Developing Photoactive Coumarin-Caged N-Hydroxysulfonamides for Generation of Nitroxyl (HNO)
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Photoproducts in CD3CN/Phosphate Buffer Mixtures
2.2. Evidence for HNO Generation Using a Phosphine Trap
2.3. Effect of O2
2.4. Determination of the pKa Values for 8a and 8b
2.5. Determination of the pKa Values for 8b
2.6. Effect of pH on the Photoproducts
2.7. Effect of the Excitation Wavelength on the Photoproducts
2.8. Effect of Triplet Quenchers on the Photoproducts
2.9. Photoproduct Quantum Yield
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. General Information
5.2. Photolysis Experiments
5.3. Determination of pKa by UV–Vis Spectroscopy
5.4. Determination of pKa by NMR Spectroscopy
5.5. Determination of the Photoproduct Quantum Yields (Φ)
5.6. Synthesis of HNO Donors BHC-ONHSO2R (R = CF3 (8a), CH3 (8b) and (2-SO2Me)Ph- (8c)) and the Related Photoproducts
5.6.1. 6-Bromo-4-chloromethyl-7-hydroxycoumarin (2)
5.6.2. 6-Bromo-7-hydroxymethylcoumarin (3)
5.6.3. 6-Bromo-7-O-(methoxymethyl)-4-hydroxymethylcoumarin (4)
5.6.4. 2-[[6-Bromo-7-O-(methoxymethyl)coumarin-4-yl]methoxy)]isoindoline-1,3-dione (5)
5.6.5. O-[[6-Bromo-7-O-(methoxymethyl)coumarin-4-yl]methyl]hydroxylamine (6)
5.6.6. 1,1,1-Trifluoro-N-[(6-bromo-7-O-(methoxymethyl)coumarin-4-yl)methoxy]methanesulfonamide (7a)
5.6.7. N-[(6-Bromo-7-O-(methoxymethyl)coumarin-4-yl)methoxy]methanesulfonamide (7b)
5.6.8. N-[(6-Bromo-7-O-(methoxymethyl)coumarin-4-yl)methoxy]-2-methanesulfonyl-benzenesulfonamide (7c)
5.6.9. 1,1,1-Trifluoro-N-[(6-bromo-7-hydroxycoumarin-4-yl)methoxy]methanesulfonamide (8a)
5.6.10. N-[(6-Bromo-7-hydroxycoumarin-4-yl)methoxy]methanesulfonamide (8b)
5.6.11. N-[(6-Bromo-7-hydroxycoumarin-4-yl)methoxy]-2-methanesulfonylbenzenesulfonamide (8c)
5.6.12. Alternative Approach to Intermediate 5 via 11
5.6.13. 6-Bromo-7-O-(methoxymethyl)-4-chloromethylcoumarin (11)
5.6.14. 2-[(6-Bromo-7-O-(methoxymethyl)coumarin-4-yl)methoxy]isoindoline-1,3-dione (5)
5.6.15. 6-Bromo-7-hydroxycoumarin-4-aldoxime (13)
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doctorovich, F.; Farmer, P.J.; Marti, M.A. (Eds.) The Chemistry and Biology of Nitroxyl (HNO); Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Miranda, K.M. The chemistry of nitroxyl (HNO) and implications in biology. Coord. Chem. Rev. 2005, 249, 433–455. [Google Scholar] [CrossRef]
- Fukuto, J.M.; Bianco, C.L.; Chavez, T.A. Nitroxyl (HNO) signaling. Free Radic. Biol. Med. 2009, 47, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Arcaro, A.; Lembo, G.; Tocchetti, C.G. Nitroxyl (HNO) for treatment of acute heart failure. Curr. Heart Fail. Rep. 2014, 11, 227–235. [Google Scholar] [CrossRef]
- Paolocci, N.; Jackson, M.I.; Lopez, B.E.; Miranda, K.; Tocchetti, C.G.; Wink, D.A.; Hobbs, A.J.; Fukuto, J.M. The pharmacology of nitroxyl (HNO) and its therapeutic potential: Not just the janus face of NO. Pharmacol. Ther. 2007, 113, 442–458. [Google Scholar] [CrossRef]
- Irvine, J.C.; Ritchie, R.H.; Favaloro, J.L.; Andrews, K.L.; Widdop, R.E.; Kemp-Harper, B.K. Nitroxyl (HNO): The Cinderella of the nitric oxide story. Trends Pharmacol. Sci. 2008, 29, 601–608. [Google Scholar] [CrossRef]
