Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,475)

Search Parameters:
Keywords = neuron stimulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2062 KiB  
Review
Neuroplasticity-Based Approaches to Sensory Processing Alterations in Autism Spectrum Disorder
by Maria Suprunowicz, Julia Bogucka, Natalia Szczerbińska, Stefan Modzelewski, Aleksandra Julia Oracz, Beata Konarzewska and Napoleon Waszkiewicz
Int. J. Mol. Sci. 2025, 26(15), 7102; https://doi.org/10.3390/ijms26157102 - 23 Jul 2025
Abstract
Sensory dysregulation represents a core challenge in autism spectrum disorder (ASD), affecting perception, behavior, and adaptive functioning. The brain’s ability to reorganize, known as neuroplasticity, serves as the basic principle for therapeutic interventions targeting these deficits. Neuroanatomical mechanisms include altered connectivity in the [...] Read more.
Sensory dysregulation represents a core challenge in autism spectrum disorder (ASD), affecting perception, behavior, and adaptive functioning. The brain’s ability to reorganize, known as neuroplasticity, serves as the basic principle for therapeutic interventions targeting these deficits. Neuroanatomical mechanisms include altered connectivity in the sensory and visual cortices, as well as in the limbic system and amygdala, while imbalances of neurotransmitters, in particular glutamate and gamma-aminobutyric acid (GABA), contribute to atypical sensory processing. Traditional therapies used in sensory integration are based on the principles of neuroplasticity. Increasingly, new treatments use this knowledge, and modern therapies such as neurofeedback, transcranial stimulation, and immersive virtual environments are promising in modulating neuronal circuits. However, further research is needed to optimize interventions and confirm long-term effectiveness. This review discusses the role of neuroplasticity in the etiopathogenesis of sensory integration deficits in autism spectrum disorder. The neuroanatomical and neurotransmitter basis of impaired perception of sensory stimuli is considered, and traditional and recent therapies for sensory integration are discussed. Full article
(This article belongs to the Special Issue Molecular Investigations in Neurodevelopmental Disorders)
Show Figures

Figure 1

14 pages, 1664 KiB  
Article
Depletion of IGFALS Serum Level up to 3 Months After Cardiac Surgery, with Exploration of Potential Relationships to Surrogates of Organ Failures and Clinical Outcomes
by Krzysztof Laudanski, Mohamed A. Mahmoud, Hossam Gad and Daniel A. Diedrich
Curr. Issues Mol. Biol. 2025, 47(8), 581; https://doi.org/10.3390/cimb47080581 - 23 Jul 2025
Abstract
The insulin-like growth factor binding protein, acid-labile subunit (IGFALS), plays a crucial role in glucose metabolism and immune regulation, key processes in recovery from surgery. Here, we studied the perioperative serum IGFALS dynamics and explored potential clinical implications. A total of 79 patients [...] Read more.
The insulin-like growth factor binding protein, acid-labile subunit (IGFALS), plays a crucial role in glucose metabolism and immune regulation, key processes in recovery from surgery. Here, we studied the perioperative serum IGFALS dynamics and explored potential clinical implications. A total of 79 patients undergoing elective cardiac surgery with implementation of cardiopulmonary bypass had their serum isolated at baseline, 24 h, seven days, and three months postoperatively to assess serum concentrations of IGFALS and insulin growth factor 1 (IGF-1). Markers of perioperative injury included troponin I (TnI), high-mobility group box 1 (HMGB-1), and heat shock protein 60 (Hsp-60). Inflammatory status was assessed via interleukin-6 (IL-6) and interleukin-8 (IL-8). Additionally, we measured in vitro cytokine production to viral stimulation of whole blood and monocytes. Surrogates of neuronal distress included neurofilament light chain (NF-L), total tau (τ), phosphorylated tau at threonine 181 (τp181), and amyloid β40 and β42. Renal impairment was defined by RIFLE criteria. Cardiac dysfunction was denoted by serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels. Serum IGFALS levels declined significantly after surgery and remained depressed even at 3 months. Administration of acetaminophen and acetylsalicylic acid differentiated IGFALS levels at the 24 h postoperatively. Serum IGFALS 24 h post-operatively correlated with production of cytokines by leukocytes after in vitro viral stimulation. Serum amyloid-β1-42 was significantly associated with IGFALS at baseline and 24 h post-surgery Patients discharged home had higher IGFALS levels at 28 days and 3 months than those discharged to healthcare facilities or who died. These findings suggest that IGFALS may serve as a prognostic biomarker for recovery trajectory and postoperative outcomes in cardiac surgery patients. Full article
(This article belongs to the Special Issue The Role of Neuroinflammation in Neurodegenerative Diseases)
Show Figures

