Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = nine-coordinate complexes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4721 KB  
Article
Decarbonising Agriculture with Green Hydrogen: A Stakeholder-Guided Feasibility Study
by Pegah Mirzania, Da Huo, Nazmiye Balta-Ozkan, Niranjan Panigrahi and Jerry W. Knox
Sustainability 2025, 17(20), 9298; https://doi.org/10.3390/su17209298 - 20 Oct 2025
Viewed by 376
Abstract
Green hydrogen offers a promising yet underexplored pathway for agricultural decarbonisation, requiring technological readiness and coordinated action from policymakers, industry, and farmers. This paper integrates techno-economic modelling with stakeholder engagement (semi-structured interviews and an expert workshop) to assess its potential. Analyses were conducted [...] Read more.
Green hydrogen offers a promising yet underexplored pathway for agricultural decarbonisation, requiring technological readiness and coordinated action from policymakers, industry, and farmers. This paper integrates techno-economic modelling with stakeholder engagement (semi-structured interviews and an expert workshop) to assess its potential. Analyses were conducted for farms of 123 hectares and clusters of 10 farms, complemented by seven interviews and a workshop with nine sector experts. Findings show both opportunities and barriers. While on-farm hydrogen production is technically feasible, it remains economically uncompetitive due to high levelised costs, shaped by seasonal demand variability and low utilisation of electrolysers and storage. Pooling demand across multiple users is essential to improve cost-effectiveness. Stakeholders identified three potential business models: fertiliser production via ammonia synthesis, cooperative-based models, and local refuelling stations. Of these, cooperative hydrogen hubs emerged as the most promising, enabling clusters of farms to jointly invest in renewable-powered electrolysers, storage, and refuelling facilities, thereby reducing costs, extending participation to smaller farms, and mitigating risks through collective investment. By linking techno-economic feasibility with stakeholder perspectives and business model considerations, the results contribute to socio-technical transition theory by showing how technological, institutional, and social factors interact in shaping hydrogen adoption in agriculture. With appropriate policy support, cooperative hubs could lower costs, ease concerns over affordability and complexity, and position hydrogen as a practical driver of agricultural decarbonisation and rural resilience. Full article
Show Figures

Figure 1

25 pages, 907 KB  
Review
Challenges in Polyglutamine Diseases: From Dysfunctional Neuronal Circuitries to Neuron-Specific CAG Repeat Instability
by Roxana Deleanu
Int. J. Mol. Sci. 2025, 26(19), 9755; https://doi.org/10.3390/ijms26199755 - 7 Oct 2025
Viewed by 502
Abstract
Several genetic diseases affecting the human nervous system are incurable and insufficiently understood. Among them, nine rare diseases form the polyglutamine (polyQ) family: Huntington’s disease (HD), spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17, dentatorubral pallidoluysian atrophy, and spinal and bulbar [...] Read more.
Several genetic diseases affecting the human nervous system are incurable and insufficiently understood. Among them, nine rare diseases form the polyglutamine (polyQ) family: Huntington’s disease (HD), spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17, dentatorubral pallidoluysian atrophy, and spinal and bulbar muscular atrophy. In most patients, these diseases progress over decades to cause severe movement incoordination and neurodegeneration. Although their inherited genes with tandem-repeat elongations and the encoded polyQ-containing proteins have been extensively studied, the neuronal-type-specific pathologies and their long pre-symptomatic latency await further investigations. However, recent advances in detecting the single-nucleus transcriptome, alongside the length of tandem repeats in HD post-mortem brains, have enabled the identification of very high CAG repeat sizes that trigger transcriptional dysregulation and cell death in specific projection neurons. One challenge is to better understand the complexity of movement coordination circuits, including the basal ganglia and cerebellum neurons, which are most vulnerable to the high CAG expansion in each disease. Another challenge is to detect dynamic changes in CAG repeat length and their effects in vulnerable neurons at single-cell resolution. This will offer a platform for identifying pathological events in vulnerable long projection neurons and developing targeted therapies for all tandem-repeat expansions affecting the CNS projection neurons. Full article
(This article belongs to the Special Issue Neurodegenerative Disease: Genetic Bases and Pathogenetic Mechanism)
Show Figures

