we [...] Read more.
In this study, we report the findings of a morphological analysis of a resorcinol–formaldehyde (RF)-based carbon aerogel (CA) and its graphene oxide (GO)-doped version (CA-GO), prepared for possible applications as an electrode material. Beyond some electron microscopic and N2 sorption investigations, we mostly used NMR cryoporometry and relaxometry to characterize the gels in a wet state, as they are usually applied. The precursor RF polymer aerogel was prepared both with and without GO and was subsequently carbonized into carbon aerogel. Modifying the polymer aerogel using GO resulted in a larger variety of C-O bonds in both polymer aerogels. However, the most important changes occurred in the morphology of the carbon aerogels. NMR relaxometry revealed the highly hydrophilic nature of the pore wall of the RF polymer aerogels, as demonstrated by their uniform wetting behavior. The carbonization resulted in a mostly hydrophobic pore wall decorated by some oxygen-containing spots and a macroporous system. Doping with GO after pyrolysis resulted in spherical pores in the CA and cylindrical pores in the CA-GO, which is potentially a more promising material for electrochemical use than CA. Full article
Show Figures

Graphical abstract

31 pages, 7065 KiB  
Review
NMR Relaxation to Probe Zeolites: Mobility of Adsorbed Molecules, Surface Acidity, Pore Size Distribution and Connectivity
by Marina G. Shelyapina
Molecules 2024, 29(22), 5432; https://doi.org/10.3390/molecules29225432 - 18 Nov 2024
Cited by 2 | Viewed by 1986
Abstract
Unique structural and chemical properties, such as ion exchange, developed inner surface, etc., as well as the wide possibilities and flexibility of regulating these properties, cause a keen interest in zeolites. They are widely used in industry as molecular sieves, ion exchangers and [...] Read more.
Unique structural and chemical properties, such as ion exchange, developed inner surface, etc., as well as the wide possibilities and flexibility of regulating these properties, cause a keen interest in zeolites. They are widely used in industry as molecular sieves, ion exchangers and catalysts. Current trends in the development of zeolite-based catalysts include the adaptation of their cationic composition, acidity and porosity for a specific catalytic process. Recent studies have shown that mesoporosity is beneficial to the rational design of catalysts with controlled product selectivity and an improved catalyst lifetime due to its efficient mass-transport properties. Nuclear magnetic resonance (NMR) has proven to be a reliable method for studying zeolites. Solid-state NMR spectroscopy allows for the quantification of both Lewis and Brønsted acidity in zeolite catalysts and, nowadays, 27Al and 29Si magic angle spinning NMR spectroscopy has become firmly established in the set of approved methods for characterizing zeolites. The use of probe molecules opens up the possibility for the indirect measurement of the characteristics of acid sites. NMR relaxation is less common, although it is especially informative and enlightening for studying the mobility of guest molecules in the porous matrix. Moreover, the NMR relaxation of guest molecules and NMR cryoporometry can quantify pore size distribution on a broader scale (compared to traditional methods), which is especially important for systems with complex pore organization. Over the last few years, there has been a growing interest in the use of 2D NMR relaxation techniques to probe porous catalysts, such as 2D T1T2 correlation to study the acidity of the surface of catalysts and 2D T2T2 exchange to study pore connectivity. This contribution provides a comprehensive review of various NMR relaxation techniques for studying porous media and recent results of their applications in probing micro- and mesoporous zeolites, mainly focused on the mobility of adsorbed molecules, the acidity of the zeolite surface and the pore size distribution and connectivity of zeolites with hierarchical porosity. Full article
Show Figures