Figure 1

29 pages, 1763 KiB  
Review
Inorganic Polyphosphate: An Emerging Regulator of Neuronal Bioenergetics and Its Implications in Neuroprotection
by Marcela Montilla, Norma Pavas-Escobar, Iveth Melissa Guatibonza-Arévalo, Alejandro Múnera, Renshen Eduardo Rivera-Melo and Felix A. Ruiz
Biomolecules 2025, 15(8), 1060; https://doi.org/10.3390/biom15081060 - 22 Jul 2025
Viewed by 22
Abstract
Inorganic polyphosphate (polyP) is an evolutionarily conserved polymer that has recently gained relevance in neuronal physiology and pathophysiology. Although its roles, such as mitochondrial bioenergetics, calcium homeostasis, and the oxidative stress response, for example, are increasingly recognized, its specific implications in neurological disorders [...] Read more.
Inorganic polyphosphate (polyP) is an evolutionarily conserved polymer that has recently gained relevance in neuronal physiology and pathophysiology. Although its roles, such as mitochondrial bioenergetics, calcium homeostasis, and the oxidative stress response, for example, are increasingly recognized, its specific implications in neurological disorders remain underexplored. This review focuses on synthesizing the current knowledge of polyP in the context of central nervous system (CNS) diseases, highlighting how its involvement in key mitochondrial processes may influence neuronal survival and function. In particular, we examine recent evidence linking polyP to mechanisms relevant to neurodegeneration, such as the modulation of the mitochondrial permeability transition pore (mPTP), regulation of amyloid fibril formation, and oxidative stress responses. In addition, we analyze the emerging roles of polyP in inflammation and related cell signaling in CNS disorders. By organizing the existing data around the potential pathological and protective roles of polyP in the CNS, this review identifies it as a candidate of interest in the context of neurodegenerative disease mechanisms. We aim to clarify its relevance and stimulate future research on its molecular mechanisms and translational potential. Full article
(This article belongs to the Special Issue Polyphosphate (PolyP) in Health and Disease)
Show Figures

Figure 1

24 pages, 1438 KiB  
Article
Neonatal Handling Positively Modulates Anxiety, Sensorimotor Gating, Working Memory, and Cortico-Hippocampal Neuroplastic Adaptations in Two Genetically Selected Rat Strains Differing in Emotional and Cognitive Traits
by Cristóbal Río-Álamos, Maria P. Serra, Francesco Sanna, Maria A. Piludu, Marianna Boi, Toni Cañete, Daniel Sampedro-Viana, Ignasi Oliveras, Adolf Tobeña, Maria G. Corda, Osvaldo Giorgi, Alberto Fernández-Teruel and Marina Quartu
Brain Sci. 2025, 15(8), 776; https://doi.org/10.3390/brainsci15080776 - 22 Jul 2025
Viewed by 87
Abstract
Background/Objectives: The bidirectional selection of the Roman low- (RLA) and Roman high-avoidance (RHA) rat strains for extremely slow vs. very rapid acquisition of the two-way (shuttle-box) avoidance response has generated two divergent phenotypic profiles: RHA rats exhibit a behavioural pattern and gene [...] Read more.
Background/Objectives: The bidirectional selection of the Roman low- (RLA) and Roman high-avoidance (RHA) rat strains for extremely slow vs. very rapid acquisition of the two-way (shuttle-box) avoidance response has generated two divergent phenotypic profiles: RHA rats exhibit a behavioural pattern and gene expression profile in the frontal cortex and hippocampus (HPC) that are relevant to social and attentional/cognitive schizophrenia-linked symptoms; on the other hand, RLA rats display phenotypic traits linked to increased anxiety and sensitivity to stress-induced depression-like behaviours. The present studies aimed to evaluate the enduring and potentially positive effects of neonatal handling-stimulation (NH) on the traits differentiating these two strains of rats. Methods: We evaluated the effects of NH on anxious behaviour, prepulse inhibition of startle (PPI), spatial working memory, and hormone responses to stress in adult rats of both strains. Furthermore, given the proposed involvement of neuronal/synaptic plasticity and neurotrophic factors in the development of anxiety, stress, depression, and schizophrenia-related symptoms, using Western blot (WB) we assessed the effects of NH on the content of brain-derived neurotrophic factor (BDNF), its trkB receptor and Polysialilated-Neural Cell Adhesion Molecule (PSA-NCAM), in the prefrontal cortex (PFC), anterior cingulate cortex (ACg), ventral (vHPC), and dorsal (dHPC) hippocampus of adult rats from both strains. Results: NH increased novelty-induced exploration and reduced anxiety, particularly in RLA rats, attenuated the stress-induced increment in corticosterone and prolactin plasma levels, and improved PPI and spatial working memory in RHA rats. These effects correlated to long-lasting increases of BDNF and PSA-NCAM content in PFC, ACg, and vHPC. Conclusions: Collectively, these findings show enduring and distinct NH effects on neuroendocrine and behavioural and cognitive processes in both rat strains, which may be linked to neuroplastic and synaptic changes in the frontal cortex and/or hippocampus. Full article
(This article belongs to the Section Behavioral Neuroscience)
Show Figures

