Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = neutrophil augmentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8211 KB  
Article
Adverse Effect of Sugarcane Extract Powder (SEP) in Hyper-Lipidemic Zebrafish During a 14-Week Diet: A Comparative Analysis of Biochemical and Toxicological Efficacy Between Four SEPs and Genuine Policosanol (Raydel®)
by Kyung-Hyun Cho, Ashutosh Bahuguna, Sang Hyuk Lee, Ji-Eun Kim, Yunki Lee, Cheolmin Jeon, Seung Hee Baek and Krismala Djayanti
Int. J. Mol. Sci. 2025, 26(19), 9524; https://doi.org/10.3390/ijms26199524 - 29 Sep 2025
Viewed by 1039
Abstract
Sugarcane wax-derived policosanol (POL) is well recognized for its multifaceted biological activities, particularly in dyslipidemia management, whereas sugar cane extract powder (SEP), prepared from whole sugar juice blended with supplementary components, has not been thoroughly investigated for its biological activities and potential toxicities. [...] Read more.
Sugarcane wax-derived policosanol (POL) is well recognized for its multifaceted biological activities, particularly in dyslipidemia management, whereas sugar cane extract powder (SEP), prepared from whole sugar juice blended with supplementary components, has not been thoroughly investigated for its biological activities and potential toxicities. Herein, the comparative dietary effect of four distinct SEPs (SEP-1 to SEP-4) and Cuban sugarcane wax extracted POL were examined to prevent the pathological events in high-cholesterol diet (HCD)-induced hyperlipidemic zebrafish. Among the SEPs, a 14-week intake of SEP-2 emerged with the least zebrafish survival probability (0.75, log-rank: χ2 = 14.1, p = 0.015), while the POL supplemented group showed the utmost survival probability. A significant change in body weight and morphometric parameters was observed in the SEP-2 supplemented group compared to the HCD group, while non-significant changes had appeared in POL, SEP-1, SEP-3, and SEP-4 supplemented groups. The HCD elevated total cholesterol (TC) and triglyceride (TG) levels were significantly minimized by the supplementation of POL, SEP-1, and SEP-2. However, an augmented HDL-C level was only noticed in POL-supplemented zebrafish. Likewise, only the POL-supplemented group showed a reduction in blood glucose, malondialdehyde (MDA), AST, and ALT levels, and an elevation in sulfhydryl content, paraoxonase (PON), and ferric ion reduction (FRA) activity. Also, plasma from the POL-supplemented group showed the highest antioxidant activity and protected zebrafish embryos from carboxymethyllysine (CML)-induced toxicity and developmental deformities. POL effectively mitigated HCD-triggered hepatic neutrophil infiltration, steatosis, and the production of interleukin (IL)-6 and inhibited cellular senescence in the kidney and minimized the ROS generation and apoptosis in the brain. Additionally, POL substantially elevated spermatozoa count in the testis and safeguarded ovaries from HCD-generated ROS and senescence. The SEP products (SEP-1, SEP-3, and SEP-4) showed almost non-significant protective effect; however, SEP-2 exhibited an additive effect on the adversity posed by HCD in various organs and biochemical parameters. The multivariate examination, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), demonstrates the positive impact of POL on the HCD-induced pathological events in zebrafish, which are notably diverse, with the effect mediated by SEPs. The comparative study concludes that POL has a functional superiority over SEPs in mitigating adverse events in hyperlipidemic zebrafish. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

21 pages, 2149 KB  
Article
The Efficacy of Targeted Monoclonal IgA Antibodies Against Pancreatic Ductal Adenocarcinoma
by Léon Raymakers, Elsemieke M. Passchier, Meggy E. L. Verdonschot, Mitchell Evers, Chilam Chan, Karel C. Kuijpers, G. Mihaela Raicu, I. Quintus Molenaar, Hjalmar C. van Santvoort, Karin Strijbis, Martijn P. W. Intven, Lois A. Daamen, Jeanette H. W. Leusen and Patricia A. Olofsen
Cells 2025, 14(9), 632; https://doi.org/10.3390/cells14090632 - 24 Apr 2025
Cited by 1 | Viewed by 2283
Abstract
The efficacy of immunotherapy in pancreatic ductal adenocarcinoma (PDAC) remains limited. The tumor microenvironment (TME), characterized by the accumulation of suppressive myeloid cells including neutrophils, attributes to immunotherapy resistance in PDAC. IgA monoclonal antibodies (mAbs) can activate neutrophils to kill tumor cells; this [...] Read more.
The efficacy of immunotherapy in pancreatic ductal adenocarcinoma (PDAC) remains limited. The tumor microenvironment (TME), characterized by the accumulation of suppressive myeloid cells including neutrophils, attributes to immunotherapy resistance in PDAC. IgA monoclonal antibodies (mAbs) can activate neutrophils to kill tumor cells; this can be further enhanced by blocking the myeloid immune checkpoint CD47. In this study, we investigated the potential of this therapeutic strategy for PDAC. We determined the expression of tumor-associated antigens (TAAs) on PDAC cell lines and fresh patient samples, and the results showed that the TAAs epithelial cell adhesion molecule (EpCAM), trophoblast cell surface antigen 2 (TROP2) and mucin-1 (MUC1), as well as CD47 were consistently expressed on PDAC. In line with this, we showed that IgA mAbs against EpCAM can activate neutrophils to lyse various PDAC cell lines and tumor cells, which can be augmented by addition of CD47 blockade. In addition, we observed that neutrophils were present in patient tumors and expressed the receptor for IgA. In conclusion, our results indicate that a combination of IgA mAb with CD47 blockade is a promising preclinical treatment strategy for PDAC, which merits further investigation. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Graphical abstract

