Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = nitroxyl (HNO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5677 KB  
Article
Developing Photoactive Coumarin-Caged N-Hydroxysulfonamides for Generation of Nitroxyl (HNO)
by Mohammad S. Rahman, Vinay Bharadwaj, Anau K. H. S. Lautaha, Paul Sampson, Nicola E. Brasch and Alexander J. Seed
Molecules 2024, 29(16), 3918; https://doi.org/10.3390/molecules29163918 - 19 Aug 2024
Cited by 1 | Viewed by 2257
Abstract
Photoactive N-hydroxysulfonamides photocaged with the (6-bromo-7-hydroxycoumarin-4-yl)methyl chromophore have been successfully synthesized, and the mechanisms of photodecomposition investigated for two of the compounds. Upon irradiation up to 97% of a diagnostic marker for (H)NO release, sulfinate was observed for the trifluoromethanesulfonamide system. In [...] Read more.
Photoactive N-hydroxysulfonamides photocaged with the (6-bromo-7-hydroxycoumarin-4-yl)methyl chromophore have been successfully synthesized, and the mechanisms of photodecomposition investigated for two of the compounds. Upon irradiation up to 97% of a diagnostic marker for (H)NO release, sulfinate was observed for the trifluoromethanesulfonamide system. In the absence of a species that reacts rapidly with (H)NO, (H)NO instead reacts with the carbocation intermediate to ultimately generate (E)-BHC-oxime and (Z)-BHC-oxime. Alternatively, the carbocation intermediate reacts with solvent water to give a diol. Deprotonation of the N(H) proton is required for HNO generation via concerted C-O/N-S bond cleavage, whereas the protonation state of the O(H) does not affect the observed photoproducts. If the N(H) is protonated, C-O bond cleavage to generate the parent N-hydroxysulfonamide will occur, and/or O-N bond cleavage to generate a sulfonamide. The undesired competing O-N bond cleavage pathway increases when the volume percentage of water in acetonitrile/water solvent mixtures is increased. Full article
(This article belongs to the Special Issue Synthesis and Application of Photoactive Compounds)
Show Figures

Figure 1

15 pages, 1832 KB  
Article
A Possible Role of Tetrodotoxin-Sensitive Na+ Channels for Oxidation-Induced Late Na+ Currents in Cardiomyocytes
by Anja Schneider, Axel Hage, Inês Carvalheira Arnaut Pombeiro Stein, Nils Kriedemann, Robert Zweigerdt and Andreas Leffler
Int. J. Mol. Sci. 2024, 25(12), 6596; https://doi.org/10.3390/ijms25126596 - 15 Jun 2024
Cited by 1 | Viewed by 1967
Abstract
An accumulation of reactive oxygen species (ROS) in cardiomyocytes can induce pro-arrhythmogenic late Na+ currents by removing the inactivation of voltage-gated Na+ channels including the tetrodotoxin (TTX)-resistant cardiac α-subunit Nav1.5 as well as TTX-sensitive α-subunits like Nav1.2 and Nav1.3. Here, we [...] Read more.
An accumulation of reactive oxygen species (ROS) in cardiomyocytes can induce pro-arrhythmogenic late Na+ currents by removing the inactivation of voltage-gated Na+ channels including the tetrodotoxin (TTX)-resistant cardiac α-subunit Nav1.5 as well as TTX-sensitive α-subunits like Nav1.2 and Nav1.3. Here, we explored oxidant-induced late Na+ currents in mouse cardiomyocytes and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as well as in HEK 293 cells expressing Nav1.2, Nav1.3, or Nav1.5. Na+ currents in mouse cardiomyocytes and hiPSC-CMs treated with the oxidant chloramine T (ChT) developed a moderate reduction in peak current amplitudes accompanied by large late Na+ currents. While ChT induced a strong reduction in peak current amplitudes but only small persistent currents on Nav1.5, both Nav1.2 and Nav1.3 produced increased peak current amplitudes and large persistent currents following oxidation. TTX (300 nM) blocked ChT-induced late Na+ currents significantly stronger as compared to peak Na+ currents in both mouse cardiomyocytes and hiPSC-CMs. Similar differences between Nav1.2, Nav1.3, and Nav1.5 regarding ROS sensitivity were also evident when oxidation was induced with UVA-light (380 nm) or the cysteine-selective oxidant nitroxyl (HNO). To conclude, our data on TTX-sensitive Na+ channels expressed in cardiomyocytes may be relevant for the generation of late Na+ currents following oxidative stress. Full article
(This article belongs to the Special Issue Modulation of Ion Channels)
Show Figures