Figure 1

44 pages, 9238 KB  
Article
SZOA: An Improved Synergistic Zebra Optimization Algorithm for Microgrid Scheduling and Management
by Lihong Cao and Qi Wei
Biomimetics 2025, 10(10), 664; https://doi.org/10.3390/biomimetics10100664 - 1 Oct 2025
Viewed by 364
Abstract
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with [...] Read more.
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover–mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs—including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties—and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30–40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (−20 to −30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of “economic efficiency and low-carbon operation”, offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling. Full article
Show Figures

Figure 1

16 pages, 4979 KB  
Article
Synthesis, Structures and Corrosion Inhibition Properties of 4-Nitrophenylacetato-Rare-Earth(III) 1D Coordination Polymers
by Jacob M. Neill, Naveena Y. Salpadoru Thuppahige, Zhifang Guo, Glen B. Deacon and Peter C. Junk
Molecules 2025, 30(19), 3940; https://doi.org/10.3390/molecules30193940 - 1 Oct 2025
Viewed by 867
Abstract
The rare earth (RE) aqua 4-nitrophenylacetate (4npa) complexes {[RE(4npa)3(H2O)2]·2H2O}n (RE = La (1La), Nd (2Nd)), [Ce(4npa)3(H2O)2]n (3Ce), and {[RE2(4npa) [...] Read more.
The rare earth (RE) aqua 4-nitrophenylacetate (4npa) complexes {[RE(4npa)3(H2O)2]·2H2O}n (RE = La (1La), Nd (2Nd)), [Ce(4npa)3(H2O)2]n (3Ce), and {[RE2(4npa)6(H2O)]·2H2O}n (RE = Gd (4Gd), Dy (5Dy), Y (6Y), Er (7Er), Yb (8Yb)) were synthesised by salt metathesis reactions of REIII chlorides or nitrates with sodium 4-nitrophenylacetate Na(4npa) in aqueous ethanol. The structures of all the complexes were determined by single-crystal X-ray diffraction (SCXRD) except for RE = 4Gd, which was determined to be isomorphous with the 5Dy and 7Er complexes by X-ray powder diffraction (XRPD). All the complexes crystallise as one-dimensional polymers linked by bridging carboxylates. Complexes (1La3Ce) have mononuclear repeating units with two coordinated waters and ten coordinate RE ions, 1La and 2Nd also have two waters of crystallization, but 3Ce has none. By contrast, complexes (4Gd8Yb) have binuclear repeating units with a single coordinated water. Isomorphous 5Dy and 7Er have one nine coordinate and one eight coordinate metal ion, whilst isomorphous 6Y and 8Yb have two eight coordinate RE ions. In some cases, bulk powders have structures different from the corresponding single crystals. For example, bulk 1La is isomorphous with 3Ce owing to the loss of water of crystallization, and 8Yb exhibits coordination isomerism between single crystals and microcrystalline powder. Weight loss corrosion tests revealed that {[Dy2(4npa)6(H2O)]·2H2O}n (5Dy) has the greatest inhibition efficiency (89%) of the complexes (1La8Yb). The activities are comparable to those of the corresponding 4-hydroxyphenylacetates (4hpa) and far superior to those of 2-hydroxyphenylacetates (2hpa) and the unsubstituted phenylacetates. Whilst the coordination numbers generally decline with the lanthanoid contraction, there are deviations around 5Dy, 6Y, 7Er, and 8Yb, and the corrosion inhibition is optimised with a midrange size. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

24 pages, 1352 KB  
Article
Gas Extraction and Earthquakes in the Netherlands: Drawing Lessons from the Response to Ongoing Social Conflict and Tensions
by Nienke Busscher and Ena Vojvodić
Sustainability 2025, 17(17), 7612; https://doi.org/10.3390/su17177612 - 23 Aug 2025
Viewed by 1867
Abstract
Since the onset of gas extraction in Groningen province, the Netherlands, more than 1700 earthquakes have taken place. This has resulted in damage to properties and safety issues for almost 28,000 buildings. As a result, an extensive reinforcement and damage repair operation started, [...] Read more.
Since the onset of gas extraction in Groningen province, the Netherlands, more than 1700 earthquakes have taken place. This has resulted in damage to properties and safety issues for almost 28,000 buildings. As a result, an extensive reinforcement and damage repair operation started, due to which, many residents were temporarily relocated. Although the need for compensation and restoration was recognized from 2012, recent years are characterized by unclear and shifting responsibilities, bureaucratic complexities, and evolving compensation standards, leading to disparity and a further escalation of social impacts. This paper examines developments in the case from 2015 onwards, when the last overview article on this case was published. We observe that even after a decade of compensation efforts, many residents experience loss of trust in the government and endure chronic stress that impacts their well-being, family dynamics, and overall quality of life. We analyze the government-led mitigation and compensation system that in essence fails to address the grievances of local people. Even after broad recognition of the flawed system, the parliament did not fundamentally change it. In nine lessons, we underscore the global imperative for robust social impact assessments, ongoing social monitoring, and well-coordinated compensation frameworks. This is not only crucial to address socio-ecological distress, but also to build more accountable and sustainable institutional responses to future extraction endeavors. Full article
Show Figures