25 pages, 8782 KB  
Article
Chronic Exposure to Two Regimens of Waterpipe Smoke Elicits Lung Injury, Genotoxicity, and Mitochondrial Impairment with the Involvement of MAPKs Activation in Mice
by Naserddine Hamadi, Suhail Al-Salam, Sumaya Beegam, Nur Elena Zaaba, Ozaz Elzaki and Abderrahim Nemmar
Int. J. Mol. Sci. 2025, 26(1), 430; https://doi.org/10.3390/ijms26010430 - 6 Jan 2025
Cited by 1 | Viewed by 2739
Abstract
While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing [...] Read more.
While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis. Only R-WPS increased the number of neutrophil polymorphs and plasma cells. R-WPS also significantly increased the chemokines CXCL1, CXCL2, and CCL2 in the lung, BALF, and plasma, while O-WPS increased CXCL1 and CXCL2 in the lung and CXCL1 in the plasma. Both exposure regimens significantly increased lung injury markers, including matrix metalloproteinase-9 and myeloperoxidase. Additionally, R-WPS induced a significant increase in the cytokines IL1β, IL6, and TNFα in the lung, BALF, and plasma, while O-WPS elevated IL1β and IL6 in the lung. Oxidative stress was observed, with increased levels of thiobarbituric acid reactive substances and superoxide dismutase in both the O-WPS and R-WPS groups. Exposure to either O-WPS or R-WPS triggered genotoxicity and altered mitochondrial complex activities. R-WPS exposure also resulted in elevated expression of p-JNK/JNK, p-ERK/ERK, and p-p38/p38, while O-WPS augmented the p-ERK/ERK ratio in the lungs. Taken together, these findings indicate that both O-WPS and R-WPS contribute to lung injury and induce inflammation, oxidative stress, genotoxicity, and mitochondrial dysfunction, with R-WPS having a more pronounced effect. These effects were associated with the activation of MAPKs. Full article
Show Figures

Figure 1

20 pages, 26605 KB  
Article
Sulforaphane Wrapped in Self-Assembled Nanomicelle Enhances the Effect of Sonodynamic Therapy on Glioma
by Yihong Li, Xuejie Yang, Zhen Wei, Heng Niu, Liyang Wu, Caijing Chen, Huina Liu, Ting Cai and Huadong Fan
Pharmaceutics 2025, 17(1), 34; https://doi.org/10.3390/pharmaceutics17010034 - 30 Dec 2024
Cited by 4 | Viewed by 1734
Abstract
Background/Objectives: The two obstacles for treating glioma are the skull and the blood brain–barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer [...] Read more.
Background/Objectives: The two obstacles for treating glioma are the skull and the blood brain–barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Methods: Through ultrasonic polymerization, the amphiphilic peptides (C18GR7RGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM. Results/Conclusions: SFN@RB@SPM can be internalized by the glioma cells through the tumor-targeting motif RGDS (abbreviated for the peptide sequence composed of arginine, glycine, aspartic acid, and serine), and further executes antitumor function during SDT. Also, SFN@RB@SPM could be easily taken up by U87-MG cells and cross the BBB in glioma-bearing mice during SDT. The mechanism investigation revealed that, compared with the SFN-free nanocomplex (RB@SPM), SFN@RB@SPM induced much more apoptosis of U87-MG cells in an ROS-dependent manner through the depletion of glutathione by SFN and the cavitation effect by SDT. In animal experiments, besides a significant reduction in tumor volume and a delay in losing body weight, H&E staining showed a massive infiltration of neutrophils adjacent to the tumor sites, indicating this novel nanocomplex SFN@RB@SPM can synergistically augment SDT efficacy, partially by enhancing the antitumor function of innate immunity. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Graphical abstract