- Fukuto, J.M.; Cisneros, C.J.; Kinkade, R.L. A comparison of the chemistry associated with the biological signaling and actions of nitroxyl (HNO) and nitric oxide (NO). J. Inorg. Biochem. 2013, 118, 201–208. [Google Scholar] [CrossRef]
- Miranda, K.M.; Katori, T.; de Holding, C.L.T.; Thomas, L.; Ridnour, L.A.; McLendon, W.J.; Cologna, S.M.; Dutton, A.S.; Champion, H.C.; Mancardi, D.; et al. Comparison of the NO and HNO donating properties of diazeniumdiolates: Primary amine adducts release HNO in vivo. J. Med. Chem. 2005, 48, 8220–8228. [Google Scholar] [CrossRef]
- Felker, G.M.; Borentain, M.; Cleland, J.G.; DeSouza, M.M.; Kessler, P.D.; O’Connor, C.M.; Seiffert, D.; Teerlink, J.R.; Voors, A.A.; McMurray, J.J. Rationale and design for the development of a novel nitroxyl donor in patients with acute heart failure. Eur. J. Heart Fail. 2019, 21, 1022–1031. [Google Scholar] [CrossRef]
- Paolocci, N.; Katori, T.; Champion, H.C.; St. John, M.E.; Miranda, K.M.; Fukuto, J.M.; Wink, D.A.; Kass, D.A. Positive inotropic and lusitropic effects of HNO/NO− in failing hearts: Independence from b-adrenergic signaling. Proc. Natl. Acad. Sci. USA 2003, 100, 5537–5542. [Google Scholar] [CrossRef] [PubMed]
- Cowart, D.; Venuti, R.; Guptill, J.; Noveck, R.; Foo, S. A phase 1 study of the safety and pharmacokinetics of the intravenous nitroxyl prodrug, cxl-1427. J. Am. Coll. Cardiol. 2015, 65, A876. [Google Scholar] [CrossRef]
- Lang, N.N.; Ahmad, F.A.; Cleland, J.G.; O’Connor, C.M.; Teerlink, J.R.; Voors, A.A.; Taubel, J.; Hodes, A.R.; Anwar, M.; Karra, R.; et al. Haemodynamic effects of the nitroxyl donor cimlanod (BMS-986231) in chronic heart failure: A randomized trial. Eur. J. Heart Fail. 2021, 23, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Tocchetti, C.G.; Mercurio, V.; Maack, C. The multifaceted mechanisms of nitroxyl in heart failure: Inodilator or ‘only’ vasodilator? Eur. J. Heart Fail. 2021, 23, 1156–1159. [Google Scholar] [CrossRef]
- Oliveira, C.; Benfeito, S.; Fernandes, C.; Cagide, F.; Silva, T.; Borges, F. NO and HNO donors, nitrones, and nitroxides: Past, present, and future. Med. Res. Rev. 2018, 38, 1159–1187. [Google Scholar] [CrossRef] [PubMed]
- Miranda, K.M.; Nagasawa, H.T.; Toscano, J.P. Donors of HNO. Curr. Top. Med. Chem. 2005, 5, 649–664. [Google Scholar] [CrossRef] [PubMed]
- Lopez, B.E.; Rodriguez, C.E.; Pribadi, M.; Cook, N.M.; Shinyashiki, M.; Fukuto, J.M. Inhibition of yeast glycolysis by nitroxyl (HNO): A mechanism of HNO toxicity and implications to HNO biology. Arch. Biochem. Biophys. 2005, 442, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Reisz, J.A.; Bechtold, E.; King, S.B. Oxidative heme protein-mediated nitroxyl (HNO) generation. Dalton Trans. 2010, 39, 5203–5212. [Google Scholar] [CrossRef]
- Matsuo, K.; Nakagawa, H.; Adachi, Y.; Kameda, E.; Tsumoto, H.; Suzuki, T.; Miyata, N. Alternative photoinduced release of HNO or NO from an acyl nitroso compound, depending on environmental polarity. Chem. Commun. 2010, 46, 3788–3790. [Google Scholar] [CrossRef]
- Nakagawa, H. Photocontrollable nitric oxide (NO) and nitroxyl (HNO) donors and their release mechanisms. Nitric Oxide 2011, 25, 195–200. [Google Scholar] [CrossRef]