Figure 1

29 pages, 342 KB  
Article
The Intersection of Giftedness, Disability, and Cultural Identity: A Case Study of a Young Asian American Boy
by Tammy Jean Byrd, Ty’Bresha Ebony Glass, Ophélie Allyssa Desmet and F. Richard Olenchak
Behav. Sci. 2025, 15(8), 1036; https://doi.org/10.3390/bs15081036 - 30 Jul 2025
Cited by 1 | Viewed by 2816
Abstract
The present research examines the intersections of giftedness, disability status, and cultural identity through the case of Kent, a nine-year-old Asian American boy who is not only profoundly gifted but has also been diagnosed with autism spectrum disorder (ASD), attention deficit hyperactivity disorder [...] Read more.
The present research examines the intersections of giftedness, disability status, and cultural identity through the case of Kent, a nine-year-old Asian American boy who is not only profoundly gifted but has also been diagnosed with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and possibly developmental coordination disorder (DCD). This study offers a comprehensive exploration of how these overlapping factors shape Kent’s early talent development and educational experiences, while also highlighting the challenges faced by his family and their need for a personalized, holistic support system tailored to his unique combination of abilities and disabilities. While Kent’s case is not generalizable, it underscores the critical importance of understanding the dynamic interplay among giftedness, disability status, and cultural identity in developing effective educational strategies. Furthermore, we advocate for personalized interventions that extend beyond conventional approaches, such as applied behavior analysis (ABA), to adequately address the complex needs of multi-exceptional individuals like Kent. Full article
23 pages, 4653 KB  
Article
Zinc-Induced Folding and Solution Structure of the Eponymous Novel Zinc Finger from the ZC4H2 Protein
by Rilee E. Harris, Antonio J. Rua and Andrei T. Alexandrescu
Biomolecules 2025, 15(8), 1091; https://doi.org/10.3390/biom15081091 - 28 Jul 2025
Viewed by 786
Abstract
The ZC4H2 gene is the site of congenital mutations linked to neurodevelopmental and musculoskeletal pathologies collectively termed ZARD (ZC4H2-Associated Rare Disorders). ZC4H2 consists of a coiled coil and a single novel zinc finger with four cysteines and two histidines, from which the protein [...] Read more.
The ZC4H2 gene is the site of congenital mutations linked to neurodevelopmental and musculoskeletal pathologies collectively termed ZARD (ZC4H2-Associated Rare Disorders). ZC4H2 consists of a coiled coil and a single novel zinc finger with four cysteines and two histidines, from which the protein obtains its name. Alpha Fold 3 confidently predicts a structure for the zinc finger but also for similarly sized random sequences, providing equivocal information on its folding status. We show using synthetic peptide fragments that the zinc finger of ZC4H2 is genuine and folds upon binding a zinc ion with picomolar affinity. NMR pH titration of histidines and UV–Vis of a cobalt complex of the peptide indicate its four cysteines coordinate zinc, while two histidines do not participate in binding. The experimental NMR structure of the zinc finger has a novel structural motif similar to RANBP2 zinc fingers, in which two orthogonal hairpins each contribute two cysteines to coordinate zinc. Most of the nine ZARD mutations that occur in the ZC4H2 zinc finger are likely to perturb this structure. While the ZC4H2 zinc finger shares the folding motif and cysteine-ligand spacing of the RANBP2 family, it is missing key substrate-binding residues. Unlike the NZF branch of the RANBP2 family, the ZC4H2 zinc finger does not bind ubiquitin. Since the ZC4H2 zinc finger occurs in a single copy, it is also unlikely to bind DNA. Based on sequence homology to the VAB-23 protein, the ZC4H2 zinc finger may bind RNA of a currently undetermined sequence or have alternative functions. Full article
(This article belongs to the Special Issue Functional Peptides and Their Interactions (3rd Edition))
Show Figures

