Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = neuromuscular compartment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2964 KiB  
Article
Targeted Gene Delivery to Muscle Cells In Vitro and In Vivo Using Electrostatically Stabilized DNA—Peptide Complexes
by Anna Egorova, Sergei Chepanov, Sergei Selkov, Igor Kogan and Anton Kiselev
Sci. Pharm. 2024, 92(3), 51; https://doi.org/10.3390/scipharm92030051 - 14 Sep 2024
Cited by 1 | Viewed by 2670
Abstract
Genetic constructs must be delivered selectively to target tissues and intracellular compartments at the necessary concentrations in order to achieve the maximum therapeutic effect in gene therapy. Development of targeted carriers for non-viral delivery of nucleic acids into cells, including those in muscle, [...] Read more.
Genetic constructs must be delivered selectively to target tissues and intracellular compartments at the necessary concentrations in order to achieve the maximum therapeutic effect in gene therapy. Development of targeted carriers for non-viral delivery of nucleic acids into cells, including those in muscle, which is one of the most challenging tissues to transfect in vivo, remains a topical issue. We have studied ternary complexes of plasmid DNA and an arginine–histidine-rich peptide-based carrier coated with a glutamate–histidine-rich polymer bearing skeletal muscle targeting peptide (SMTP) for the gene delivery to muscle tissue. The relaxation of the ternary complexes after polyanion treatment was assessed using the ethidium bromide displacement assay. The developed polyplexes were used to transfect C2C12 myoblasts in full-media conditions, followed by analysis of their toxic properties using the Alamar Blue assay and expression analysis of lacZ and GFP reporter genes. After delivering plasmids containing the GFP and lacZ genes into the femoral muscles of mdx mice, which are model of Duchenne muscular dystrophy, GFP fluorescence and β-galactosidase activity were detected. We observed that the modification of ternary polyplexes with 10 mol% of SMTP ligand resulted in a 2.3-fold increase in lacZ gene expression when compared to unmodified control polyplexes in vivo. Thus, we have demonstrated that the developed DNA/carrier complexes and SMTP-modified coating are nontoxic, are stable against polyanion-induced relaxation, and can provide targeted gene delivery to muscle cells and tissues. The results of this study are useful for a range of therapeutic applications, from immunization to amelioration of inherited neuromuscular diseases. Full article
Show Figures

Figure 1

19 pages, 690 KiB  
Review
Unlocking the Complexity of Neuromuscular Diseases: Insights from Human Pluripotent Stem Cell-Derived Neuromuscular Junctions
by Morgan Gazzola and Cécile Martinat
Int. J. Mol. Sci. 2023, 24(20), 15291; https://doi.org/10.3390/ijms242015291 - 18 Oct 2023
Cited by 4 | Viewed by 2713
Abstract
Over the past 20 years, the use of pluripotent stem cells to mimic the complexities of the human neuromuscular junction has received much attention. Deciphering the key mechanisms underlying the establishment and maturation of this complex synapse has been driven by the dual [...] Read more.
Over the past 20 years, the use of pluripotent stem cells to mimic the complexities of the human neuromuscular junction has received much attention. Deciphering the key mechanisms underlying the establishment and maturation of this complex synapse has been driven by the dual goals of addressing developmental questions and gaining insight into neuromuscular disorders. This review aims to summarise the evolution and sophistication of in vitro neuromuscular junction models developed from the first differentiation of human embryonic stem cells into motor neurons to recent neuromuscular organoids. We also discuss the potential offered by these models to decipher different neuromuscular diseases characterised by defects in the presynaptic compartment, the neuromuscular junction, and the postsynaptic compartment. Finally, we discuss the emerging field that considers the use of these techniques in drug screening assay and the challenges they will face in the future. Full article
(This article belongs to the Special Issue Neuromuscular Diseases: From Pathogenic Mechanisms to Therapy)
Show Figures