16 pages, 521 KB  
Article
Predicting Response to [177Lu]Lu-PSMA Therapy in mCRPC Using Machine Learning
by Kaiyuan Gong, Baptiste Magnier, Salomé L’hostis, Fanny Borrely, Sébastien Le Bon, Nadine Houede, Adel Mamou, Laurent Maimoun, Pierre Olivier Kotzki and Vincent Boudousq
J. Pers. Med. 2024, 14(11), 1068; https://doi.org/10.3390/jpm14111068 - 23 Oct 2024
Viewed by 2769
Abstract
Background/Objectives: Radioligandtherapy (RLT) with [177Lu]Lu-PSMA has been newly introduced as a routine treatment for metastatic castration-resistant prostate cancer (mCRPC). However, not all patients can tolerate the entire therapeutic sequence, and in some cases, the treatment may prove ineffective. In real-world conditions, the aim [...] Read more.
Background/Objectives: Radioligandtherapy (RLT) with [177Lu]Lu-PSMA has been newly introduced as a routine treatment for metastatic castration-resistant prostate cancer (mCRPC). However, not all patients can tolerate the entire therapeutic sequence, and in some cases, the treatment may prove ineffective. In real-world conditions, the aim is to distinguish between patients who fully benefit from treatment (those who respond effectively and tolerate the entire therapeutic sequence) and those who do not respond or cannot tolerate the entire sequence. This study explores predictive factors to distinguish between fully beneficial RLT treatment patients (FBTP) and not fully beneficial RLT treatment patients (NFBTP). The objective was to enhance the understanding of predictive factors influencing RLT effectiveness and to highlight the significance of machine learning in optimizing patient selection for treatment planning. Methods: Data from 25 mCRPC patients, categorized as FBTP (11) or NFBTP (14) to RLT, were analyzed. The dataset included clinical, imaging, and biological parameters. Data analysis techniques, including exploratory data analysis and feature engineering, were used to develop machine learning models for predicting patient outcomes. Results: Imaging data analysis revealed statistically significant differences in the renal uptake intensity of Choline between the two groups. A discordance of FDG+ and PSMA− was identified as a potential indicator of NFBTP. The integration of biological data enhanced the model’s predictive capability, achieving an accuracy of 0.92, a sensitivity of 0.96, and a precision of 0.96. Adding blood parameters like neutrophils, leukocytes, and alkaline phosphatase greatly increased prediction accuracy. Conclusions: This study emphasizes the significance of an integrated approach that merges imaging and biological data, thereby augmenting the predictive accuracy of patient outcomes in RLT with [177Lu]Lu-PSMA. In particular, including Choline PET among the imaging parameters provides unique insights into the predictive factors affecting RLT efficacy. This approach not only deepens the understanding of predictive factors but also underscores the utility of machine learning in refining the patient selection process for optimized treatment planning. Full article
(This article belongs to the Special Issue Bioinformatics and Medicine: 2nd Edition)
Show Figures