Figure 1

20 pages, 2031 KiB  
Review
Anti-Inflammatory Pathways Mediating tDCS’s Effects on Neuropathic Pain
by Haipeng Zhang, Xinyan Zheng and Binn Zhang
Biology 2025, 14(7), 892; https://doi.org/10.3390/biology14070892 - 20 Jul 2025
Viewed by 240
Abstract
Neuropathic pain (NP) is a prevalent clinical condition resulting from diseases or injuries affecting the somatosensory system. Conventional analgesics often exhibit limited efficacy, leading to suboptimal therapeutic outcomes. The pathogenesis of NP is complex and involves multiple mechanisms. The existing evidence suggests that [...] Read more.
Neuropathic pain (NP) is a prevalent clinical condition resulting from diseases or injuries affecting the somatosensory system. Conventional analgesics often exhibit limited efficacy, leading to suboptimal therapeutic outcomes. The pathogenesis of NP is complex and involves multiple mechanisms. The existing evidence suggests that maladaptive neuronal plasticity plays a central role in NP development. Additionally, emerging research highlights the contribution of neuroinflammatory responses mediated by glial cells in the onset of NP and associated sensory hypersensitivity. Among non-invasive neuromodulation techniques, transcranial direct current stimulation (tDCS) has gained prominence as a potential treatment for NP. Numerous studies have demonstrated its analgesic effects; however, the precise regulatory mechanisms remain unclear. The current evidence indicates that tDCS may alleviate NP by enhancing glial–neuronal interactions, which suppress nociceptive signaling pathways and reduce pain sensitivity. The reciprocal modulation between tDCS-mediated anti-inflammatory actions, as evidenced by decreased levels of pro-inflammatory cytokines and increased levels of anti-inflammatory mediators, and its facilitation of adaptive neural plasticity represents a particularly compelling therapeutic axis. This review elucidates inflammatory regulation by tDCS as a fundamental mechanism for NP alleviation, while delineating important unresolved questions regarding these complex interactions. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

21 pages, 6401 KiB  
Article
The Dissociation of Latrophilin Fragments by Perfluorooctanoic Acid (PFOA) Inhibits LTXN4C-Induced Neurotransmitter Release
by Evelina Petitto, Jennifer K. Blackburn, M. Atiqur Rahman and Yuri A. Ushkaryov
Toxins 2025, 17(7), 359; https://doi.org/10.3390/toxins17070359 - 20 Jul 2025
Viewed by 209
Abstract
α-Latrotoxin stimulates neurotransmitter release by binding to a presynaptic receptor and then forming ion-permeable membrane pores and/or stimulating the receptor, latrophilin-1, or Adhesion G-protein-coupled receptor type L1 (ADGRL1). To avoid pore formation, we use the mutant α-latrotoxin (LTXN4C), which does not [...] Read more.
α-Latrotoxin stimulates neurotransmitter release by binding to a presynaptic receptor and then forming ion-permeable membrane pores and/or stimulating the receptor, latrophilin-1, or Adhesion G-protein-coupled receptor type L1 (ADGRL1). To avoid pore formation, we use the mutant α-latrotoxin (LTXN4C), which does not form pores and only acts through ADGRL1. ADGRL1 is cleaved into an N-terminal fragment (NTF) and a C-terminal fragment (CTF), which behave as independent cell-surface proteins, reassociating upon binding LTXN4C. We investigated the role of the NTF-CTF association in LTXN4C action, using perfluorooctanoic acid (PFOA). We demonstrate that at low concentrations (≤100 μM) PFOA does not adversely affect ADGRL1-expressing neuroblastoma cells or inhibit LTXN4C binding. However, it causes the dissociation of the NTF-CTF complexes, independent redistribution of the fragments on the cell surface, and their separate internalization. PFOA also promotes the dissociation of NTF-CTF complexes induced by LTXN4C binding. When applied to mouse neuromuscular junctions, PFOA inhibits LTXN4C-induced neurotransmitter release in a concentration-dependent manner. Our results indicate that ADGRL1 can mediate LTXN4C signaling only while its fragments remain associated. These findings explain some aspects of receptor-dependent toxin action and contribute to a mechanistic understanding of ADGRL1 functions in neurons. Full article
Show Figures