Figure 1

11 pages, 966 KB  
Article
Creation and Implementation of a Multidisciplinary Pediatric Hematopoietic Stem Cell Transplant Discharge Coordination Program
by Jessica D. Murphy, Kathryn Duke, Cambree J. Fillis and Heather J. Symons
Nurs. Rep. 2025, 15(6), 202; https://doi.org/10.3390/nursrep15060202 - 4 Jun 2025
Viewed by 1110
Abstract
Background/Objectives: Hospital discharge of pediatric hematopoietic stem cell transplant (HSCT) patients is complex and requires multidisciplinary efforts to ensure patients/caregivers are prepared for transition to the outpatient setting. This period is tenuous as patients are medically complex, immunocompromised, and required to take several [...] Read more.
Background/Objectives: Hospital discharge of pediatric hematopoietic stem cell transplant (HSCT) patients is complex and requires multidisciplinary efforts to ensure patients/caregivers are prepared for transition to the outpatient setting. This period is tenuous as patients are medically complex, immunocompromised, and required to take several medications requiring dose titration. Miscommunication or decreased preparedness for discharge can place patients at risk for life-threatening complications. An integrative review was performed to evaluate the current literature on discharge coordination best practices for pediatric HSCT, revealing a scarcity of data. Taking into account this minimal literature and the lack of an established process at our center, this article details the development and implementation of a multidisciplinary care coordination program for pediatric HSCT patients following hospital discharge, aiming to establish a standardized approach and thus improve caregiver readiness for discharge. Methods: A group of physicians, advanced practice nurses, registered nurses, and pharmacists developed a comprehensive approach to pediatric HSCT discharge coordination. Interventions included standardized education, checklist integrated into the electronic medical record, 24 h rooming-in period, and personalized pharmacist follow-up. Surveys were provided to caregivers to assess discharge readiness and ongoing medication adherence. Results: This quality improvement project demonstrated feasibility via successful implementation for 12 patients. Compared to a nine-patient pre-implementation group, there was no statistically significant difference in perceived readiness. Medication adherence was unable to be evaluated. Clinical significance was anecdotally appreciated by the medical care team, with improved organization, collaboration, and communication. Conclusions: A new pediatric HSCT discharge coordination program was created and successfully implemented. More literature on best practices is needed. Full article
Show Figures

Figure 1

28 pages, 3280 KB  
Article
Structural, Computational, and Biomolecular Interaction Study of Europium(III) and Iron(III) Complexes with Pyridoxal-Semicarbazone Ligand
by Violeta Jevtovic, Stefan Perendija, Aljazi Abdullah Alrashidi, Maha Awjan Alreshidi, Elham A. Alzahrani, Odeh A. O. Alshammari, Mostafa Aly Hussien, Jasmina Dimitrić Marković and Dušan Dimić
Int. J. Mol. Sci. 2025, 26(11), 5289; https://doi.org/10.3390/ijms26115289 - 30 May 2025
Viewed by 981
Abstract
The coordination chemistry, structural characterization, and biomolecular interactions of europium(III) and iron(III) complexes with the pyridoxal-semicarbazone (PLSC) ligand were thoroughly examined using experimental and computational approaches. Single-crystal X-ray diffraction revealed that the europium complex exhibits a nine-coordinate geometry with one protonated and one [...] Read more.
The coordination chemistry, structural characterization, and biomolecular interactions of europium(III) and iron(III) complexes with the pyridoxal-semicarbazone (PLSC) ligand were thoroughly examined using experimental and computational approaches. Single-crystal X-ray diffraction revealed that the europium complex exhibits a nine-coordinate geometry with one protonated and one deprotonated PLSC ligand and nitrato and aqua ligands. In contrast, the iron complex adopts a six-coordinate structure featuring a monoprotonated PLSC, two chlorido, and an aqua ligand. Hirshfeld surface analysis confirmed the significance of intermolecular contacts in stabilizing the crystal lattice. Theoretical geometry optimizations using DFT methods demonstrated excellent agreement with experimental bond lengths and angles, thereby validating the reliability of the chosen computational levels for subsequent quantum chemical analyses. Quantum Theory of Atoms in Molecules (QTAIM) analysis was employed to investigate the nature of metal–ligand interactions, with variations based on the identity of the donor atom and the ligand’s protonation state. The biological potential of the complexes was evaluated through spectrofluorimetric titration and molecular docking. Eu-PLSC displayed stronger binding to human serum albumin (HSA), while Fe-PLSC showed higher affinity for calf thymus DNA (CT-DNA), driven by intercalation. Thermodynamic data confirmed spontaneous and enthalpy-driven interactions. These findings support using PLSC-based metal complexes as promising candidates for future biomedical applications, particularly in drug delivery and DNA targeting. Full article
Show Figures