- Aizawa, K.; Nakagawa, H.; Matsuo, K.; Kawai, K.; Ieda, N.; Suzuki, T.; Miyata, N. Piloty’s acid derivative with improved nitroxyl-releasing characteristics. Bioorg. Med. Chem. Lett. 2013, 23, 2340–2343. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Tani, T.; Hombu, R.; Ieda, N.; Nakagawa, H. Development and cellular application of visible-light-controllable HNO releasers based on caged Piloty’s acid. Chem. Commun. 2018, 54, 10371–10374. [Google Scholar] [CrossRef]
- Zhou, Y.; Cink, R.B.; Fejedelem, Z.A.; Simpson, M.C.; Seed, A.J.; Sampson, P.; Brasch, N.E. Development of photoactivatable nitroxyl (HNO) donors incorporating the (3-hydroxy-2-naphthalenyl)methyl phototrigger. Eur. J. Org. Chem. 2018, 15, 1745–1755. [Google Scholar] [CrossRef]
- Zhou, Y.; Cink, R.B.; Dassanayake, R.S.; Seed, A.J.; Brasch, N.E.; Sampson, P. Rapid photoactivated generation of nitroxyl (HNO) under neutral pH conditions. Angew. Chem. Int. Ed. 2016, 55, 13229–13232. [Google Scholar] [CrossRef]
- Zhou, Y.; Cink, R.B.; Seed, A.J.; Simpson, M.C.; Sampson, P.; Brasch, N.E. Stoichiometric nitroxyl photorelease using the (6-hydroxy-2-naphthalenyl)methyl phototrigger. Org. Lett. 2019, 21, 1054–1057. [Google Scholar] [CrossRef]
- Zhou, Y.; Bharadwaj, V.; Rahman, M.S.; Sampson, P.; Brasch, N.E.; Seed, A.J. Synthesis and photochemical studies of 2-nitrobenzyl-caged N-hydroxysulfonamides. J. Photochem. Photobiol. A 2019, 384, 112033. [Google Scholar] [CrossRef]
- Bharadwaj, V.; Rahman, M.S.; Sampson, P.; Seed, A.J.; Brasch, N.E. Exploring the potential of 2-(2-nitrophenyl)ethyl-caged N-hydroxysulfonamides for the photoactivated release of nitroxyl (HNO). J. Org. Chem. 2021, 86, 16448–16463. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Geissler, D.; Hagen, V.; Bendig, J. Kinetics study of the photocleavage of (coumarin-4-yl)methyl esters. J. Phys. Chem. A 2005, 109, 5000–5004. [Google Scholar] [CrossRef]
- Eckardt, T.; Hagen, V.; Schade, B.; Schmidt, R.; Schweitzer, C.; Bendig, J. Deactivation behavior and excited-state properties of (coumarin-4-yl)methyl derivatives. 2. Photocleavage of selected (coumarin-4-yl)methyl-caged adenosine cyclic 3′,5′-monophosphates with fluorescence enhancement. J. Org. Chem. 2002, 67, 703–710. [Google Scholar] [CrossRef]
- Schmidt, R.; Geissler, D.; Hagen, V.; Bendig, J. Mechanism of photocleavage of (coumarin-4-yl)methyl esters. J. Phys. Chem. A 2007, 111, 5768–5774. [Google Scholar] [CrossRef] [PubMed]
- Hagen, V.; Kilic, F.; Schaal, J.; Dekowski, B.; Schmidt, R.; Kotzur, N. [8-[Bis(carboxymethyl)aminomethyl]-6-bromo-7-hydroxycoumarin-4-yl]methyl moieties as photoremovable protecting groups for compounds with COOH, NH2, OH, and C=O functions. J. Org. Chem. 2010, 75, 2790–2797. [Google Scholar] [CrossRef]
- Dore, T.M.; Wilson, H.C. Chromophores for the delivery of bioactive molecules with two-photon excitation. In Photosensitive Molecules for Controlling Biological Function; Humana Press Inc.: Totowa, NJ, USA, 2011; pp. 57–92. [Google Scholar]
- Kim, Y.A.; Ramirez, D.M.C.; Costain, W.J.; Johnston, L.J.; Bittman, R. A new tool to assess ceramide bioactivity: 6-bromo-7-hydroxycoumarinyl-caged ceramide. Chem. Commun. 2011, 47, 9236–9238. [Google Scholar] [CrossRef]