Graphical abstract

16 pages, 2853 KB  
Article
E3 Ubiquitin Ligase Smurf1 Regulates the Inflammatory Response in Macrophages and Attenuates Hepatic Damage during Betacoronavirus Infection
by Luiz P. Souza-Costa, Felipe R. S. Santos, Jordane C. Pimenta, Celso M. Queiroz-Junior, Fernanda L. Tana, Danielle C. Teixeira, Manoela G. G. Couto, Natalia F. M. Oliveira, Rafaela D. Pereira, Vinicius A. Beltrami, Pedro A. C. Costa, Larisse S. B. Lacerda, Josiane T. Andrade-Chaves, Pedro P. G. Guimarães, Renato S. Aguiar, Mauro M. Teixeira, Vivian V. Costa and Luis H. Franco
Pathogens 2024, 13(10), 871; https://doi.org/10.3390/pathogens13100871 - 3 Oct 2024
Cited by 1 | Viewed by 2664
Abstract
The E3 ubiquitin ligase Smurf1 catalyzes the ubiquitination and proteasomal degradation of several protein substrates related to inflammatory responses and antiviral signaling. This study investigated the role of Smurf1 in modulating inflammation induced by Betacoronavirus infection. Bone marrow-derived macrophages (BMDMs) from C57BL/6 (wild-type) [...] Read more.
The E3 ubiquitin ligase Smurf1 catalyzes the ubiquitination and proteasomal degradation of several protein substrates related to inflammatory responses and antiviral signaling. This study investigated the role of Smurf1 in modulating inflammation induced by Betacoronavirus infection. Bone marrow-derived macrophages (BMDMs) from C57BL/6 (wild-type) or Smurf1-deficient (Smurf1−/−) mice were infected with MHV-A59 to evaluate the inflammatory response in vitro. Smurf1 was found to be required to downregulate the macrophage production of pro-inflammatory mediators, including TNF, and CXCL1; to control viral release from infected cells; and to increase cell viability. To assess the impact of Smurf 1 in vivo, we evaluated the infection of mice with MHV-A59 through the intranasal route. Smurf1−/− mice infected with a lethal inoculum of MHV-A59 succumbed earlier to infection. Intranasal inoculation with a 10-fold lower dose of MHV-A59 resulted in hematological parameter alterations in Smurf1−/− mice suggestive of exacerbated systemic inflammation. In the lung parenchyma, Smurf1 expression was essential to promote viral clearance, downregulating IFN-β mRNA and controlling the inflammatory profile of macrophages and neutrophils. Conversely, Smurf1 did not affect IFN-β mRNA regulation in the liver, but it was required to increase TNF and iNOS expression in neutrophils and decrease TNF expression in macrophages. In addition, Smurf1−/− mice exhibited augmented liver injuries, accompanied by high serum levels of alanine aminotransferase (ALT). These findings suggest that Smurf1 plays a critical role in regulating the inflammatory response in macrophages and attenuating systemic inflammation during Betacoronavirus infection. Full article
(This article belongs to the Special Issue Host Immune Responses to Intracellular Pathogens)
Show Figures

Graphical abstract

18 pages, 2251 KB  
Article
Comparative Effectiveness of Ascorbic Acid vs. Calcium Ascorbate Ingestion on Pharmacokinetic Profiles and Immune Biomarkers in Healthy Adults: A Preliminary Study
by Broderick Dickerson, Drew E. Gonzalez, Ryan Sowinski, Dante Xing, Megan Leonard, Jacob Kendra, Victoria Jenkins, Siddharth Gopalakrishnan, Choongsung Yoo, Joungbo Ko, Syamkumar Sivasankara Pillai, Jigna R. Bhamore, Bhimanagouda S. Patil, Gus A. Wright, Christopher J. Rasmussen and Richard B. Kreider
Nutrients 2024, 16(19), 3358; https://doi.org/10.3390/nu16193358 - 2 Oct 2024
Cited by 1 | Viewed by 10487
Abstract
Background: Previous trials have displayed augmented intracellular vitamin C concentrations in the leukocytes at 24 h after acute supplementation with 1000 mg calcium ascorbate (CA), compared to ascorbic acid (AA). Objective: The primary objective was to evaluate comparative leukocyte vitamin C accumulation kinetics [...] Read more.
Background: Previous trials have displayed augmented intracellular vitamin C concentrations in the leukocytes at 24 h after acute supplementation with 1000 mg calcium ascorbate (CA), compared to ascorbic acid (AA). Objective: The primary objective was to evaluate comparative leukocyte vitamin C accumulation kinetics over 32 h following acute 250 mg or 500 mg doses from the two sources. Secondary objectives were to evaluate neutrophil phagocytic function and lymphocyte differentiation between the two sources of vitamin C. Methods: Ninety-three healthy females (250 mg, n = 27; 500 mg, n = 24) and males (250 mg, n = 19; 500 mg, n = 23) were assigned to ingest a single dose of CA or AA providing 250 mg or 500 mg of vitamin C in two separate double-blind, randomized crossover trials. Results: There were no significant differences in the primary or secondary outcomes between the two treatments in the 250 mg low-dose study. Conversely, there was evidence that ingestion of 500 mg of CA increased DHA in plasma, increased neutrophil functionality during the first 8 h of the PK study, promoted increased natural killer cells, and altered weight-adjusted PK profiles, suggesting greater volume distribution and clearance from the blood. Conclusions: These findings indicate that 500 mg of CA may promote some immune benefits compared to 500 mg of AA ingestion. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