Figure 1

21 pages, 8119 KiB  
Article
Updates on an Even More Compact Precision NMR Spectrometer and a Wider Range V-T Probe, for General Purpose NMR and for NMR Cryoporometric Nano- to Micro-Pore Measurements
by John Beausire Wyatt Webber
Micro 2024, 4(3), 509-529; https://doi.org/10.3390/micro4030032 - 13 Sep 2024
Cited by 1 | Viewed by 1514
Abstract
There is an increasing need for compact low-cost NMR apparatus that can be used on the laboratory bench and in the field. There are four main usage variants of usage: (a) time-domain apparatus, particularly for physical measurements; (b) frequency-domain apparatus, particularly for chemical [...] Read more.
There is an increasing need for compact low-cost NMR apparatus that can be used on the laboratory bench and in the field. There are four main usage variants of usage: (a) time-domain apparatus, particularly for physical measurements; (b) frequency-domain apparatus, particularly for chemical analysis, (c) NMR Cryoporometry apparatus for measuring pore-size distributions; and (d) MRI apparatus for imaging. For all of these, variable temperature capability may be vital. We have developed compact low-cost apparatus targeted at these applications. We discuss a hand-held NMR Spectrometer, and three different holdable NMR magnets, with sufficiently large internal bores for the Lab-Tools compact Peltier thermo-electric cooled variable-temperature probes. Currently, the NMR Spectrometer is very suitable for (a) NMR time-domain relaxation and (c) NMR Cryoporometry. With a suitable high-homogeneity magnet, it is also appropriate for simple use (b), spectral analysis, or, with a suitable gradient set, (d) MRI. Together, the NMR Spectrometer, one of the NMR variable-temperature probes, and any of these NMR magnets make excellent NMR Cryoporometers, as demonstrated by this paper and previously published research. Equally, they make versatile general-purpose variable-temperature NMR systems for materials science. Full article
(This article belongs to the Section Analysis Methods and Instruments)
Show Figures

Figure 1

30 pages, 29775 KiB  
Article
Digitally Based Precision Time-Domain Spectrometer for NMR Relaxation and NMR Cryoporometry
by John Beausire Wyatt Webber and Pavel Demin
Micro 2023, 3(2), 404-433; https://doi.org/10.3390/micro3020028 - 3 Apr 2023
Cited by 2 | Viewed by 2957
Abstract
NMR Relaxation (NMRR) is an extremely useful quantitative technique for material science, particularly for studying polymers and porous materials. NMR Cryoporometry (NMRC) is a powerful technique for the measurement of pore-size distributions and total porosities. This paper discusses the use, capabilities and application [...] Read more.
NMR Relaxation (NMRR) is an extremely useful quantitative technique for material science, particularly for studying polymers and porous materials. NMR Cryoporometry (NMRC) is a powerful technique for the measurement of pore-size distributions and total porosities. This paper discusses the use, capabilities and application of a newly developed compact NMR time-domain relaxation spectrometer suitable for studying both solid and liquid samples (Mk3 NMR Relaxation spectrometer & Cryoporometer, Lab-Tools (nano-science), Ramsgate, Kent, UK. (2019)). This highly compact precision NMR Spectrometer is based on a Field Programmable Gate array (FPGA) module and custom surface mount low-noise NMR receiver and NMR linear transmitter. A high proportion of the RF circuitry is in a digital form, implemented as firmware in the FPGA, which gives the instrument an excellent long-term stability. It also includes an on-chip Linux computer. The FPGA module is credit-card sized, and both the NMR receiver and NMR transmitter are even smaller. The software, including the top-level NMR pulse sequence definitions, are written in an array processing language, Apl. The spectrometer comes complete with a Graphical User Interface (GUI) for control and on- and offline curve fitting and data analysis. The recent development of the Lab-Tools Peltier thermo-electrically cooled NMR variable-temperature (V-T) probe that cools the sample below −60 °C is also discussed. This Peltier cooling gives the precision temperature control and smoothness needed by NMR Cryoporometry (10 mK near the probe liquid bulk melting point). This enables the NMRC measurement of pore-size distributions in porous materials, for the unusually wide pore-size range of sub-nano to over 1 micron-sized pores. The NMR Spectrometer’s unusually small size, ability to measure solids, low noise and high performance make it particularly suitable for material science studies both in the field and in university, research institute, company and even school laboratories. A human portable version now exists. Use of the controlling GUI is described, and results from example NMR Relaxation and NMR Cryoporometric measurements are given. Full article
(This article belongs to the Section Analysis Methods and Instruments)
Show Figures

Figure 1

8 pages, 1723 KiB  
Communication
On the Comparative Analysis of Different Phase Coexistences in Mesoporous Materials
by Henry R. N. B. Enninful, Dirk Enke and Rustem Valiullin
Materials 2022, 15(7), 2350; https://doi.org/10.3390/ma15072350 - 22 Mar 2022
Cited by 5 | Viewed by 1809
Abstract
Alterations of fluid phase transitions in porous materials are conventionally employed for the characterization of mesoporous solids. In the first approximation, this may be based on the application of the Kelvin equation for gas–liquid and the Gibbs–Thomson equation for solid–liquid phase equilibria for [...] Read more.
Alterations of fluid phase transitions in porous materials are conventionally employed for the characterization of mesoporous solids. In the first approximation, this may be based on the application of the Kelvin equation for gas–liquid and the Gibbs–Thomson equation for solid–liquid phase equilibria for obtaining pore size distributions. Herein, we provide a comparative analysis of different phase coexistences measured in mesoporous silica solids with different pore sizes and morphology. Instead of comparing the resulting pore size distributions, we rather compare the transitions directly by using a common coordinate for varying the experiment’s thermodynamic parameters based on the two equations mentioned. Both phase transitions in these coordinates produce comparable results for mesoporous solids of relatively large pore sizes. In contrast, marked differences are found for materials with smaller pore sizes. This illuminates the fact that, with reducing confinement sizes, thermodynamic fluctuations become increasingly important and different for different equilibria considered. In addition, we show that in the coordinate used for analysis, mercury intrusion matches perfectly with desorption and freezing transitions. Full article
(This article belongs to the Special Issue Porous Glass and Ceramics: From Preparation to Applications)
Show Figures