Figure 1

18 pages, 3967 KB  
Article
The Therapeutic Potential of Angeli’s Salt in Mitigating Acute Trypanosoma cruzi Infection in Mice
by Vera Lúcia Hideko Tatakihara, Aparecida Donizette Malvezi, Rito Santo Pereira, Bruno Fernando Cruz Lucchetti, Lucas Felipe Dos Santos, Rubens Cecchini, Lucy Megumi Yamauchi, Sueli Fumie Yamada-Ogatta, Katrina M. Miranda, Waldiceu A. Verri, Marli Cardoso Martins-Pinge and Phileno Pinge-Filho
Pathogens 2023, 12(8), 1063; https://doi.org/10.3390/pathogens12081063 - 19 Aug 2023
Cited by 1 | Viewed by 1979
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi, is a neglected tropical disease prevalent in Latin America. Infected patients are treated to eliminate the parasite, reduce the cardiomyopathy risk, and interrupt the disease transmission cycle. The World Health Organization recognizes benznidazole (BZ) and [...] Read more.
Chagas disease (CD), caused by Trypanosoma cruzi, is a neglected tropical disease prevalent in Latin America. Infected patients are treated to eliminate the parasite, reduce the cardiomyopathy risk, and interrupt the disease transmission cycle. The World Health Organization recognizes benznidazole (BZ) and nifurtimox as effective drugs for CD treatment. In the chronic phase, both drugs have low cure rates and serious side effects. T. cruzi infection causes intense tissue inflammation that controls parasite proliferation and CD evolution. Compounds that liberate nitric oxide (NO) (NO donors) have been used as anti-T. cruzi therapeutics. Currently, there is no evidence that nitroxyl (HNO) affects T. cruzi infection outcomes. This study investigated the effects of the HNO donor Angeli’s salt (AS) on C57BL/6 mice infected with T. cruzi (Y strain, 5 × 103 trypomastigotes, intraperitoneally). AS reduced the number of parasites in the bloodstream and heart nests and increased the protective antioxidant capacity of erythrocytes in infected animals, reducing disease severity. Furthermore, in vitro experiments showed that AS treatment reduced parasite uptake and trypomastigote release by macrophages. Taken together, these findings from the murine model and in vitro testing suggest that AS could be a promising therapy for CD. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

20 pages, 4090 KB  
Article
Antiglycation and Antioxidant Effect of Nitroxyl towards Hemoglobin
by Olga V. Kosmachevskaya, Elvira I. Nasybullina, Igor S. Pugachenko, Natalia N. Novikova and Alexey F. Topunov
Antioxidants 2022, 11(10), 2007; https://doi.org/10.3390/antiox11102007 - 11 Oct 2022
Cited by 11 | Viewed by 3332
Abstract
Donors of nitroxyl and nitroxyl anion (HNO/NO) are considered to be promising pharmacological treatments with a wide range of applications. Remarkable chemical properties allow nitroxyl to function as a classic antioxidant. We assume that HNO/NO can level down the non-enzymatic [...] Read more.
Donors of nitroxyl and nitroxyl anion (HNO/NO) are considered to be promising pharmacological treatments with a wide range of applications. Remarkable chemical properties allow nitroxyl to function as a classic antioxidant. We assume that HNO/NO can level down the non-enzymatic glycation of biomolecules. Since erythrocyte hemoglobin (Hb) is highly susceptible to non-enzymatic glycation, we studied the effect of a nitroxyl donor, Angeli’s salt, on Hb modification with methylglyoxal (MG) and organic peroxide―tert-butyl hydroperoxide (t-BOOH). Nitroxyl dose-dependently decreased the amount of protein carbonyls and advanced glycation end products (AGEs) that were formed in the case of Hb incubation with MG. Likewise, nitroxyl effectively protected Hb against oxidative modification with t-BOOH. It slowed down the destruction of heme, formation of carbonyl derivatives and inter-subunit cross-linking. The protective effect of nitroxyl on Hb in this system is primarily associated with nitrosylation of oxidized Hb and reduction of its ferryl form, which lowers the yield of free radical products. We suppose that the dual (antioxidant and antiglycation) effect of nitroxyl makes its application possible as part of an additional treatment strategy for oxidative and carbonyl stress-associated diseases. Full article
(This article belongs to the Special Issue Globin Associated Oxidative Stress)
Show Figures