18 pages, 4432 KB  
Article
The CAMKK/AMPK Pathway Contributes to Besnoitia besnoiti-Induced NETosis in Bovine Polymorphonuclear Neutrophils
by Iván Conejeros, Zahady D. Velásquez, Lisbeth Rojas-Barón, Gabriel Espinosa, Carlos Hermosilla and Anja Taubert
Int. J. Mol. Sci. 2024, 25(15), 8442; https://doi.org/10.3390/ijms25158442 - 2 Aug 2024
Cited by 5 | Viewed by 2017
Abstract
Besnoitia besnoiti is an obligate intracellular apicomplexan parasite and the causal agent of bovine besnoitiosis. Bovine besnoitiosis has a considerable economic impact in Africa and Asia due to reduced milk production, abortions, and bull infertility. In Europe, bovine besnoitiosis is classified as an [...] Read more.
Besnoitia besnoiti is an obligate intracellular apicomplexan parasite and the causal agent of bovine besnoitiosis. Bovine besnoitiosis has a considerable economic impact in Africa and Asia due to reduced milk production, abortions, and bull infertility. In Europe, bovine besnoitiosis is classified as an emerging disease. Polymorphonuclear neutrophils (PMN) are one of the most abundant leukocytes in cattle blood and amongst the first immunological responders toward invading pathogens. In the case of B. besnoiti, bovine PMN produce reactive oxygen species (ROS), release neutrophil extracellular traps (NETs), and show increased autophagic activities upon exposure to tachyzoite stages. In that context, the general processes of NETosis and autophagy were previously reported as associated with AMP-activated protein kinase (AMPK) activation. Here, we study the role of AMPK in B. besnoiti tachyzoite-induced NET formation, thereby expanding the analysis to both upstream proteins, such as the calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK), and downstream signaling and effector molecules, such as the autophagy-related proteins ULK-1 and Beclin-1. Current data revealed early AMPK activation (<30 min) in both B. besnoiti-exposed and AMPK activator (AICAR)-treated bovine PMN. This finding correlated with upstream responses on the level of CAMKK activation. Moreover, these reactions were accompanied by an augmented autophagic activity, as represented by enhanced expression of ULK-1 but not of Beclin-1. Referring to neutrophil effector functions, AICAR treatments induced both AMPK phosphorylation and NET formation, without affecting cell viability. In B. besnoiti tachyzoite-exposed PMN, AICAR treatments failed to affect oxidative responses, but led to enhanced NET formation, thereby indicating that AMPK and autophagic activation synergize with B. besnoiti-driven NETosis. Full article
Show Figures

Figure 1

15 pages, 13837 KB  
Article
Cordycepin Augments the Efficacy of Anti-PD1 against Colon Cancer
by Wen-Kuei Chang, Yen-Ting Chen, Chin-Ping Lin, Chia-Jung Wang, Hui-Ru Shieh, Chih-Wen Chi, Tung-Hu Tsai and Yu-Jen Chen
Biomedicines 2024, 12(7), 1568; https://doi.org/10.3390/biomedicines12071568 - 15 Jul 2024
Cited by 3 | Viewed by 2310
Abstract
Colon cancer has a poor clinical response to anti-PD1 therapy. This study aimed to evaluate the effect of cordycepin on the efficacy of anti-PD1 treatment in colon cancer. The viability of CT26 mouse colon carcinoma cells, cell-cycle progression, morphology, and the expression of [...] Read more.
Colon cancer has a poor clinical response to anti-PD1 therapy. This study aimed to evaluate the effect of cordycepin on the efficacy of anti-PD1 treatment in colon cancer. The viability of CT26 mouse colon carcinoma cells, cell-cycle progression, morphology, and the expression of mRNA and protein were assessed. A syngeneic animal model was established by implanting CT26 cells into BALB/c mice for in vivo experiments. Multi-parameter flow cytometry was used to analyze the splenic cell lineages and tumor microenvironment (TME). The in vitro data revealed that cordycepin, but not adenosine, inhibited CT26 cell viability. The protein, but not mRNA, expression levels of A2AR and A2BR were suppressed by cordycepin but not by adenosine in CT26 cells. The combination of cordycepin, but not adenosine, with anti-PD1 exhibited a greater tumor-inhibitory effect than anti-PD1 alone as well as inhibited the expression of A2AR and A2BR in splenic macrophages. In the TME, the combination of cordycepin and anti-PD1 increased the number of CD3+ T cells and neutrophils and decreased the number of natural killer (NK) cells. Overall, cordycepin augmented the antitumor effects of anti-PD1 against mouse colon carcinoma cells and inhibited the expression of the adenosine receptors A2AR and A2BR in splenic macrophages and intratumoral NK cells. Full article
Show Figures

