Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = neutrino beams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4856 KiB  
Article
PREFACE: A Search for Long-Lived Particles at the Large Hadron Collider
by Burak Hacisahinoglu, Suat Ozkorucuklu, Maksym Ovchynnikov, Michael G. Albrow, Aldo Penzo and Orhan Aydilek
Physics 2025, 7(3), 33; https://doi.org/10.3390/physics7030033 - 1 Aug 2025
Viewed by 232
Abstract
The Standard Model (SM) fails to explain many problems (neutrino masses, dark matter, and matter–antimatter asymmetry, among others) that may be resolved with new particles beyond the SM. No observation of such new particles may be explained either by their exceptionally high mass [...] Read more.
The Standard Model (SM) fails to explain many problems (neutrino masses, dark matter, and matter–antimatter asymmetry, among others) that may be resolved with new particles beyond the SM. No observation of such new particles may be explained either by their exceptionally high mass or by considerably small coupling to SM particles. The latter case implies relatively long lifetimes. Such long-lived particles (LLPs) then to have signatures different from those of SM particles. Searches in the “central region” are covered by the LHC general purpose experiments. The forward small angle region far from the interaction point (IP) is unexplored. Such particles are expected to have the energy as large as E = O(1 TeV) and Lorentz time dilation factor γ=E/m102103 (with m the particle mass) hence long enough decay distances. A new class of specialized LHC detectors dedicated to LLP searches has been proposed for the forward regions. Among these experiments, FASER is already operational, and FACET is under consideration at a location 100 m from the LHC IP5 (the CMS detector intersection). However, some features of FACET require a specially enlarged beam pipe, which cannot be implemented for LHC Run 4. In this study, we explore a simplified version of the proposed detector PREFACE compatible with the standard LHC beam pipe in the HL-LHC Run 4. Realistic Geant4 simulations are performed and the background is evaluated. An initial analysis of the physics potential with the PREFACE geometry indicates that several significant channels could be accessible with sensitivities comparable to FACET and other LLP searches. Full article
(This article belongs to the Section High Energy Physics)
Show Figures

Figure 1

8 pages, 8051 KiB  
Article
Performance of the ICARUS Trigger System at the Booster and NuMI Neutrino Beams
by Riccardo Triozzi
Particles 2025, 8(1), 22; https://doi.org/10.3390/particles8010022 - 3 Mar 2025
Viewed by 578
Abstract
The ICARUS-T600 liquid argon time projection chamber detector takes data at a shallow depth as the far detector of the Short Baseline Neutrino program at Fermilab, searching for sterile neutrinos with the Booster and Main Injector neutrino beams. The ICARUS trigger system exploits [...] Read more.
The ICARUS-T600 liquid argon time projection chamber detector takes data at a shallow depth as the far detector of the Short Baseline Neutrino program at Fermilab, searching for sterile neutrinos with the Booster and Main Injector neutrino beams. The ICARUS trigger system exploits the temporal coincidence of the beams with scintillation light signals detected by 360 photo-multiplier tubes in limited TPC regions. The trigger efficiency measurement leverages cosmic rays collected without any scintillation light requirement, with timing from an external cosmic ray tagger system. The efficiency measured with stopping muons roughly saturates at Eμ∼300 MeV, covering most of the expected energy range of charged-current neutrino interactions. For the latest ICARUS physics runs, special “adder” boards performing the analog sum of light signals were introduced as a complementary trigger to possibly recover low-energy neutrino interactions. Full article
Show Figures