Figure 1

35 pages, 5248 KB  
Review
Effect of Remote Amine Groups on Ground- and Excited-State Properties of Terpyridyl d-Metal Complexes
by Anna Kryczka, Joanna Palion-Gazda, Katarzyna Choroba and Barbara Machura
Molecules 2025, 30(11), 2386; https://doi.org/10.3390/molecules30112386 - 29 May 2025
Viewed by 976
Abstract
Over the last nine decades, 2,2′:6′,2″-terpyridine (terpy) derivatives and their transition d-metal complexes have been extensively explored due to their unique and widely tuned optical, electrochemical, and biological properties. Terpyridyl transition metal complexes occupy a prominent position among functional molecular materials for applications [...] Read more.
Over the last nine decades, 2,2′:6′,2″-terpyridine (terpy) derivatives and their transition d-metal complexes have been extensively explored due to their unique and widely tuned optical, electrochemical, and biological properties. Terpyridyl transition metal complexes occupy a prominent position among functional molecular materials for applications in optoelectronics, life science, catalysis, and photocatalysis, as well as they have played a key role in determining structure–property relationships. This review summarizes the developments of amine-functionalized R-C6H4-terpy systems and their d-metal complexes, largely concentrating on their photophysical and electrochemical properties. Functionalization of the terpy core with the electron-rich group, attached to the central pyridine ring of the terpy backbone via the phenylene linker, gives rise to organic push–pull systems showing the photoinduced charge flow process from the peripheral donor substituent to the terpy acceptor. The introduction of amine-functionalized R-C6H4-terpy systems into the coordination sphere of a d-metal ion offers an additional way for controlling the photophysics of these systems, in agreement with the formation of the excited state of intraligand charge transfer (ILCT) nature. Within this review, a detailed discussion has been presented for R-C6H4-terpys modified with acyclic and cyclic amine groups and their Cr(III), Mn(I), Re(I), Fe(II), Ru(II), Os(II), Pt(II), and Zn(II) coordination compounds. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Figure 1

32 pages, 4186 KB  
Article
Comprehensive Adaptive Enterprise Optimization Algorithm and Its Engineering Applications
by Shuxin Wang, Yejun Zheng, Li Cao and Mengji Xiong
Biomimetics 2025, 10(5), 302; https://doi.org/10.3390/biomimetics10050302 - 9 May 2025
Cited by 2 | Viewed by 876
Abstract
In this study, a brand-new algorithm called the Comprehensive Adaptive Enterprise Development Optimizer (CAED) is proposed to overcome the drawbacks of the Enterprise Development (ED) algorithm in complex optimization tasks. In particular, it aims to tackle the problems of slow convergence and low [...] Read more.
In this study, a brand-new algorithm called the Comprehensive Adaptive Enterprise Development Optimizer (CAED) is proposed to overcome the drawbacks of the Enterprise Development (ED) algorithm in complex optimization tasks. In particular, it aims to tackle the problems of slow convergence and low precision. To enhance the algorithm’s ability to break free from local optima, a lens imaging reverse learning approach is incorporated. This approach creates reverse solutions by utilizing the concepts of optical imaging. As a result, it expands the search range and boosts the probability of finding superior solutions beyond local optima. Moreover, an environmental sensitivity-driven adaptive inertial weight approach is developed. This approach dynamically modifies the equilibrium between global exploration, which enables the algorithm to search for new promising areas in the solution space, and local development, which is centered on refining the solutions close to the currently best-found areas. To evaluate the efficacy of the CAED, 23 benchmark functions from CEC2005 are chosen for testing. The performance of the CAED is contrasted with that of nine other algorithms, such as the Particle Swarm Optimization (PSO), Gray Wolf Optimization (GWO), and the Antlion Optimizer (AOA). Experimental findings show that for unimodal functions, the standard deviation of the CAED is almost 0, which reflects its high accuracy and stability. In the case of multimodal functions, the optimal value obtained by the CAED is notably better than those of other algorithms, further emphasizing its outstanding performance. The CAED algorithm is also applied to engineering optimization challenges, like the design of cantilever beams and three-bar trusses. For the cantilever beam problem, the optimal solution achieved by the CAED is 13.3925, with a standard deviation of merely 0.0098. For the three-bar truss problem, the optimal solution is 259.805047, and the standard deviation is an extremely small 1.11 × 10−7. These results are much better than those achieved by the traditional ED algorithm and the other comparative algorithms. Overall, through the coordinated implementation of multiple optimization strategies, the CAED algorithm exhibits high precision, strong robustness, and rapid convergence when searching in complex solution spaces. As such, it offers an efficient approach for solving various engineering optimization problems. Full article
Show Figures