Figure 1

10 pages, 1005 KB  
Communication
Para-Substituted O-Benzyl Sulfohydroxamic Acid Derivatives as Redox-Triggered Nitroxyl (HNO) Sources
by Yueming Long, Zijun Xia, Allison M. Rice and S. Bruce King
Molecules 2022, 27(16), 5305; https://doi.org/10.3390/molecules27165305 - 19 Aug 2022
Cited by 4 | Viewed by 2445
Abstract
Nitroxyl shows a unique biological profile compared to the gasotransmitters nitric oxide and hydrogen sulfide. Nitroxyl reacts with thiols as an electrophile, and this redox chemistry mediates much of its biological chemistry. This reactivity necessitates the use of donors to study nitroxyl’s chemistry [...] Read more.
Nitroxyl shows a unique biological profile compared to the gasotransmitters nitric oxide and hydrogen sulfide. Nitroxyl reacts with thiols as an electrophile, and this redox chemistry mediates much of its biological chemistry. This reactivity necessitates the use of donors to study nitroxyl’s chemistry and biology. The preparation and evaluation of a small library of new redox-triggered nitroxyl sources is described. The condensation of sulfonyl chlorides and properly substituted O-benzyl hydroxylamines produced O-benzyl-substituted sulfohydroxamic acid derivatives with a 27–79% yield and with good purity. These compounds were designed to produce nitroxyl through a 1, 6 elimination upon oxidation or reduction via a Piloty’s acid derivative. Gas chromatographic headspace analysis of nitrous oxide, the dimerization and dehydration product of nitroxyl, provides evidence for nitroxyl formation. The reduction of derivatives containing nitro and azide groups generated nitrous oxide with a 25–92% yield, providing evidence of nitroxyl formation. The oxidation of a boronate-containing derivative produced nitrous oxide with a 23% yield. These results support the proposed mechanism of nitroxyl formation upon reduction/oxidation via a 1, 6 elimination and Piloty’s acid. These compounds hold promise as tools for understanding nitroxyl’s role in redox biology. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Graphical abstract

14 pages, 1000 KB  
Article
Nitroxyl Delivered by Angeli’s Salt Causes Short-Lasting Activation Followed by Long-Lasting Deactivation of Meningeal Afferents in Models of Headache Generation
by Stephanie K. Stöckl, Roberto de Col, Milos R. Filipovic and Karl Messlinger
Int. J. Mol. Sci. 2022, 23(4), 2330; https://doi.org/10.3390/ijms23042330 - 19 Feb 2022
Cited by 1 | Viewed by 2672
Abstract
The role of TRPA1 receptor channels in meningeal nociception underlying the generation of headaches is still unclear. Activating as well as inhibitory effects of TRPA1 agonists have been reported in animal models of headache. The aim of the present study was to clarify [...] Read more.
The role of TRPA1 receptor channels in meningeal nociception underlying the generation of headaches is still unclear. Activating as well as inhibitory effects of TRPA1 agonists have been reported in animal models of headache. The aim of the present study was to clarify the effect of the TRPA1 agonist nitroxyl (HNO) delivered by Angeli’s salt in two rodent models of meningeal nociception. Single fibre recordings were performed using half-skull preparations of mice (C57BL/6) in vitro. Angeli’s salt solution (AS, 300 µM) caused short-lasting vigorous increases in neuronal activity of primary meningeal afferents, followed by deactivation and desensitisation. These effects were similar in TRPA1 knockout and even more pronounced in TRPA1/TRPV1 double-knockout mice in comparison to wild-type mice. The activity of spinal trigeminal neurons with afferent input from the dura mater was recorded in vivo in anesthetised rats. AS (300 µM) or the TRPA1 agonist acrolein (100 and 300 µM) was applied to the exposed dura mater. AS caused no significant changes in spontaneous activity, while the mechanically evoked activity was reduced after acrolein application. These results do not confirm the assumption that activation of trigeminal TRPA1 receptor channels triggers the generation of headaches or contributes to its aggravation. Instead, there is evidence that TRPA1 activation may have an inhibitory function in the nociceptive trigeminal system. Full article
(This article belongs to the Special Issue TRPA1 Channel)
Show Figures