- Nudelman, A.; Bechor, Y.; Falb, E.; Fischer, B.; Wexler, B.A.; Nudelman, A. Acetyl chloride-methanol as a convenient reagent for: A) quantitative formation of amine hydrochlorides b) carboxylate ester formation c) mild removal of N-t-Boc-protective group. Synth. Commun. 1998, 28, 471–474. [Google Scholar] [CrossRef]
- Herzig, L.-M.; Elamri, I.; Schwalbe, H.; Wachtveitl, J. Light-induced antibiotic release from a coumarin-caged compound on the ultrafast timescale. Phys. Chem. Chem. Phys. 2017, 19, 14835–14844. [Google Scholar] [CrossRef]
- Nowak, P.M.; Sagan, F.; Mitoraj, M.P. Origin of remarkably different acidity of hydroxycoumarins-joint experimental and theoretical studies. J. Phys. Chem. B 2017, 121, 4554–4561. [Google Scholar] [CrossRef]
- Narumi, T.; Takano, H.; Ohashi, N.; Suzuki, A.; Furuta, T.; Tamamura, H. Isostere-based design of 8-azacoumarin-type photolabile protecting groups: A hydrophilicity-increasing strategy for coumarin-4-ylmethyls. Org. Lett. 2014, 16, 1184–1187. [Google Scholar] [CrossRef]
- Lux, C.d.G.; Lux, J.; Collet, G.; He, S.; Chan, M.; Olejniczak, J.; Foucault-Collet, A.; Almutairi, A. Short soluble coumarin crosslinkers for light-controlled release of cells and proteins from hydrogels. Biomacromolecules 2015, 16, 3286–3296. [Google Scholar] [CrossRef]
- Givens, R.S.; Rubina, M.; Wirz, J. Applications of p-hydroxyphenacyl (pHP) and coumarin-4-ylmethyl photoremovable protecting groups. Photochem. Photobiol. Sci. 2012, 11, 472–488. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, H.K.; Zhai, S.; Surmeier, D.J.; Ellis-Davies, G.C.R. Intracellular uncaging of cGMP with blue light. ACS Chem. Neurosci. 2017, 8, 2139–2144. [Google Scholar] [CrossRef]
- Yu, H.; Li, J.; Wu, D.; Qiu, Z.; Zhang, Y. Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 2010, 39, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Adas, S.K.; Bharadwaj, V.; Zhou, Y.; Zhang, J.; Seed, A.J.; Brasch, N.E.; Sampson, P. Synthesis and HNO donating properties of the Piloty’s acid analogue trifluoromethanesulphonylhydroxamic acid: Evidence for quantitative release of HNO at neutral pH conditions. Chem.-Eur. J. 2018, 24, 7330–7334. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Ryan, L.S.; Reeves, A.G.; Bruemmer, K.J.; Mouhaffel, L.; Gerberich, J.L.; Winters, A.; Mason, R.P.; Lippert, A.R. A chemiluminescent probe for HNO quantification and real-time monitoring in living cells. Angew. Chem.-Int. Edit. 2019, 58, 1361–1365. [Google Scholar] [CrossRef]
- Smulik-Izydorczyk, R.; Dębowska, K.; Pięta, J.; Michalski, R.; Marcinek, A.; Sikora, A. Fluorescent probes for the detection of nitroxyl (HNO). Free Radic. Biol. Med. 2018, 128, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Reisz, J.A.; Klorig, E.B.; Wright, M.W.; King, S.B. Reductive phosphine-mediated ligation of nitroxyl (HNO). Org. Lett. 2009, 11, 2719–2721. [Google Scholar] [CrossRef]
- Reisz, J.A.; Zink, C.N.; King, S.B. Rapid and selective nitroxyl (HNO) trapping by phosphines: Kinetics and new aqueous ligations for HNO detection and quantitation. J. Am. Chem. Soc. 2011, 133, 11675–11685. [Google Scholar] [CrossRef]
- Miao, Z.; Reisz, J.A.; Mitroka, S.M.; Pan, J.; Xian, M.; King, S.B. A selective phosphine-based fluorescent probe for nitroxyl in living cells. Bioorg. Med. Chem. Lett. 2015, 25, 16–19. [Google Scholar] [CrossRef]