Figure 1

16 pages, 5186 KiB  
Article
ICARUS at the Short-Baseline Neutrino Program: First Results
by Maria Artero Pons
Particles 2025, 8(1), 18; https://doi.org/10.3390/particles8010018 - 14 Feb 2025
Viewed by 1064
Abstract
The ICARUS collaboration employed the 760-ton T600 detector in a successful three-year physics run at the underground LNGS laboratory. In 2021, ICARUS started its new operation at Fermilab, collecting a substantial amount of neutrino events from the Booster Neutrino Beam (BNB) and the [...] Read more.
The ICARUS collaboration employed the 760-ton T600 detector in a successful three-year physics run at the underground LNGS laboratory. In 2021, ICARUS started its new operation at Fermilab, collecting a substantial amount of neutrino events from the Booster Neutrino Beam (BNB) and the neutrinos at the Main Injector (NuMI) beam off-axis. These were used to test the ICARUS event selection, reconstruction, and analysis algorithms. ICARUS successfully completed its commissioning phase in June 2022, moving then to data taking for neutrino oscillation physics, aiming at first to either confirm or refute the claim by the Neutrino-4 short-baseline reactor experiment. ICARUS will also perform measurements of neutrino cross sections in LAr with the NuMI beam and several Beyond Standard Model studies. After the first year of operations, ICARUS will search for evidence of sterile neutrinos jointly with the Short-Baseline Near Detector, within the Short-Baseline Neutrino program. In this work, preliminary results from the ICARUS data with the BNB and NuMI beams are presented, both in terms of the performance of all ICARUS subsystems and the capability to select and reconstruct neutrino events. Full article
Show Figures

Figure 1

10 pages, 5685 KiB  
Article
Improvement and Characterisation of the ArCLight Large-Area Dielectric Light Detector for Liquid-Argon Time Projection Chambers
by Jonas Bürgi, Livio Calivers, Richard Diurba, Fabian Frieden, Anja Gauch, Laura Francesca Iacob, Igor Kreslo, Jan Kunzmann, Saba Parsa and Michele Weber
Instruments 2024, 8(4), 48; https://doi.org/10.3390/instruments8040048 - 4 Nov 2024
Viewed by 1510
Abstract
The detection of scintillation light in noble-liquid detectors is necessary for identifying neutrino interaction candidates from beam, astrophysical, or solar sources. Large monolithic detectors typically have highly efficient light sensors, like photomultipliers, mounted outside their electric field. This option is not available for [...] Read more.
The detection of scintillation light in noble-liquid detectors is necessary for identifying neutrino interaction candidates from beam, astrophysical, or solar sources. Large monolithic detectors typically have highly efficient light sensors, like photomultipliers, mounted outside their electric field. This option is not available for modular detectors that wish to maximize their active volume. The ArgonCube light readout system detectors (ArCLights) are large-area thin-wavelength-shifting (WLS) panels that can operate in highly proximate modular detectors and within the electric field. The WLS plastic forming the bulk structure of the ArCLight has Tetraphenyl Butadiene (TPB) and sheets of dichroic mirror layered across its surface. It is coupled to a set of six silicon photomultipliers (SiPMs). This publication compares TPB coating techniques for large surface areas and describes quality control methods for large-scale production. Full article
Show Figures

Figure 1

40 pages, 795 KiB  
Review
Measuring a Mass: The Puzzling History of an Elusive Particle
by Elisabetta Di Grezia, Salvatore Esposito and Adele Naddeo
Universe 2024, 10(8), 317; https://doi.org/10.3390/universe10080317 - 3 Aug 2024
Viewed by 1145
Abstract
Since Pauli’s hypothesis of their existence in 1930, neutrinos never ceased to bring into play novel ideas and to add new pieces of physics in the whole picture of fundamental interactions. They are only weakly interacting and, at odds with Standard Model’s predictions, [...] Read more.
Since Pauli’s hypothesis of their existence in 1930, neutrinos never ceased to bring into play novel ideas and to add new pieces of physics in the whole picture of fundamental interactions. They are only weakly interacting and, at odds with Standard Model’s predictions, have a mass less than one millionth of the electron mass, which makes the investigation of their properties very challenging. The issue of the measurement of neutrino’s rest mass gained a wider and wider consensus since its discovery through neutrino oscillations in 1998. Various neutrino sources are available for experiments, ranging from nuclear collisions of cosmic rays in the Earth atmosphere and supernova explosions to neutrino beams produced by accelerators and power reactors. These suggest different approaches to the experimental detection and measurement of the absolute value of the neutrino mass. In this paper, we retrace the intriguing story of this endeavor, focusing mainly on direct mass determination methods. The puzzling issue of the nature of massive neutrinos is addressed as well with explicit reference to the phenomenon of double beta-decay as a viable experimental tool to discriminate between Dirac’s and Majorana’s nature. Full article
(This article belongs to the Special Issue Neutrinos across Different Energy Scales)
Show Figures