Graphical abstract

35 pages, 4837 KiB  
Review
MicroRNA-Based Delivery Systems for Chronic Neuropathic Pain Treatment in Dorsal Root Ganglion
by Stefan Jackson, Maria Rosa Gigliobianco, Cristina Casadidio, Piera Di Martino and Roberta Censi
Pharmaceutics 2025, 17(7), 930; https://doi.org/10.3390/pharmaceutics17070930 - 18 Jul 2025
Viewed by 538
Abstract
Neuropathic pain is a significant global clinical issue that poses substantial challenges to both public health and the economy due to its complex underlying mechanisms. It has emerged as a serious health concern worldwide. Recent studies involving dorsal root ganglion (DRG) stimulation have [...] Read more.
Neuropathic pain is a significant global clinical issue that poses substantial challenges to both public health and the economy due to its complex underlying mechanisms. It has emerged as a serious health concern worldwide. Recent studies involving dorsal root ganglion (DRG) stimulation have provided strong evidence supporting its effectiveness in alleviating chronic pain and its potential for sustaining long-term pain relief. In addition to that, there has been ongoing research with clinical evidence relating to the role of small non-coding ribonucleic acids known as microRNAs in regulating gene expressions affecting pain signals. The signal pathway involves alterations in neuronal excitation, synaptic transmission, dysregulated signaling, and subsequent pro-inflammatory response activation and pain development. When microRNAs are dysregulated in the dorsal root ganglia neurons, they polarize macrophages from anti-inflammatory M2 to inflammatory M1 macrophages causing pain signal generation. By reversing this polarization, a therapeutic activity can be induced. However, the direct delivery of these nucleotides has been challenging due to limitations such as rapid clearance, degradation, and reduction in half-life. Therefore, safe and efficient carrier vehicles are fundamental for microRNA delivery. Here, we present a comprehensive analysis of miRNA-based nano-systems for chronic neuropathic pain, focusing on their impact in dorsal root ganglia. This review provides a critical evaluation of various delivery platforms, including viral, polymeric, lipid-based, and inorganic nanocarriers, emphasizing their therapeutic potential as well as their limitations in the treatment of chronic neuropathic pain. Innovative strategies such as hybrid nanocarriers and stimulus-responsive systems are also proposed to enhance the prospects for clinical translation. Serving as a roadmap for future research, this review aims to guide the development and optimization of miRNA-based therapies for effective and sustained neuropathic pain management. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

17 pages, 643 KiB  
Review
Current Pharmacotherapies for Alcohol Use Disorder in Italy: From Neurobiological Targets to Clinical Practice
by Andrea Mastrostefano, Giuseppe Greco, Chiara De Bacco, Flavio Davini, Giacomo Polito, Edoardo Carnevale, Giuseppe Anastasi and Sergio Terracina
Targets 2025, 3(3), 24; https://doi.org/10.3390/targets3030024 - 11 Jul 2025
Viewed by 232
Abstract
Alcohol is a prevalent psychoactive substance and a risk factor for developing injuries and non-communicable diseases, representing a significant health and economic burden. Alcohol involves numerous molecular pathways. Its metabolism is regulated by alcohol dehydrogenases and aldehyde dehydrogenases; it also stimulates cholinergic interneurons, [...] Read more.
Alcohol is a prevalent psychoactive substance and a risk factor for developing injuries and non-communicable diseases, representing a significant health and economic burden. Alcohol involves numerous molecular pathways. Its metabolism is regulated by alcohol dehydrogenases and aldehyde dehydrogenases; it also stimulates cholinergic interneurons, increasing the sensitivity of 5-HT3 receptors, while chronic alcohol consumption alters the mesolimbic dopaminergic system involved in reward processing. The treatment of alcohol use disorder (AUD) is essential to manage complex patients, following an evidence-based approach. The aim of this narrative review is to provide a clear and practical summary to support and assist healthcare professionals in the Italian context. Approved pharmacological treatments for AUD include oral naltrexone and acamprosate, sodium oxybate, disulfiram, and nalmefene. Off-label therapies include baclofen, topiramate, gabapentin, pregabalin, ondansetron, and cytisine. A more informed clinical and practical approach that understands the altered neuronal signaling pathways is essential for offering effective, efficient, appropriate, and safe therapeutic algorithms for complex patients with alcohol use disorder. A comprehensive framework should include integrated treatments with a personalized approach. Full article
Show Figures