- Bechtold, E.; Reisz, J.A.; Klomsiri, C.; Tsang, A.W.; Wright, M.W.; Poole, L.B.; Furdui, C.M.; King, S.B. Water-soluble triarylphosphines as biomarkers for protein S-nitrosation. ACS Chem. Biol. 2010, 5, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; King, S.B. Recent advances in the chemical biology of nitroxyl (HNO) detection and generation. Nitric Oxide 2016, 57, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; King, S.B. Comparison of reductive ligation-based detection strategies for nitroxyl (HNO) and S-nitrosothiols. ChemistryOpen 2016, 5, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Rhine, M.A.; Rodrigues, A.V.; Urbauer, R.J.B.; Urbauer, J.L.; Stemmler, T.L.; Harrop, T.C. Proton-Induced Reactivity of NO− from a {CoNO}8 Complex. J. Am. Chem. Soc. 2014, 136, 12560–12563. [Google Scholar] [CrossRef] [PubMed]
- Fukuto, J.M.; Hobbs, A.J.; Ignarro, L.J. Conversion of nitroxyl (HNO) to nitric oxide (NO) in biological systems: The role of physiological oxidants and relevance to the biological activity of HNO. Biochem. Biophys. Res. Commun. 1993, 196, 707–713. [Google Scholar] [CrossRef]
- Furuta, T.; Takeuchi, H.; Isozaki, M.; Takahashi, Y.; Kanehara, M.; Sugimoto, M.; Watanabe, T.; Noguchi, K.; Dore, T.M.; Kurahashi, T.; et al. Bhc-cNMPs as either water-soluble or membrane-permeant photoreleasable cyclic nucleotides for both one- and two-photon excitation. ChemBioChem 2004, 5, 1119–1128. [Google Scholar] [CrossRef]
- Krȩżel, A.; Bal, W. A formula for correlating pKa values determined in D2O and H2O. J. Inorg. Biochem. 2004, 98, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Mora-Diez, N.; Egorova, Y.; Plommer, H.; Tremaine, P.R. Theoretical study of deuterium isotope effects on acid-base equilibria under ambient and hydrothermal conditions. RSC Adv. 2015, 5, 9097–9109. [Google Scholar] [CrossRef]
- Rubinson, K.A. Practical corrections for p(H,D) measurements in mixed H2O/D2O biological buffers. Anal. Methods 2017, 9, 2744–2750. [Google Scholar] [CrossRef]
- Grither, W.R.; Korang, J.; Sauer, J.P.; Sherman, M.P.; Vanegas, P.L.; Zhang, M.; McCulla, R.D. The effect of nitro substitution on the photochemistry of benzyl benozhydroxamate: Photoinduced release of benzohydroxamic acid. J. Photochem. Photobiol. A 2012, 227, 1–10. [Google Scholar] [CrossRef]
- Ladányi, V.; Dvořák, P.; Al Anshori, J.; Vetráková, L.; Wirz, J.; Heger, D. Azobenzene photoisomerization quantum yields in methanol redetermined. Photochem. Photobiol. Sci. 2017, 16, 1757–1761. [Google Scholar] [CrossRef] [PubMed]
- Schade, B.; Hagen, V.; Schmidt, R.; Herbrich, R.; Krause, E.; Eckardt, T.; Bendig, J. Deactivation behavior and excited-state properties of (coumarin-4-yl)methyl derivatives. 1. Photocleavage of (7-methoxycoumarin-4-yl)methyl-caged acids with fluorescence enhancement. J. Org. Chem. 1999, 64, 9109–9117. [Google Scholar] [CrossRef]
- Klán, P.; Šolomek, T.; Bochet, C.G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Photoremovable protecting groups in chemistry and biology: Reaction mechanisms and efficacy. Chem. Rev. 2013, 113, 119–191. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.T.; Choi, S.K. Mechanisms of drug release in nanotherapeutic delivery systems. Chem. Rev. 2015, 115, 3388–3432. [Google Scholar] [CrossRef]