Figure 1

13 pages, 7107 KiB  
Article
Results and Perspectives from the First Two Years of Neutrino Physics at the LHC by the SND@LHC Experiment
by D. Abbaneo, S. Ahmad, R. Albanese, A. Alexandrov, F. Alicante, K. Androsov, A. Anokhina, T. Asada, C. Asawatangtrakuldee, M. A. Ayala Torres, C. Battilana, A. Bay, A. Bertocco, C. Betancourt, D. Bick, R. Biswas, A. Blanco Castro, V. Boccia, M. Bogomilov, D. Bonacorsi, W. M. Bonivento, P. Bordalo, A. Boyarsky, S. Buontempo, M. Campanelli, T. Camporesi, V. Canale, A. Castro, D. Centanni, F. Cerutti, M. Chernyavskiy, K.-Y. Choi, S. Cholak, F. Cindolo, M. Climescu, A. P. Conaboy, G. M. Dallavalle, D. Davino, P. T. de Bryas, G. De Lellis, M. De Magistris, A. De Roeck, A. De Rújula, M. De Serio, D. De Simone, A. Di Crescenzo, D. Di Ferdinando, R. Donà, O. Durhan, F. Fabbri, F. Fedotovs, M. Ferrillo, M. Ferro-Luzzi, R. A. Fini, A. Fiorillo, R. Fresa, W. Funk, F. M. Garay Walls, A. Golovatiuk, A. Golutvin, E. Graverini, A. M. Guler, V. Guliaeva, G. J. Haefeli, C. Hagner, J. C. Helo Herrera, E. van Herwijnen, P. Iengo, S. Ilieva, A. Infantino, A. Iuliano, R. Jacobsson, C. Kamiscioglu, A. M. Kauniskangas, E. Khalikov, S. H. Kim, Y. G. Kim, G. Klioutchnikov, M. Komatsu, N. Konovalova, S. Kuleshov, L. Krzempek, H. M. Lacker, O. Lantwin, F. Lasagni Manghi, A. Lauria, K. Y. Lee, K. S. Lee, S. Lo Meo, V. P. Loschiavo, S. Marcellini, A. Margiotta, A. Mascellani, F. Mei, A. Miano, A. Mikulenko, M. C. Montesi, F. L. Navarria, W. Nuntiyakul, S. Ogawa, N. Okateva, M. Ovchynnikov, G. Paggi, B. D. Park, A. Pastore, A. Perrotta, D. Podgrudkov, N. Polukhina, A. Prota, A. Quercia, S. Ramos, A. Reghunath, T. Roganova, F. Ronchetti, T. Rovelli, O. Ruchayskiy, T. Ruf, M. Sabate Gilarte, Z. Sadykov, M. Samoilov, V. Scalera, W. Schmidt-Parzefall, O. Schneider, G. Sekhniaidze, N. Serra, M. Shaposhnikov, V. Shevchenko, T. Shchedrina, L. Shchutska, H. Shibuya, S. Simone, G. P. Siroli, G. Sirri, G. Soares, J. Y. Sohn, O. J. Soto Sandoval, M. Spurio, N. Starkov, J. Steggemann, I. Timiryasov, V. Tioukov, F. Tramontano, C. Trippl, E. Ursov, A. Ustyuzhanin, G. Vankova-Kirilova, G. Vasquez, V. Verguilov, N. Viegas Guerreiro Leonardo, C. Vilela, C. Visone, R. Wanke, E. Yaman, Z. Yang, C. Yazici, C. S. Yoon, E. Zaffaroni, J. Zamora Saa and the SND@LHC Collaborationadd Show full author list remove Hide full author list
Symmetry 2024, 16(6), 702; https://doi.org/10.3390/sym16060702 - 6 Jun 2024
Cited by 1 | Viewed by 2303
Abstract
After rapid approval and installation, the SND@LHC Collaboration was able to gather data successfully in 2022 and 2023. Neutrino interactions from νμs originating at the LHC IP1 were observed. Since muons constitute the major background for neutrino interactions, the muon flux [...] Read more.
After rapid approval and installation, the SND@LHC Collaboration was able to gather data successfully in 2022 and 2023. Neutrino interactions from νμs originating at the LHC IP1 were observed. Since muons constitute the major background for neutrino interactions, the muon flux entering the acceptance was also measured. To improve the rejection power of the detector and to increase the fiducial volume, a third Veto plane was recently installed. The energy resolution of the calorimeter system was measured in a test beam. This will help with the identification of νe interactions that can be used to probe charm production in the pseudo-rapidity range of SND@LHC (7.2 < η < 8.4). Events with three outgoing muons have been observed and are being studied. With no vertex in the target, these events are very likely from muon trident production in the rock before the detector. Events with a vertex in the detector could be from trident production, photon conversion, or positron annihilation. To enhance SND@LHC’s physics case, an upgrade is planned for HL-LHC that will increase the statistics and reduce the systematics. The installation of a magnet will allow the separation of νμ from ν¯μ Full article
Show Figures