Figure 1

16 pages, 1460 KB  
Review
Coronary Plaque Erosion: Epidemiology, Diagnosis, and Treatment
by Panagiotis Theofilis, Panayotis K. Vlachakis, Aggelos Papanikolaou, Paschalis Karakasis, Evangelos Oikonomou, Konstantinos Tsioufis and Dimitris Tousoulis
Int. J. Mol. Sci. 2024, 25(11), 5786; https://doi.org/10.3390/ijms25115786 - 26 May 2024
Cited by 11 | Viewed by 5112
Abstract
Plaque erosion (PE), a distinct etiology of acute coronary syndromes (ACSs), is often overshadowed by plaque ruptures (PRs). Concerning its epidemiology, PE has garnered increasing recognition, with recent studies revealing its prevalence to be approximately 40% among ACS patients, challenging earlier assumptions based [...] Read more.
Plaque erosion (PE), a distinct etiology of acute coronary syndromes (ACSs), is often overshadowed by plaque ruptures (PRs). Concerning its epidemiology, PE has garnered increasing recognition, with recent studies revealing its prevalence to be approximately 40% among ACS patients, challenging earlier assumptions based on autopsy data. Notably, PE exhibits distinct epidemiological features, preferentially affecting younger demographics, particularly women, and often manifesting as a non-ST-segment elevation myocardial infarction. There are seasonal variations, with PE events being less common in winter, potentially linked to physiological changes and cholesterol solidification, while peaking in summer, warranting further investigation. Moving to molecular mechanisms, PE presents a unique profile characterized by a lesser degree of inflammation compared to PR, with endothelial shear stress emerging as a plausible molecular mechanism. Neutrophil activation, toll-like receptor-2 pathways, and hyaluronidase 2 expression are among the factors implicated in PE pathophysiology, underscoring its multifactorial nature. Advancements in intravascular imaging diagnostics, particularly optical coherence tomography and near-infrared spectroscopy coupled with intravascular ultrasound, offer unprecedented insights into plaque composition and morphology. Artificial intelligence algorithms show promise in enhancing diagnostic accuracy and streamlining image interpretation, augmenting clinician decision-making. Therapeutically, the management of PE evolves, with studies exploring less invasive approaches such as antithrombotic therapy without stenting, particularly in cases identified early through intravascular imaging. Additionally, the potential role of drug-coated balloons in reducing thrombus burden and minimizing future major adverse cardiovascular events warrants further investigation. Looking ahead, the integration of advanced imaging modalities, biomarkers, and artificial intelligence promises to revolutionize the diagnosis and treatment of coronary PE, ushering in a new era of personalized and precise cardiovascular care. Full article
Show Figures

Figure 1

18 pages, 1991 KB  
Article
Halofantrine Hydrochloride Acts as an Antioxidant Ability Inhibitor That Enhances Oxidative Stress Damage to Candida albicans
by Juan Xiong, Li Wang, Zhe Feng, Sijin Hang, Jinhua Yu, Yanru Feng, Hui Lu and Yuanying Jiang
Antioxidants 2024, 13(2), 223; https://doi.org/10.3390/antiox13020223 - 9 Feb 2024
Cited by 11 | Viewed by 2972
Abstract
Candida albicans, a prominent opportunistic pathogenic fungus in the human population, possesses the capacity to induce life-threatening invasive candidiasis in individuals with compromised immune systems despite the existence of antifungal medications. When faced with macrophages or neutrophils, C. albicans demonstrates its capability [...] Read more.
Candida albicans, a prominent opportunistic pathogenic fungus in the human population, possesses the capacity to induce life-threatening invasive candidiasis in individuals with compromised immune systems despite the existence of antifungal medications. When faced with macrophages or neutrophils, C. albicans demonstrates its capability to endure oxidative stress through the utilization of antioxidant enzymes. Therefore, the enhancement of oxidative stress in innate immune cells against C. albicans presents a promising therapeutic approach for the treatment of invasive candidiasis. In this study, we conducted a comprehensive analysis of a library of drugs approved by the Food and Drug Administration (FDA). We discovered that halofantrine hydrochloride (HAL) can augment the antifungal properties of oxidative damage agents (plumbagin, menadione, and H2O2) by suppressing the response of C. albicans to reactive oxygen species (ROS). Furthermore, our investigation revealed that the inhibitory mechanism of HAL on the oxidative response is dependent on Cap1. In addition, the antifungal activity of HAL has been observed in the Galleria mellonella infection model. These findings provide evidence that targeting the oxidative stress response of C. albicans and augmenting the fungicidal capacity of oxidative damage agents hold promise as effective antifungal strategies. Full article
Show Figures