Figure 1

11 pages, 1584 KiB  
Article
Investigation into the Effects of Tramadol, Citalopram, Tianeptine, and Their Combinations on Rat Brain Tissue
by Irem Ates, Bahar Isik, Fusun Gozen, Gulce Naz Yazici, Mine Gulaboglu, Renad Mammadov, Gulbeniz Huseynova, Durdu Altuner and Halis Suleyman
Biomedicines 2025, 13(7), 1690; https://doi.org/10.3390/biomedicines13071690 - 10 Jul 2025
Viewed by 297
Abstract
Background: Tramadol binds to opioid receptors and inhibits norepinephrine and serotonin reuptake, causing serotonin syndrome. Tianeptine stimulates serotonin reuptake and reduces serotonin levels. The aim of this study was to investigate whether tianeptine is effective against serotonin syndrome that may occur with [...] Read more.
Background: Tramadol binds to opioid receptors and inhibits norepinephrine and serotonin reuptake, causing serotonin syndrome. Tianeptine stimulates serotonin reuptake and reduces serotonin levels. The aim of this study was to investigate whether tianeptine is effective against serotonin syndrome that may occur with serotoninergic drugs such as tramadol and citalopram. Methods: Rats were divided into eight groups (n = 6) that received tramadol (50 mg/kg), citalopram (10 mg/kg), or tianeptine (5 mg/kg) alone or a combination of tramadol + citalopram, tramadol + tianeptine, citalopram + tianeptine or tramadol + citalopram + tianeptine at the same doses administered to the stomach by oral gavage for 3 weeks. The healthy control group was given saline. Malondialdehyde, total glutathione, superoxide dismutase, and catalase levels were measured in removed brain tissues. The tissues were also examined histopathologically. Results: In the tramadol, tramadol + citalopram, and tramadol + citalopram + tianeptine groups, malondialdehyde levels were found to be higher compared to the control group, while glutathione, superoxide dismutase, and catalase levels were found to be lower. In other groups, values close to the control group were measured. Morphological degeneration was observed in neurons in the tramadol + citalopram group. The swelling of astrocytes and pericellular edema in oligodendrocytes were also observed. A significant population increase was noted in microglial cells. Blood vessels belonging to the tissue were observed to be severely dilated and congested. Histopathological damage was partially resolved in the group given tramadol + citalopram + tianeptine. Conclusions: The tramadol + citalopram combination caused severe oxidative stress in brain tissue. Tramadol alone caused mild damage in brain tissue, whereas tianeptine prevented the brain damage caused by tramadol. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

29 pages, 15583 KiB  
Article
Neuroinflammation Based Neurodegenerative In Vitro Model of SH-SY5Y Cells—Differential Effects on Oxidative Stress and Insulin Resistance Relevant to Alzheimer’s Pathology
by Csenge Böröczky, Alexandra Paszternák, Rudolf Laufer, Katinka Tarnóczi, Noémi Sikur, Fruzsina Bagaméry, Éva Szökő, Kamilla Varga and Tamás Tábi
Int. J. Mol. Sci. 2025, 26(14), 6581; https://doi.org/10.3390/ijms26146581 - 9 Jul 2025
Viewed by 340
Abstract
Neuroinflammation is a key process in Alzheimer’s disease (AD). We aimed to examine the development and evaluation of a comprehensive in vitro model that captures the complex interplay between neurons and immune cell types. Retinoic acid-differentiated SH-SY5Y neuroblastoma cells exposed to LPS-conditioned media [...] Read more.
Neuroinflammation is a key process in Alzheimer’s disease (AD). We aimed to examine the development and evaluation of a comprehensive in vitro model that captures the complex interplay between neurons and immune cell types. Retinoic acid-differentiated SH-SY5Y neuroblastoma cells exposed to LPS-conditioned media (CM) from RAW264.7 macrophages, BV2 microglia, and HL60 promyelocytic cells differentiated into neutrophil- or monocyte-like phenotypes were analyzed. The effects of CM containing inflammatory factors on neuronal viability and function were systematically evaluated. Neuronal oxidative stress, mitochondrial function, autophagy and protein aggregates were analyzed. The involvement of insulin resistance was studied by assaying glucose uptake and determining its IC50 values for cell viability improvement and GSK3β phosphorylation. After short-term exposure (3 h), most inflammatory CMs induced peroxide production in neurons, with the strongest effect observed in media from DMSO- or RA-differentiated HL60 cells. Mitochondrial membrane potential was markedly reduced by LPS-stimulated BV2 and HL60-derived CMs. Prolonged exposure (72 h) revealed partial normalization of oxidative stress and mitochondrial membrane potential. Glucose uptake was significantly impaired in cells treated with LPS-activated RAW264.7, BV2, and DMSO-differentiated HL60 cell media, while insulin partially rescued this effect, except for the CM of BV2 cells. Notably, insulin IC50 increased dramatically under LPS-treated BV2 cells induced inflammation (35 vs. 198 pM), confirming the development of insulin resistance. Immune cell-specific inflammation causes distinct effects on neuronal oxidative stress, mitochondrial function, protein aggregation, insulin signaling and viability. LPS-activated BV2-derived CM best recapitulates AD-related pathology, offering a relevant in vitro model for further studies. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