Figure 1

17 pages, 1256 KiB  
Review
Future Long-Baseline Neutrino Experiments
by Francesco Terranova
Universe 2024, 10(5), 221; https://doi.org/10.3390/universe10050221 - 16 May 2024
Cited by 1 | Viewed by 1565
Abstract
Long-baseline neutrino experiments represent the optimal platforms for probing the lepton Yukawa sector of the Standard Model, and significant experiments are either under construction or in the planning stages. This review delves into the scientific motivations behind these facilities, which stem from the [...] Read more.
Long-baseline neutrino experiments represent the optimal platforms for probing the lepton Yukawa sector of the Standard Model, and significant experiments are either under construction or in the planning stages. This review delves into the scientific motivations behind these facilities, which stem from the pivotal 2012 discovery of the θ13 mixing angle. We provide an overview of the two ongoing projects, DUNE and HyperKamiokande, detailing their physics potential and the technical hurdles they face. Furthermore, we briefly examine proposals for forthcoming endeavors and innovative concepts that could push beyond conventional Superbeam technology. Full article
(This article belongs to the Special Issue Neutrinos from Artificial Sources)
Show Figures

Figure 1

8 pages, 2751 KiB  
Proceeding Paper
NuMI Beam Monitoring Simulation and Data Analysis
by Yiding Yu, Thomas Joseph Carroll, Sudeshna Ganguly, Karol Lang, Eduardo Ossorio, Pavel Snopok, Jennifer Thomas, Don Athula Wickremasinghe and Katsuya Yonehara
Phys. Sci. Forum 2023, 8(1), 73; https://doi.org/10.3390/psf2023008073 - 22 Apr 2024
Viewed by 1130
Abstract
Following the decommissioning of the Main Injector Neutrino Oscillation Search (MINOS) experiment, muon and hadron monitors have emerged as vital diagnostic tools for the NuMI Off-axis νμ Appearance (NOvA) experiment at Fermilab. These tools are crucial for overseeing the Neutrinos at the [...] Read more.
Following the decommissioning of the Main Injector Neutrino Oscillation Search (MINOS) experiment, muon and hadron monitors have emerged as vital diagnostic tools for the NuMI Off-axis νμ Appearance (NOvA) experiment at Fermilab. These tools are crucial for overseeing the Neutrinos at the Main Injector (NuMI) beam. This study endeavors to ensure the monitor signal quality and to correlate them with the Neutrino beam profile. Leveraging muon monitor simulations, we systematically explore the monitor responses to variations in proton-beam and lattice parameters. Through the amalgamation of individual pixel data from muon monitors, pattern-recognition algorithms, simulations, and measured data, we devise machine-learning-based models to predict muon monitor responses and Neutrino flux. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