Figure 1

11 pages, 2262 KB  
Article
Inhibiting Neutrophil Extracellular Traps Protects against Ultraviolet B-Induced Skin Damage: Effects of Hochu-ekki-to and DNase I
by Issei Inaba, Keiichi Hiramoto, Yurika Yamate, Akihiro Morita, Tomonari Tsutsumi, Hiroyuki Yasuda and Eisuke F. Sato
Int. J. Mol. Sci. 2024, 25(3), 1723; https://doi.org/10.3390/ijms25031723 - 31 Jan 2024
Cited by 3 | Viewed by 3346
Abstract
UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To [...] Read more.
UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To elucidate NET distribution in the dorsal skin, male ICR mice, exposed to UVB irradiation, were immunohistologically analyzed to detect citrullinated histone H3 (citH3) and peptidylarginine deiminase 4 (PAD4). Reactive oxygen species (ROS) production in the bloodstream was analyzed. To establish the involvement of NET-released DNA in this inflammatory response, mice were UV-B irradiated following the intraperitoneal administration of DNase I. In vitro experiments were performed to scrutinize the impact of Hochu-ekki-to on A23187-induced NETs in neutrophil-like HL-60 cells. UV-B irradiation induced dorsal skin inflammation, coinciding with a significant increase in citH3 and PAD4 expression. Administration of DNase I attenuated UV-B-induced skin inflammation, whereas Hochu-ekki-to administration considerably suppressed the inflammation, correlating with diminished levels of citH3 and PAD4 in the dorsal skin. UV-B irradiation conspicuously augmented ROS and hydrogen peroxide (H2O2) production in the blood. Hochu-ekki-to significantly inhibited ROS and H2O2 generation. In vitro experiments demonstrated that Hochu-ekki-to notably inhibited A23187-induced NETs in differentiated neutrophil-like cells. Hence, NETs have been implicated in UV-B-induced skin inflammation, and their inhibition reduces cutaneous inflammation. Additionally, Hochu-ekki-to mitigated skin inflammation by impeding neutrophil infiltration and NETs in the dorsal skin of mice. Full article
(This article belongs to the Special Issue Neutrophil in Cell Biology and Diseases 2.0)
Show Figures

Figure 1

17 pages, 5877 KB  
Article
Effects of Waterpipe Smoke Exposure on Experimentally Induced Chronic Kidney Disease in Mice
by Sumaya Beegam, Suhail Al-Salam, Nur Elena Zaaba, Ozaz Elzaki, Badreldin H. Ali and Abderrahim Nemmar
Int. J. Mol. Sci. 2024, 25(1), 585; https://doi.org/10.3390/ijms25010585 - 2 Jan 2024
Cited by 4 | Viewed by 2455
Abstract
Tobacco smoking is an independent risk factor in the onset of kidney disease. To date, there have been no reports on the influence of waterpipe smoke (WPS) in experimentally induced chronic kidney disease (CKD) models. We studied the effects and mechanisms of actions [...] Read more.
Tobacco smoking is an independent risk factor in the onset of kidney disease. To date, there have been no reports on the influence of waterpipe smoke (WPS) in experimentally induced chronic kidney disease (CKD) models. We studied the effects and mechanisms of actions of WPS on a mouse model of adenine-induced CKD. Mice fed either a normal diet, or an adenine-added diet and were exposed to either air or WPS (30 min/day and 5 days/week) for four consecutive weeks. Plasma creatinine, urea and indoxyl sulfate increased and creatinine clearance decreased in adenine + WPS versus either WPS or adenine + saline groups. The urinary concentrations of kidney injury molecule-1 and adiponectin and the activities of neutrophil gelatinase-associated lipocalin and N-acetyl-β-D-glucosaminidase were augmented in adenine + WPS compared with either adenine + air or WPS groups. In the kidney tissue, several markers of oxidative stress and inflammation were higher in adenine + WPS than in either adenine + air or WPS groups. Compared with the controls, WPS inhalation in mice with CKD increased DNA damage, and urinary concentration of 8-hydroxy-2-deoxyguanosine. Furthermore, the expressions of nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs) (ERK and p38) were elevated in the kidneys of adenine + WPS group, compared with the controls. Likewise, the kidneys of adenine + WPS group revealed more marked histological tubular injury, chronic inflammation and interstitial fibrosis. In conclusion, WPS inhalation aggravates kidney injury, oxidative stress, inflammation, DNA damage and fibrosis in mice with adenine-induced CKD, indicating that WPS exposure intensifies CKD. These effects were associated with a mechanism involving NF-κB, ERK and p38 activations. Full article
(This article belongs to the Collection Feature Papers in Molecular Toxicology)
Show Figures