Figure 1

10 pages, 1324 KiB  
Article
Bound Water Content and Pore Size Distribution of Thermally Modified Wood Studied by NMR
by Chenyang Cai, Fanding Zhou and Jiabin Cai
Forests 2020, 11(12), 1279; https://doi.org/10.3390/f11121279 - 29 Nov 2020
Cited by 17 | Viewed by 2478
Abstract
The physical and mechanical properties of thermally modified wood (TMW) have been comprehensively studied; however, the quantitative analysis of water states and cell wall pores of TMW is limited. In this work, Douglas fir and Norway spruce were thermally modified at 180, 200 [...] Read more.
The physical and mechanical properties of thermally modified wood (TMW) have been comprehensively studied; however, the quantitative analysis of water states and cell wall pores of TMW is limited. In this work, Douglas fir and Norway spruce were thermally modified at 180, 200 and 220 °C, and then studied by NMR cryoporometry method. The results show that thermally modified samples had lower fiber saturation point and the bound water content than the reference samples at all the experimental temperatures, indicating the reduced hygroscopicity due to thermal modification (TM). In addition, TM decreased number of hygroscopic groups, which can be implied by the decreased proportion of bound water sites, and TM also increased the proportion of small voids for bound water clusters. An increase in TM intensity resulted in lower bound water content and a smaller number of hygroscopic groups. In summary, the NMR method detected the water states and pore size distribution and confirmed that TM decreased the fiber saturation point and hygroscopicity of wood by reducing the bound water content and proportion of bound water sites in wood cell walls. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

17 pages, 10675 KiB  
Article
Some Applications of a Field Programmable Gate Array Based Time-Domain Spectrometer for NMR Relaxation and NMR Cryoporometry
by J. Beau W. Webber
Appl. Sci. 2020, 10(8), 2714; https://doi.org/10.3390/app10082714 - 15 Apr 2020
Cited by 5 | Viewed by 3697
Abstract
NMR Relaxation (NMRR) is an extremely useful quantitative technique for material science, particularly for studying polymers and porous materials. NMR Cryoporometry (NMRC) is a powerful technique for the measurement of pore-size distributions and total porosities. This paper discusses the use, capabilities and application [...] Read more.
NMR Relaxation (NMRR) is an extremely useful quantitative technique for material science, particularly for studying polymers and porous materials. NMR Cryoporometry (NMRC) is a powerful technique for the measurement of pore-size distributions and total porosities. This paper discusses the use, capabilities and application of a newly available compact NMR time-domain relaxation spectrometer, the Lab-Tools Mk3 NMR Relaxometer & Cryoporometer [Lab-Tools (nano-science), Ramsgate, Kent, UK (2019)]. Being Field Programmable Gate Array based means that it is unusually compact, which makes it particularly suitable for the lab bench-top, in the field and also mobile use. Its use with a variable-temperature NMR probe such as the Lab-Tools Peltier thermo-electrically cooled variable-temperature (V-T) probe is also discussed. This enables the NMRC measurement of pore-size distributions in porous materials, from sub-nano- to over 1 micron sized pores. These techniques are suitable for a wide range of porous materials and also polymers. This instrument comes with a Graphical User Interface (GUI) for control, which also enables both online and offline analysis of the measured data. This makes it is easy to use for material science studies both in the field and in university, research institute, company and even school laboratories. The Peltier cooling gives the precision temperature control and smoothness needed by NMR Cryoporometry, particularly near the probe liquid bulk melting point. Results from example NMR Relaxation and NMR Cryoporometric measurements are given. Full article
(This article belongs to the Special Issue Applications of Low Field Magnetic Resonance)
Show Figures

Graphical abstract

Back to TopTop