11 pages, 3281 KiB  
Article
A Silicon-Photo-Multiplier-Based Camera for the Terzina Telescope on Board the Neutrinos and Seismic Electromagnetic Signals Space Mission
by Leonid Burmistrov
Instruments 2024, 8(1), 13; https://doi.org/10.3390/instruments8010013 - 20 Feb 2024
Cited by 2 | Viewed by 2091
Abstract
NUSES is a pathfinder satellite project hosting two detectors: Ziré and Terzina. Ziré focuses on the study of protons and electrons below 250 MeV and MeV gamma rays. Terzina is dedicated to the detection of Cherenkov light produced by ultra-high-energy cosmic rays above [...] Read more.
NUSES is a pathfinder satellite project hosting two detectors: Ziré and Terzina. Ziré focuses on the study of protons and electrons below 250 MeV and MeV gamma rays. Terzina is dedicated to the detection of Cherenkov light produced by ultra-high-energy cosmic rays above 100 PeV and ultra-high-energy Earth-skimming neutrinos in the atmosphere, ensuring a large exposure. This work mainly concerns the description of the Cherenkov camera, composed of SiPMs, for the Terzina telescope. To increase the data-taking period, the NUSES orbit will be Sun-synchronous (with a height of about 550 km), thus allowing Terzina to always point toward the dark side of the Earth’s limb. The Sun-synchronous orbit requires small distances to the poles, and as a consequence, we expect an elevated dose to be received by the SiPMs. Background rates due to the dose accumulated by the SiPM would become a dominant contribution during the last two years of the NUSES mission. In this paper, we illustrate the measured effect of irradiance on SiPM photosensors with a variable-intensity beam of 50 MeV protons up to a 30 Gy total integrated dose. We also show the results of an initial study conducted without considering the contribution of solar wind protons and with an initial geometry with Geant4. The considered geometry included an entrance lens as one of the options in the initial design of the telescope. We characterize the SiPM output signal shape with different μ-cell sizes. We describe the developed parametric SiPM simulation, which is a part of the full Terzina simulation chain. Full article
Show Figures

Figure 1

15 pages, 1167 KiB  
Article
An Overview of the Searches for the Violation of the Charge-Parity Symmetry in the Leptonic Sector
by Vyacheslav Galymov
Symmetry 2024, 16(1), 130; https://doi.org/10.3390/sym16010130 - 22 Jan 2024
Viewed by 1637
Abstract
The existence of a violation of the Charge-Parity (CP) symmetry in the laws of physics is one of the cornerstone conditions for the generation of a matter–antimatter imbalance necessary to the creation of a matter-dominated universe. The first experimental evidence of the fact [...] Read more.
The existence of a violation of the Charge-Parity (CP) symmetry in the laws of physics is one of the cornerstone conditions for the generation of a matter–antimatter imbalance necessary to the creation of a matter-dominated universe. The first experimental evidence of the fact that this symmetry is broken in nature was obtained in 1964 in the observations of the decays of neutral kaon mesons. The magnitude of CP violation in the quark sector was measured with an increasing precision exploring also decays of other mesons. However, CP violation in the quark sector alone is not sufficient to explain the formation of matter-dominated universe, and additional sources are required. One such potential source is the lepton sector, where the CP violation could be observed by studying neutrino oscillations with neutrino beams generated by particle accelerators. This article reviews the present efforts in this direction. The results obtained in the ongoing experiments, T2K in Japan and NOvA in USA, are discussed. Additionally, the search for leptonic CP violation is one of the key goals in the programs of future experiments, DUNE in USA and Hyper-Kamiokande in Japan. These experiments and their prospects for its discovery are also presented. Full article
(This article belongs to the Special Issue Experimental Tests of Fundamental Symmetries in Particle Physics)
Show Figures

Figure 1

16 pages, 1013 KiB  
Article
Secondary Beams at High-Intensity Electron Accelerator Facilities
by Marco Battaglieri, Andrea Bianconi, Mariangela Bondí, Raffaella De Vita, Antonino Fulci, Giulia Gosta, Stefano Grazzi, Hyon-Suk Jo, Changhui Lee, Giuseppe Mandaglio, Valerio Mascagna, Tetiana Nagorna, Alessandro Pilloni, Marco Spreafico, Luca J. Tagliapietra, Luca Venturelli and Tommaso Vittorini
Instruments 2024, 8(1), 1; https://doi.org/10.3390/instruments8010001 - 4 Jan 2024
Cited by 1 | Viewed by 2440
Abstract
The interaction of a high-current O(100 µA), medium energy O(10 GeV) electron beam with a thick target O(1m) produces an overwhelming shower of standard model particles in addition to hypothetical light dark matter particles. While most of the radiation (gamma, [...] Read more.
The interaction of a high-current O(100 µA), medium energy O(10 GeV) electron beam with a thick target O(1m) produces an overwhelming shower of standard model particles in addition to hypothetical light dark matter particles. While most of the radiation (gamma, electron/positron) is contained in the thick target, deep penetrating particles (muons, neutrinos, and light dark matter particles) propagate over a long distance, producing high-intensity secondary beams. Using sophisticated Monte Carlo simulations based on FLUKA and GEANT4, we explored the characteristics of secondary muons and neutrinos and (hypothetical) dark scalar particles produced by the interaction of the Jefferson Lab 11 GeV intense electron beam with the experimental Hall-A beam dump. Considering the possible beam energy upgrade, this study was repeated for a 22 GeV CEBAF beam. Full article
Show Figures