18 pages, 3042 KiB  
Article
Mapping Morphine’s Antinociceptive Impact on the Ventral Tegmental Area During Nociceptive Stimulation: A Novel Microimaging Approach in a Neuropathic Pain Model
by Austin Ganaway, Airi Kamata, Dunyan Yao, Kazuto Sakoori, Ryoma Okada, Ting Chen, Yasumi Ohta, Jun Ohta, Masahiro Ohsawa, Metin Akay and Yasemin M. Akay
Int. J. Mol. Sci. 2025, 26(13), 6526; https://doi.org/10.3390/ijms26136526 - 7 Jul 2025
Viewed by 325
Abstract
The neurobiology of chronic pain is complex and multifaceted, intertwining with the mesocorticolimbic system to regulate the behavioral and perceptional response to adverse stimuli. Specifically, the ventral tegmental area (VTA), the dopaminergic hub of the reward pathways located deep within the midbrain, is [...] Read more.
The neurobiology of chronic pain is complex and multifaceted, intertwining with the mesocorticolimbic system to regulate the behavioral and perceptional response to adverse stimuli. Specifically, the ventral tegmental area (VTA), the dopaminergic hub of the reward pathways located deep within the midbrain, is crucial for regulating the release of dopamine (DA) throughout the central nervous system (CNS). To better understand the nuances among chronic pain, VTA response, and therapeutics, implementing progressive approaches for mapping and visualizing the deep brain in real time during nociceptive stimulation is crucial. In this study, we utilize a fluorescence imaging platform with a genetically encoded calcium indicator (GCaMP6s) to directly visualize activity in the VTA during acute nociceptive stimulation in both healthy adult mice and adult mice with partial nerve ligation (PNL)-induced neuropathic pain. We also investigate the visualization of the analgesic properties of morphine. Deep brain imaging using our self-fabricated µ-complementary metal–oxide–semiconductor (CMOS) imaging device allows the tracking of the VTA’s response to adverse stimuli. Our findings show that nociceptive stimulation is associated with a reduction in VTA fluorescence activity, supporting the potential of this platform for visualizing pain-related responses in the central nervous system. Additionally, treatment with morphine significantly reduces the neuronal response caused by mechanical stimuli and is observable using the CMOS imaging platform, demonstrating a novel way to potentially assess and treat neuropathic pain. Full article
(This article belongs to the Special Issue Development of Dopaminergic Neurons, 4th Edition)
Show Figures

Figure 1

24 pages, 2490 KiB  
Article
Hydrogen Sulfide (H2S)-Donating Formyl Peptide Receptor 2 (FPR2) Agonists: Design, Synthesis, and Biological Evaluation in Primary Mouse Microglia Culture
by Leonardo Brunetti, Fabio Francavilla, Mauro Niso, Jakub Kosma Frydrych, Ewa Trojan, Igor A. Schepetkin, Liliya N. Kirpotina, Beata Grygier, Krzysztof Łukowicz, Mark T. Quinn, Agnieszka Basta-Kaim, Enza Lacivita and Marcello Leopoldo
Antioxidants 2025, 14(7), 827; https://doi.org/10.3390/antiox14070827 - 4 Jul 2025
Viewed by 492
Abstract
Chronic neuroinflammation and oxidative stress play an important role in the onset and progression of neurodegenerative disorders, including Alzheimer’s disease, which can ultimately lead to neuronal damage and loss. The mechanisms of sustained neuroinflammation and the coordinated chain of events that initiate, modulate, [...] Read more.
Chronic neuroinflammation and oxidative stress play an important role in the onset and progression of neurodegenerative disorders, including Alzheimer’s disease, which can ultimately lead to neuronal damage and loss. The mechanisms of sustained neuroinflammation and the coordinated chain of events that initiate, modulate, and then lead to the resolution of inflammation are increasingly being elucidated, offering alternative approaches for treating pathologies with underlying chronic neuroinflammation. Here, we propose a new multitarget approach to address chronic neuroinflammation and oxidative stress in neurodegenerative disorders by activating the formyl peptide receptor 2 (FPR2) combined with the potentiation of hydrogen sulfide (H2S) release. FPR2 is a key player in the resolution of inflammation because it mediates the effects of several endogenous pro-resolving mediators. At the same time, H2S is an endogenous gaseous transmitter with anti-inflammatory and pro-resolving properties, and it can protect against oxidative stress. Starting from potent FPR2 agonists identified in our laboratories, we prepared hybrid compounds by embedding an H2S-donating moiety within the molecular scaffold of these FPR2 agonists. Following this approach, we identified several compounds that combined potent FPR2 agonism with the ability to release H2S. The release of H2S was assessed in buffer and intracellularly. Compounds 7b and 8b combined potent FPR2 agonist activity, selectivity over FPR1, and the ability to release H2S. Compounds 7b and 8b were next studied in murine primary microglial cells stimulated with lipopolysaccharide (LPS), a widely accepted in vitro model of neuroinflammation. Both compounds were able to counterbalance LPS-induced cytotoxicity and the release of pro-inflammatory (IL-18, IL-6) and anti-inflammatory (IL-10) cytokines induced by LPS stimulation. Full article
Show Figures