Figure 1

15 pages, 17874 KB  
Article
HNO Protects the Myocardium against Reperfusion Injury, Inhibiting the mPTP Opening via PKCε Activation
by Daniele Mancardi, Pasquale Pagliaro, Lisa A. Ridnour, Carlo G. Tocchetti, Katrina Miranda, Magdalena Juhaszova, Steven J. Sollott, David A. Wink and Nazareno Paolocci
Antioxidants 2022, 11(2), 382; https://doi.org/10.3390/antiox11020382 - 14 Feb 2022
Cited by 20 | Viewed by 3094
Abstract
Donors of nitroxyl (HNO), the one electron-reduction product of nitric oxide (NO.), positively modulate cardiac contractility/relaxation while limiting ischemia-reperfusion (I/R) injury. The mechanisms underpinning HNO anti-ischemic effects remain poorly understood. Using isolated perfused rat hearts subjected to 30 min global ischemia/1 [...] Read more.
Donors of nitroxyl (HNO), the one electron-reduction product of nitric oxide (NO.), positively modulate cardiac contractility/relaxation while limiting ischemia-reperfusion (I/R) injury. The mechanisms underpinning HNO anti-ischemic effects remain poorly understood. Using isolated perfused rat hearts subjected to 30 min global ischemia/1 or 2 h reperfusion, here we tested whether, in analogy to NO., HNO protection requires PKCε translocation to mitochondria and KATP channels activation. To this end, we compared the benefits afforded by ischemic preconditioning (IPC; 3 cycles of I/R) with those eventually granted by the NO. donor, diethylamine/NO, DEA/NO, and two chemically unrelated HNO donors: Angeli’s salt (AS, a prototypic donor) and isopropylamine/NO (IPA/NO, a new HNO releaser). All donors were given for 19 min before I/R injury. In control I/R hearts (1 h reperfusion), infarct size (IS) measured via tetrazolium salt staining was 66 ± 5.5% of the area at risk. Both AS and IPA/NO were as effective as IPC in reducing IS [30.7 ± 2.2 (AS), 31 ± 2.9 (IPA/NO), and 31 ± 0.8 (IPC), respectively)], whereas DEA/NO was significantly less so (36.2 ± 2.6%, p < 0.001 vs. AS, IPA/NO, or IPC). IPA/NO protection was still present after 120 min of reperfusion, and the co-infusion with the PKCε inhibitor (PKCV1-2500 nM) prevented it (IS = 30 ± 0.5 vs. 61 ± 1.8% with IPA/NO alone, p < 0.01). Irrespective of the donor, HNO anti-ischemic effects were insensitive to the KATP channel inhibitor, 5-OH decanoate (5HD, 100 μM), that, in contrast, abrogated DEA/NO protection. Finally, both HNO donors markedly enhanced the mitochondrial permeability transition pore (mPTP) ROS threshold over control levels (≅35–40%), an action again insensitive to 5HD. Our study shows that HNO donors inhibit mPTP opening, thus limiting myocyte loss at reperfusion, a beneficial effect that requires PKCε translocation to the mitochondria but not mitochondrial K+ channels activation. Full article
(This article belongs to the Special Issue NOS/NO System and Heart)
Show Figures

Figure 1

28 pages, 5533 KB  
Review
Nitroaromatic Antibiotics as Nitrogen Oxide Sources
by Allison M. Rice, Yueming Long and S. Bruce King
Biomolecules 2021, 11(2), 267; https://doi.org/10.3390/biom11020267 - 12 Feb 2021
Cited by 52 | Viewed by 8963
Abstract
Nitroaromatic antibiotics show activity against anaerobic bacteria and parasites, finding use in the treatment of Heliobacter pylori infections, tuberculosis, trichomoniasis, human African trypanosomiasis, Chagas disease and leishmaniasis. Despite this activity and a clear need for the development of new treatments for these conditions, [...] Read more.
Nitroaromatic antibiotics show activity against anaerobic bacteria and parasites, finding use in the treatment of Heliobacter pylori infections, tuberculosis, trichomoniasis, human African trypanosomiasis, Chagas disease and leishmaniasis. Despite this activity and a clear need for the development of new treatments for these conditions, the associated toxicity and lack of clear mechanisms of action have limited their therapeutic development. Nitroaromatic antibiotics require reductive bioactivation for activity and this reductive metabolism can convert the nitro group to nitric oxide (NO) or a related reactive nitrogen species (RNS). As nitric oxide plays important roles in the defensive immune response to bacterial infection through both signaling and redox-mediated pathways, defining controlled NO generation pathways from these antibiotics would allow the design of new therapeutics. This review focuses on the release of nitrogen oxide species from various nitroaromatic antibiotics to portend the increased ability for these compounds to positively impact infectious disease treatment. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