Figure 1

5 pages, 1680 KiB  
Proceeding Paper
ESS Neutrino Super Beam ESSνSB Design and Performance for Precision Measurements of the Leptonic CP Violating Phase δCP
by Tord Ekelöf
Phys. Sci. Forum 2023, 8(1), 69; https://doi.org/10.3390/psf2023008069 - 28 Nov 2023
Viewed by 897
Abstract
A design study ESSνSB was carried out during the years 2018–2021 concerning how the five MW linear proton accelerators of the European Spallation Source, which are currently under construction in Lund, Sweden, can be used to generate a world-unique, intense neutrino Super Beam [...] Read more.
A design study ESSνSB was carried out during the years 2018–2021 concerning how the five MW linear proton accelerators of the European Spallation Source, which are currently under construction in Lund, Sweden, can be used to generate a world-unique, intense neutrino Super Beam for precision measurements of the leptonic CP violating phase δCP. As there are definite limits, which are related to uncertainties in neutrino–nucleus interaction modeling, to how far the systematic errors in such measurements can be reduced, the method chosen in this project is to make the measurements at the second oscillation maximum, where the CP violation signal is close to three times larger than at the first, whereas the systematic errors are approximately the same at the two maxima. As the second maximum is located three times further away from the neutrino source than the first maximum, a higher neutrino beam intensity and thus a higher proton driver power are required when measuring at the second maximum. The unique high power of the ESS proton linac will allow for the measurements to be made at the second maximum and thereby for the most precise measurements of the leptonic CP violation phase δCP to be made. This paper describes the results of the work made on the conceptual design of ESSνSB layout, infrastructure, and components as well as the evaluation of the physics performance for leptonic CP violation discovery and, in particular, the precision in the measurement of δCP. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

6 pages, 1846 KiB  
Proceeding Paper
Beyond the Standard Model New Physics Searches with SBND
by Supraja Balasubramanian
Phys. Sci. Forum 2023, 8(1), 68; https://doi.org/10.3390/psf2023008068 - 8 Nov 2023
Cited by 1 | Viewed by 1181
Abstract
SBND (Short-Baseline Near Detector) is a 112-ton liquid argon time projection chamber located on the Booster Neutrino Beam at Fermi National Accelerator Laboratory, and is the near detector of the Short-Baseline Neutrino program. The primary goals of SBND are to provide flux constraints [...] Read more.
SBND (Short-Baseline Near Detector) is a 112-ton liquid argon time projection chamber located on the Booster Neutrino Beam at Fermi National Accelerator Laboratory, and is the near detector of the Short-Baseline Neutrino program. The primary goals of SBND are to provide flux constraints for sterile neutrino searches, conduct world-leading neutrino cross-section measurements on argon, and perform Beyond the Standard Model (BSM) new physics searches with its high-precision particle identification capabilities. SBND’s prospects and tools for detecting a variety of BSM phenomena produced in a neutrino beam, such as sub-GeV dark matter, dark neutrinos, heavy neutral leptons and millicharged particles, are discussed. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