Figure 1

12 pages, 2501 KB  
Article
Immunostimulatory Effect of Flagellin on MDR-Klebsiella-Infected Human Airway Epithelial Cells
by Christine C. A. van Linge, Katina D. Hulme, Hessel Peters-Sengers, Jean-Claude Sirard, Wil H. F. Goessens, Menno D. de Jong, Colin A. Russell, Alex F. de Vos and Tom van der Poll
Int. J. Mol. Sci. 2024, 25(1), 309; https://doi.org/10.3390/ijms25010309 - 25 Dec 2023
Cited by 3 | Viewed by 2217
Abstract
Pneumonia caused by multi-drug-resistant Klebsiella pneumoniae (MDR-Kpneu) poses a major public health threat, especially to immunocompromised or hospitalized patients. This study aimed to determine the immunostimulatory effect of the Toll-like receptor 5 ligand flagellin on primary human lung epithelial cells during [...] Read more.
Pneumonia caused by multi-drug-resistant Klebsiella pneumoniae (MDR-Kpneu) poses a major public health threat, especially to immunocompromised or hospitalized patients. This study aimed to determine the immunostimulatory effect of the Toll-like receptor 5 ligand flagellin on primary human lung epithelial cells during infection with MDR-Kpneu. Human bronchial epithelial (HBE) cells, grown on an air–liquid interface, were inoculated with MDR-Kpneu on the apical side and treated during ongoing infection with antibiotics (meropenem) and/or flagellin on the basolateral and apical side, respectively; the antimicrobial and inflammatory effects of flagellin were determined in the presence or absence of meropenem. In the absence of meropenem, flagellin treatment of MDR-Kpneu-infected HBE cells increased the expression of antibacterial defense genes and the secretion of chemokines; moreover, supernatants of flagellin-exposed HBE cells activated blood neutrophils and monocytes. However, in the presence of meropenem, flagellin did not augment these responses compared to meropenem alone. Flagellin did not impact the outgrowth of MDR-Kpneu. Flagellin enhances antimicrobial gene expression and chemokine release by the MDR-Kpneu-infected primary human bronchial epithelium, which is associated with the release of mediators that activate neutrophils and monocytes. Topical flagellin therapy may have potential to boost immune responses in the lung during pneumonia. Full article
(This article belongs to the Special Issue Flagella 2.0)
Show Figures

Figure 1

21 pages, 6157 KB  
Article
Effect of Antioxidant Supplementation on NET Formation Induced by LPS In Vitro; the Roles of Vitamins E and C, Glutathione, and N-acetyl Cysteine
by Germán Muñoz-Sánchez, Lucila A. Godínez-Méndez, Mary Fafutis-Morris and Vidal Delgado-Rizo
Int. J. Mol. Sci. 2023, 24(17), 13162; https://doi.org/10.3390/ijms241713162 - 24 Aug 2023
Cited by 20 | Viewed by 3512
Abstract
Neutrophil extracellular traps (NETs) require reactive oxygen species (ROS) to eliminate pathogens by inducing oxidative stress. However, this process can also cause tissue damage to the host. Neutrophils contain high concentrations of vitamin C (1.5 mM) compared to the bloodstream (0.1 mM), and [...] Read more.
Neutrophil extracellular traps (NETs) require reactive oxygen species (ROS) to eliminate pathogens by inducing oxidative stress. However, this process can also cause tissue damage to the host. Neutrophils contain high concentrations of vitamin C (1.5 mM) compared to the bloodstream (0.1 mM), and this antioxidant can interact with vitamin E and glutathione (GSH) inside the cell to maintain the redox balance. Previous studies have investigated the effect of vitamins E or C and N-acetyl cysteine (NAC) on NET formation, but the interactions of these molecules in neutrophils remain unknown. In this study, we investigated the effect of antioxidants alone and two combinations on NET formation and oxidative stress. Neutrophils were pre-loaded with GSH + NAC or vitamin E + vitamin C + GSH + NAC (termed ALL), and LPS-induced NET formation was assessed using fluorometry and immunofluorescence. Antioxidant effects were evaluated by measuring the total antioxidant capacity (TAC), GSH/GSSG ratio, ROS production, nitrite + nitrate levels, and lipid peroxidation. Our results showed that even low doses of antioxidants are capable of decreasing NETs. Furthermore, the combinations augmented TAC and GSH/GSSG ratio and decreased ROS, nitrites + nitrates, and malondialdehyde (MDA) levels in supplemented neutrophils in vitro. Full article
(This article belongs to the Special Issue Neutrophil in Cell Biology and Diseases 2.0)
Show Figures

Figure 1

Back to TopTop