Figure 1

23 pages, 6190 KB  
Article
Novel 3D UAV Path Planning for IoT Services Based on Interactive Cylindrical Vector Teaching–Learning Optimization Algorithm
by Xinghe Jiang, Xuanyu Wu, Zhifeng Zhang, Zhaoxi Hong, Xi Xiao and Yixiong Feng
Sensors 2025, 25(8), 2407; https://doi.org/10.3390/s25082407 - 10 Apr 2025
Viewed by 1057
Abstract
In the 6G-IoT convergence ecosystem, UAV path planning for static environments is systematically investigated as a resource coordination problem where communication demands and terrain constraints are balanced through intelligent trajectory optimization. The innovation of this paper lies in the proposal of an interactive [...] Read more.
In the 6G-IoT convergence ecosystem, UAV path planning for static environments is systematically investigated as a resource coordination problem where communication demands and terrain constraints are balanced through intelligent trajectory optimization. The innovation of this paper lies in the proposal of an interactive cylinder vector teaching–learning-based optimization (ICVTLBO) algorithm, where UAV trajectory points are represented in cylindrical coordinates, and targeted interactive strategies are proposed during the teacher and learner phases to address uncertainty challenges, such as terrain elevation fluctuations and communication link instability caused by obstacles in static environments. The ICVTLBO is compared with other classical and novel algorithms on the CEC2022 benchmark function suite, demonstrating its effectiveness and reliability in solving complex optimization problems. Subsequently, real digital elevation model (DEM) maps are utilized to establish nine diverse terrain scenarios for the simulation of 3D UAV path planning challenges, and experimental results show that the ICVTLBO outperforms other methods, providing high-quality paths for UAVs in complex environments. Full article
Show Figures

Figure 1

23 pages, 1897 KB  
Article
Coupled Coordination of the Water–Food–Energy System in Nine Provinces of the Yellow River Basin: Spatiotemporal Characteristics and Driving Mechanisms
by Lei Nie, Manya Wu, Zhifang Wu, Jing Zhang and Xiaorun Liu
Water 2025, 17(7), 1040; https://doi.org/10.3390/w17071040 - 1 Apr 2025
Cited by 2 | Viewed by 806
Abstract
This study focuses on the Yellow River Basin, a key economic region spanning nine provinces in China, and explores the complex interactions within the water–food–energy systems. Based on the theoretical framework of the coupled coordination of the water–food–energy system, an indicator system is [...] Read more.
This study focuses on the Yellow River Basin, a key economic region spanning nine provinces in China, and explores the complex interactions within the water–food–energy systems. Based on the theoretical framework of the coupled coordination of the water–food–energy system, an indicator system is developed to assess the coordination of these systems. Using ArcGIS, the study identifies the spatiotemporal characteristics of the coupling coordination of the water–food–energy systems in the Yellow River Basin. Additionally, a panel data model is employed to analyze the driving mechanisms and optimization pathways for enhancing system coordination in the region. The results reveal that (1) The degree of coupling coordination between the water–food–energy systems in the Yellow River Basin varies significantly across space. (2) Overall, the coupling coordination in the region is relatively low and exhibits a clustered pattern. (3) Research and development (R&D) intensity is a significant factor influencing the coupling coordination of these systems in the region. Full article
(This article belongs to the Topic Water and Energy Monitoring and Their Nexus)
Show Figures