15 pages, 2140 KB  
Article
In Vitro and in Vivo Imaging of Nitroxyl with Copper Fluorescent Probe in Living Cells and Zebrafish
by Sathyadevi Palanisamy, Yu-Liang Wang, Yu-Jen Chen, Chiao-Yun Chen, Fu-Te Tsai, Wen-Feng Liaw and Yun-Ming Wang
Molecules 2018, 23(10), 2551; https://doi.org/10.3390/molecules23102551 - 6 Oct 2018
Cited by 15 | Viewed by 4277
Abstract
Nitroxyl (HNO) plays a critical role in many physiological processes which includes vasorelaxation in heart failure, neuroregulation, and myocardial contractility. Powerful imaging tools are required to obtain information for understanding the mechanisms involved in these in vivo processes. In order to develop a [...] Read more.
Nitroxyl (HNO) plays a critical role in many physiological processes which includes vasorelaxation in heart failure, neuroregulation, and myocardial contractility. Powerful imaging tools are required to obtain information for understanding the mechanisms involved in these in vivo processes. In order to develop a rapid and high sensitive probe for HNO detection in living cells and the zebrafish model organism, 2-((2-(benzothiazole-2yl)benzylidene) amino)benzoic acid (AbTCA) as a ligand, and its corresponding copper(II) complex Cu(II)-AbTCA were synthesized. The reaction results of Cu(II)-AbTCA with Angeli’s salt showed that Cu(II)-AbTCA could detect HNO quantitatively in a range of 40–360 µM with a detection limit of 9.05 µM. Furthermore, Cu(II)-AbTCA is more selective towards HNO over other biological species including thiols, reactive nitrogen, and reactive oxygen species. Importantly, Cu(II)-AbTCA was successfully applied to detect HNO in living cells and zebrafish. The collective data reveals that Cu(II)-AbTCA could be used as a potential probe for HNO detection in living systems. Full article
(This article belongs to the Special Issue Recent Advances in Fluorescent Probes)
Show Figures

Figure 1

17 pages, 717 KB  
Review
Hydrogen Sulfide and Endothelium-Dependent Vasorelaxation
by Jerzy Bełtowski and Anna Jamroz-Wiśniewska
Molecules 2014, 19(12), 21183-21199; https://doi.org/10.3390/molecules191221183 - 16 Dec 2014
Cited by 85 | Viewed by 10624
Abstract
In addition to nitric oxide and carbon monoxide, hydrogen sulfide (H2S), synthesized enzymatically from l-cysteine or l-homocysteine, is the third gasotransmitter in mammals. Endogenous H2S is involved in the regulation of many physiological processes, including vascular tone. Although initially [...] Read more.
In addition to nitric oxide and carbon monoxide, hydrogen sulfide (H2S), synthesized enzymatically from l-cysteine or l-homocysteine, is the third gasotransmitter in mammals. Endogenous H2S is involved in the regulation of many physiological processes, including vascular tone. Although initially it was suggested that in the vascular wall H2S is synthesized only by smooth muscle cells and relaxes them by activating ATP-sensitive potassium channels, more recent studies indicate that H2S is synthesized in endothelial cells as well. Endothelial H2S production is stimulated by many factors, including acetylcholine, shear stress, adipose tissue hormone leptin, estrogens and plant flavonoids. In some vascular preparations H2S plays a role of endothelium-derived hyperpolarizing factor by activating small and intermediate-conductance calcium-activated potassium channels. Endothelial H2S signaling is up-regulated in some pathologies, such as obesity and cerebral ischemia-reperfusion. In addition, H2S activates endothelial NO synthase and inhibits cGMP degradation by phosphodiesterase 5 thus potentiating the effect of NO-cGMP pathway. Moreover, H2S-derived polysulfides directly activate protein kinase G. Finally, H2S interacts with NO to form nitroxyl (HNO)—a potent vasorelaxant. H2S appears to play an important and multidimensional role in endothelium-dependent vasorelaxation. Full article
(This article belongs to the Special Issue Sulfur Atom: Element for Adaptation to an Oxidative Environment)
Back to TopTop