Figure 1

18 pages, 3098 KiB  
Article
(-)-Epigallocatechin-3-Gallate Suppresses Hyperexcitability in Rat Primary Nociceptive Neurons Innervating Inflamed Tissues: A Comparison with Lidocaine
by Syogo Utugi, Yukito Sashide and Mamoru Takeda
Metabolites 2025, 15(7), 439; https://doi.org/10.3390/metabo15070439 - 1 Jul 2025
Viewed by 285
Abstract
Objective: Given the side effects and reduced efficacy of conventional local anesthetics in inflammatory conditions, there is a compelling need for complementary alternative medicine (CAM), particularly those based on phytochemicals. While a previous study showed that in vivo local injection of (-)-epigallocatechin-3-gallate (EGCG) [...] Read more.
Objective: Given the side effects and reduced efficacy of conventional local anesthetics in inflammatory conditions, there is a compelling need for complementary alternative medicine (CAM), particularly those based on phytochemicals. While a previous study showed that in vivo local injection of (-)-epigallocatechin-3-gallate (EGCG) into the peripheral receptive field suppresses the excitability of rat trigeminal ganglion (TG) neurons in the absence of inflammation, the acute effects of EGCG in vivo, especially on TG neurons under inflammatory conditions, are still unknown. We aimed to determine if acute local EGCG administration into inflamed tissue effectively attenuates the excitability of nociceptive TG neurons evoked by mechanical stimulation. Methods: The escape reflex threshold was measured to assess hyperalgesia caused by complete Freund’s adjuvant (CFA)-induced inflammation. To assess neuronal activity, extracellular single-unit recordings were performed on TG neurons in anesthetized CFA-inflamed rats in response to orofacial mechanical stimulation. Results: The mechanical escape threshold was significantly lower in CFA-inflamed rats compared to before CFA injection. EGCG (1–10 mM) reversibly and dose-dependently inhibited the mean firing frequency of TG neurons evoked by both non-noxious and noxious mechanical stimuli (p < 0.05). For comparison, 1% lidocaine (37 mM), a local anesthetic, also caused reversible inhibition of the mean firing frequency in inflamed TG neurons responding to mechanical stimuli. Importantly, 10 mM EGCG produced a significantly greater magnitude of inhibition on TG neuronal discharge frequency than 1% lidocaine (noxious, lidocaine vs. EGCG, 19.7 ± 3.3% vs. 42.3 ± 3.4%, p < 0.05). Conclusions: Local injection of EGCG into inflamed tissue effectively suppresses the excitability of nociceptive primary sensory TG neurons, as indicated by these findings. Significantly, locally administered EGCG exerted a more potent local analgesic action compared to conventional voltage-gated sodium channel blockers. This heightened efficacy originates from EGCG’s ability to inhibit both generator potentials and action potentials directly at nociceptive primary nerve terminals. As a result, EGCG stands out as a compelling candidate for novel analgesic development, holding particular relevance for CAM strategies. Full article
(This article belongs to the Special Issue Flavonoids: Novel Therapeutic Potential for Chronic Diseases)
Show Figures