9 pages, 12044 KiB  
Proceeding Paper
Neutrino Oscillations and CP Violation with the European Spallation Source Neutrino Super Beam
by Marcos Dracos
Phys. Sci. Forum 2023, 8(1), 67; https://doi.org/10.3390/psf2023008067 - 31 Oct 2023
Viewed by 927
Abstract
The European project ESSνSB, after a four-year feasibility study, has demonstrated that a neutrino facility based on the European Spallation Source and operated at the second oscillation maximum is not only compatible with the under construction neutron facility, but it also [...] Read more.
The European project ESSνSB, after a four-year feasibility study, has demonstrated that a neutrino facility based on the European Spallation Source and operated at the second oscillation maximum is not only compatible with the under construction neutron facility, but it also has a very high physics performance in the sector of discovery of CP violation in the leptonic sector and measurement of the CP-violating phase with high precision. This has been obtained by well optimising all parts of this neutrino facility going from the ESS proton linac up to the location of the neutrino far detector. Here, a summary of all these efforts based on the already published Conceptual Design Report is reported. A continuation of this work has recently been approved by EU. This new project includes investigations of implementation of low energy nuSTORM and ENUBET for cross-section measurements and sterile neutrino searches. Both options use mainly muons produced together with neutrinos. This “muon” orientation gives a new dimension to the project, enhancing its probability to be approved in the future. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

7 pages, 905 KiB  
Proceeding Paper
The Design of the ENUBET Beamline
by E. G. Parozzi, F. Acerbi, I. Angelis, L. Bomben, M. Bonesini, F. Bramati, A. Branca, C. Brizzolari, G. Brunetti, M. Calviani, S. Carturan, M. G. Catanesi, S. Cecchini, N. Charitonidis, F. Cindolo, G. Cogo, G. Collazuol, F. Dal Corso, C. Delogu, G. De Rosa, A. Falcone, B. Goddard, A. Gola, L. Halić, F. Iacob, C. Jollet, V. Kain, A. Kallitsopoulou, B. Klicek, Y. Kudenko, C. Lampoudis, M. Laveder, P. Legou, A. Longhin, L. Ludovici, E. Lutsenko, L. Magaletti, G. Mandrioli, S. Marangoni, A. Margotti, V. Mascagna, N. Mauri, L. Meazza, A. Meregaglia, M. Mezzetto, M. Nessi, A. Paoloni, M. Pari, T. Papaevangelou, L. Pasqualini, G. Paternoster, L. Patrizii, M. Pozzato, M. Prest, F. Pupilli, E. Radicioni, A. C. Ruggeri, D. Sampsonidis, C. Scian, G. Sirri, M. Stipcevic, M. Tenti, F. Terranova, M. Torti, S. E. Tzamarias, E. Vallazza, F. Velotti and L. Votanoadd Show full author list remove Hide full author list
Phys. Sci. Forum 2023, 8(1), 65; https://doi.org/10.3390/psf2023008065 - 19 Oct 2023
Viewed by 1194
Abstract
The ENUBET project aims to reduce the flux-related systematics to 1% on a narrow band neutrino beam through monitoring the associated charged leptons in an instrumented decay tunnel. A key element of the project is the design of a meson transfer line with [...] Read more.
The ENUBET project aims to reduce the flux-related systematics to 1% on a narrow band neutrino beam through monitoring the associated charged leptons in an instrumented decay tunnel. A key element of the project is the design of a meson transfer line with conventional magnets that maximize the yield of K+ and π+ while minimizing the total length to reduce meson decay outside the instrumented region. In order to limit particle rates in the tunnel instrumentation, a high level of beam collimation is needed, thus allowing non-decayed mesons to reach the end of the tunnel. At the same time, fine-tuning of the shielding and the collimators is required to minimize any beam-induced background in the decay region. The magnetic lattice is optimized with TRANSPORT. The focusing of mesons from the target is performed with a static (quadrupole-based) system that, coupled with a slow proton extraction scheme, allows for a significant pile-up reduction at the tunnel instrumentation while retaining a particle yield large enough for high-precision neutrino cross-section measurements on a 3 year time scale. Charge and momentum selection in an 8.5GeV ± 10% momentum bite is performed by a double dipole system. Shielding elements are optimized with full simulation of the facility in Geant4. In particular, a powerful genetic algorithm is used to scan the parameter space of the collimators automatically in order to find a configuration that minimizes the halo background in the decay tunnel while preserving a large meson yield. This contribution will report the results of the optimization studies and the final design of the ENUBET beamline, together with dose estimation through a FLUKA simulation. The design of an alternative secondary beamline with a broad momentum range (4, 6, and 8.5 GeV/c) that could enhance the physics reach of the facility is additionally discussed. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

Back to TopTop