Figure 1

13 pages, 4399 KB  
Article
Enhancing the Magnetic Behaviors of Dy2 Complexes by Modulating the Crystal Field Environment with Different μ-O Bridging Ligands
by Xirong Wang, Min Zhou, Wen Wang, Fangting Zhu, Shijia Qin, Xiulan Li, Feifei Bai, Qinglun Wang, Licun Li, Yue Ma and Bin Zhao
Molecules 2025, 30(6), 1260; https://doi.org/10.3390/molecules30061260 - 11 Mar 2025
Viewed by 986
Abstract
Four similar dinuclear lanthanide complexes have been synthesized by linking two [Ln(hfac)2–3] units (hfac stands for hexafluoroacetylacetone) with different μ-O bridging ligands. The 2,2′-bipyridine-N-oxide ligand (bmpo) constructed two centrosymmetric complexes [Ln2(hfac)6(bmpo)2] (Ln = Dy( [...] Read more.
Four similar dinuclear lanthanide complexes have been synthesized by linking two [Ln(hfac)2–3] units (hfac stands for hexafluoroacetylacetone) with different μ-O bridging ligands. The 2,2′-bipyridine-N-oxide ligand (bmpo) constructed two centrosymmetric complexes [Ln2(hfac)6(bmpo)2] (Ln = Dy(1), Tb(2)), with nine-coordinated LnIII ions showing Cs low symmetry, while the ligand di(2-pyridyl)methanediol (py2C(OH)2) formed another two compounds [Ln2(hfac)4(py2C(OH)O)2] (Ln = Dy(3), Tb(4)), with two kinds of eight-coordinated LnIII ions exhibiting improved symmetries of D4d and D2d. Magnetic analysis reveals that Dy2 complex 1 shows intramolecular antiferromagnetic coupling (J = −1.07 cm−1) and no relaxation process above 2.0 K even in a 1000 Oe dc field, owing to the low symmetry of DyIII ions, while the similar Dy2 complex 3 with improved DyIII symmetry shows ferromagnetic coupling (J = 1.17 cm−1), which induces a 1000 Oe dc field-induced two-step magnetization relaxation processes with effective energy barrier Ueff = 47.4 K and 25.2 K for the slow relaxation and fast relaxation processes, respectively. This study proves again that the improved symmetry combined with intramolecular ferromagnetic interactions, both mediated by bridging ligands, can enhance the DyIII anisotropy, further quench the quantum tunneling of the magnetization, and finally, enhance the magnetic behavior of LnIII-based systems. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

13 pages, 1922 KB  
Article
Ruthenium Decorated Tris-Silylated Germanium Zintl Clusters Featuring an Unexpected Ligand Arrangement
by Nicole S. Willeit, Viktor Hlukhyy and Thomas F. Fässler
Molecules 2025, 30(6), 1247; https://doi.org/10.3390/molecules30061247 - 11 Mar 2025
Viewed by 997
Abstract
The incorporation of transition metal atoms into [Ge9] clusters is a widely studied area of Zintl-cluster chemistry. Recently, it was shown that clusters comprising single transition metal atoms in the cluster surface show catalytic properties. Here, we present a synthetic [...] Read more.
The incorporation of transition metal atoms into [Ge9] clusters is a widely studied area of Zintl-cluster chemistry. Recently, it was shown that clusters comprising single transition metal atoms in the cluster surface show catalytic properties. Here, we present a synthetic approach to four new compounds comprising silylated Ge9 clusters with organometallic ruthenium complexes. [η5-Ge9Hyp3]RuCp* (1), [η1-Ge9(SitBu2H)3]RuCp(PPh3)2 (2), and [Hyp3Ge9][RuCp(PPh3)2(MeCN)] (3b) (Cp = cyclopentadienyl, Cp* = pentamethylcyclopentadienyl, Hyp = Si(SiMe3)3, Ph = C6H5, tBu = tert-butyl) were characterized by means of NMR spectroscopy and single-crystal structure determination. In the case of 2, a new isomer with an approximated C4v symmetric monocapped square antiprism of nine Ge atoms with an unexpected ligand arrangement comprising three ditertbutylsilane ligands attached to the open square was obtained. [Hyp3Ge9][RuCp(PPh3)2] (3a) was characterized via NMR spectroscopy and LIFDI mass spectrometry. Overall, we were able to show that the steric demand of the ligands Cp vs. Cp* and hypersilylchloride vs. ditertbutylsilane strongly influence the arrangement of the atoms and ligands on the cluster. In addition, the solvent also affects the cluster, as it appears that the ruthenium atom in 3a dissociates from the cluster surface upon acetonitrile coordination to form 3b. These results show that choosing the right synthetic tools and ligands makes a big difference in the outcome of the metalation reaction. Full article
Show Figures

Graphical abstract

Back to TopTop