Figure 1

17 pages, 5686 KiB  
Article
Transcranial Magneto-Acoustic Stimulation Enhances Cognitive and Working Memory in AD Rats by Regulating Theta-Gamma Oscillation Coupling and Synergistic Activity in the Hippocampal CA3 Region
by Jinrui Mi, Shuai Zhang, Xiaochao Lu and Yihao Xu
Brain Sci. 2025, 15(7), 701; https://doi.org/10.3390/brainsci15070701 - 29 Jun 2025
Viewed by 356
Abstract
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive dysfunction and working memory impairment, with early hippocampal damage being a prominent feature. Transcranial magneto-acoustic stimulation (TMAS) has been shown to target specific brain regions for neuroregulation. Methods: This study investigated [...] Read more.
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive dysfunction and working memory impairment, with early hippocampal damage being a prominent feature. Transcranial magneto-acoustic stimulation (TMAS) has been shown to target specific brain regions for neuroregulation. Methods: This study investigated the effects of TMAS on cognitive function, working memory, and hippocampal CA3 neural rhythms in AD rats by specifically stimulating the hippocampal region. Results: The novel object recognition test and T-maze test were employed to assess behavioral performance, while time-frequency analyses were conducted to evaluate memory-related activity, neural synchronization, and cross-frequency phase-amplitude coupling. TMAS significantly improved cognitive and working memory deficits in AD rats, enhancing long-term memory performance. Additionally, the abnormal energy levels observed in the θ and γ rhythm power spectra of the CA3 region were markedly restored, suggesting the recovery of normal neural function. This improvement was accompanied by a partial resurgence of neural activity, indicating enhanced inter-neuronal communication. Furthermore, the previously damaged coupling between the θ-fast γ and θ-slow γ rhythms was successfully improved, resulting in a notable enhancement of synchronized activity. Conclusions: These findings suggest that TMAS effectively alleviates cognitive and working memory impairments in AD rats and may provide experimental support for developing new treatments for AD. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

15 pages, 993 KiB  
Article
Effects of Stress and Allopregnanolone on the Expression of Neurotrophins and TrkB Receptor in the Sheep Hippocampus
by Tomasz Misztal, Patrycja Młotkowska, Elżbieta Marciniak, Marcin Barszcz, Bartosz Osuch, Alina Gajewska and Anna Misztal
Int. J. Mol. Sci. 2025, 26(13), 6190; https://doi.org/10.3390/ijms26136190 - 27 Jun 2025
Viewed by 302
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF) and neurosteroids, including allopregnanolone (ALLO), play critical roles in modulating neuronal activity in the brain. Levels of these compounds dynamically fluctuate in response to physiological and environmental conditions, particularly stress, suggesting complex regulatory interactions. This study [...] Read more.
Neurotrophins, such as brain-derived neurotrophic factor (BDNF) and neurosteroids, including allopregnanolone (ALLO), play critical roles in modulating neuronal activity in the brain. Levels of these compounds dynamically fluctuate in response to physiological and environmental conditions, particularly stress, suggesting complex regulatory interactions. This study aimed to explore the effects of acute stress and ALLO (individually and combined) on hippocampal expression of BDNF, its TrkB receptor, and other neurotrophins in sheep, a translational large animal model. Adult, luteal-phase sheep (n = 24), implanted with a guide cannula into the third brain ventricle, were divided into four experimental groups: (i) 3 days of Ringer–Locke solution (RL) infusion as the control; (ii) 3 days of RL infusion with 4 h acute stress on day three; (iii) 3 days of ALLO infusion (4 × 15 µg/60 µL/30 min) with 4 h acute stress on day three; and (iv) 3 days of ALLO infusion alone (n = 6 per group). Both acute stress and ALLO alone significantly reduced BDNF concentration and BDNF transcript abundance in the hippocampal CA1 and CA3 fields compared to the control group. The combined application of both stress and ALLO resulted in decreased levels of these parameters, except for BDNF concentration in the CA3 region. Additionally, TrkB mRNA expression in both hippocampal fields was significantly reduced in all treatment groups. Changes in mRNA levels for other neurotrophins, including nerve growth factor (NGF) and neurotrophin 3 (NT3) and 4 (NT4), varied under experimental conditions. While an inhibitory effect was predominant, NGF expression in the CA1 region remained unaffected by stress or ALLO. Interestingly, stress alone induced a significant increase in NT4 mRNA expression in the CA3 field compared to the control. In conclusion, the study demonstrated that a 4 h acute stress exposure inhibited the synthesis of BDNF, TrkB, and several other neurotrophins in the sheep hippocampus. Furthermore, ALLO, whose increased levels are highly correlated with the initial stress response, may serve as a mediator of this stress effect, temporarily preventing over-stimulation of hippocampal BDNF release and signaling. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

Back to TopTop