- Rahman, M.S. Synthesis and Photochemical Studies of New Photoactivatable Nitroxyl (HNO)-Releasing Compounds. Ph.D. Thesis, Department of Chemistry & Biochemistry, Kent State University, Kent, OH, USA, 2019. [Google Scholar]
- Cink, R.B.; Zhou, Y.; Du, L.; Rahman, M.S.; Phillips, D.L.; Simpson, M.C.; Seed, A.J.; Sampson, P.; Brasch, N.E. Mechanistic insights into rapid generation of nitroxyl from a photocaged N-hydroxysulfonamide incorporating the (6-hydroxynaphthalen-2-yl)methyl chromophore. J. Org. Chem. 2021, 86, 8056–8068. [Google Scholar] [CrossRef]
- Schulman, S.G.; Rosenberg, L.S. Tautomerization kinetics of 7-hydroxy-4-methylcoumarin in the lowest excited singlet state. J. Phys. Chem. 1979, 83, 447–451. [Google Scholar] [CrossRef]
- Flyunt, R.; Makogon, O.; Schuchmann, M.N.; Asmus, K.-D.; von Sonntag, C. OH-Radical-induced oxidation of methanesulfinic acid. The reactions of the methanesulfonyl radical in the absence and presence of dioxygen. J. Chem. Soc.-Perkin Trans. 2 2001, 5, 787–792. [Google Scholar] [CrossRef]
- Covington, A.K.; Paabo, M.; Robinson, R.A.; Bates, R.G. Use of the glass electrode in deuterium oxide and the relation between the standardized pD (paD) scale and the operational pH in heavy water. Anal. Chem. 1968, 40, 700. [Google Scholar] [CrossRef]
Percentage of Photoproducts | |||||
---|---|---|---|---|---|
Solvent Ratio, % v/v (30 mM Phosphate Buffer, pH 7.0/CD3CN) | CH3SO2NH2 | CH3SO2NHOH | CH3SO2− | CH3SO3− | Unknown |
00/100 | 82 | 8 | 3 | 3 | 4 |
60/40 | 93 | 1 | 0 | 0 | 2 |
90/10 | 79 | 5 | 2 | 9 | 5 |
pH | Percentages of Photoproducts | |
---|---|---|
CF3SO2− | CF3SO2NH2 | |
2.1 a | 4 | 96 |
5.0 b | 19 | 81 |
7.0 a | 20 | 80 |
10.0 c | 19 | 81 |
pH | Percentage of Photoproducts | ||||
---|---|---|---|---|---|
CH3SO2NH2 | CH3SO2NHOH | CH3SO2− | CH3SO3− | Unknown | |
2.1 a | 78 | 8 | 2 | 6 | 6 |
5.0 b | 78 | 8 | 2 | 5 | 7 |
7.0 c | 81 | 11 | 4 | 4 | 0 |
10.0 d | 40 | 4 | 48 | 8 | 0 |
10.7 e | 39 | 5 | 54 | 2 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.S.; Bharadwaj, V.; Lautaha, A.K.H.S.; Sampson, P.; Brasch, N.E.; Seed, A.J. Developing Photoactive Coumarin-Caged N-Hydroxysulfonamides for Generation of Nitroxyl (HNO). Molecules 2024, 29, 3918. https://doi.org/10.3390/molecules29163918
Rahman MS, Bharadwaj V, Lautaha AKHS, Sampson P, Brasch NE, Seed AJ. Developing Photoactive Coumarin-Caged N-Hydroxysulfonamides for Generation of Nitroxyl (HNO). Molecules. 2024; 29(16):3918. https://doi.org/10.3390/molecules29163918
Chicago/Turabian StyleRahman, Mohammad S., Vinay Bharadwaj, Anau K. H. S. Lautaha, Paul Sampson, Nicola E. Brasch, and Alexander J. Seed. 2024. "Developing Photoactive Coumarin-Caged N-Hydroxysulfonamides for Generation of Nitroxyl (HNO)" Molecules 29, no. 16: 3918. https://doi.org/10.3390/molecules29163918
APA StyleRahman, M. S., Bharadwaj, V., Lautaha, A. K. H. S., Sampson, P., Brasch, N. E., & Seed, A. J. (2024). Developing Photoactive Coumarin-Caged N-Hydroxysulfonamides for Generation of Nitroxyl (HNO). Molecules, 29(16), 3918. https://doi.org/10.3390/molecules29163918