Figure 1

18 pages, 2455 KiB  
Review
Advances in Nucleotide Repeat Expansion Diseases: Transcription Gets in Phase
by Ana S. Figueiredo, Joana R. Loureiro, Sandra Macedo-Ribeiro and Isabel Silveira
Cells 2023, 12(6), 826; https://doi.org/10.3390/cells12060826 - 7 Mar 2023
Cited by 8 | Viewed by 4049
Abstract
Unstable DNA repeat expansions and insertions have been found to cause more than 50 neurodevelopmental, neurodegenerative, and neuromuscular disorders. One of the main hallmarks of repeat expansion diseases is the formation of abnormal RNA or protein aggregates in the neuronal cells of affected [...] Read more.
Unstable DNA repeat expansions and insertions have been found to cause more than 50 neurodevelopmental, neurodegenerative, and neuromuscular disorders. One of the main hallmarks of repeat expansion diseases is the formation of abnormal RNA or protein aggregates in the neuronal cells of affected individuals. Recent evidence indicates that alterations of the dynamic or material properties of biomolecular condensates assembled by liquid/liquid phase separation are critical for the formation of these aggregates. This is a thermodynamically-driven and reversible local phenomenon that condenses macromolecules into liquid-like compartments responsible for compartmentalizing molecules required for vital cellular processes. Disease-associated repeat expansions modulate the phase separation properties of RNAs and proteins, interfering with the composition and/or the material properties of biomolecular condensates and resulting in the formation of abnormal aggregates. Since several repeat expansions have arisen in genes encoding crucial players in transcription, this raises the hypothesis that wide gene expression dysregulation is common to multiple repeat expansion diseases. This review will cover the impact of these mutations in the formation of aberrant aggregates and how they modify gene transcription. Full article
Show Figures

Figure 1

19 pages, 5287 KiB  
Article
Human Neuromuscular Junction on a Chip: Impact of Amniotic Fluid Stem Cell Extracellular Vesicles on Muscle Atrophy and NMJ Integrity
by Martina Gatti, Katarina Stoklund Dittlau, Francesca Beretti, Laura Yedigaryan, Manuela Zavatti, Pietro Cortelli, Carla Palumbo, Emma Bertucci, Ludo Van Den Bosch, Maurilio Sampaolesi and Tullia Maraldi
Int. J. Mol. Sci. 2023, 24(5), 4944; https://doi.org/10.3390/ijms24054944 - 3 Mar 2023
Cited by 8 | Viewed by 3650
Abstract
Neuromuscular junctions (NMJs) are specialized synapses, crucial for the communication between spinal motor neurons (MNs) and skeletal muscle. NMJs become vulnerable in degenerative diseases, such as muscle atrophy, where the crosstalk between the different cell populations fails, and the regenerative ability of the [...] Read more.
Neuromuscular junctions (NMJs) are specialized synapses, crucial for the communication between spinal motor neurons (MNs) and skeletal muscle. NMJs become vulnerable in degenerative diseases, such as muscle atrophy, where the crosstalk between the different cell populations fails, and the regenerative ability of the entire tissue is hampered. How skeletal muscle sends retrograde signals to MNs through NMJs represents an intriguing field of research, and the role of oxidative stress and its sources remain poorly understood. Recent works demonstrate the myofiber regeneration potential of stem cells, including amniotic fluid stem cells (AFSC), and secreted extracellular vesicles (EVs) as cell-free therapy. To study NMJ perturbations during muscle atrophy, we generated an MN/myotube co-culture system through XonaTM microfluidic devices, and muscle atrophy was induced in vitro by Dexamethasone (Dexa). After atrophy induction, we treated muscle and MN compartments with AFSC-derived EVs (AFSC-EVs) to investigate their regenerative and anti-oxidative potential in counteracting NMJ alterations. We found that the presence of EVs reduced morphological and functional in vitro defects induced by Dexa. Interestingly, oxidative stress, occurring in atrophic myotubes and thus involving neurites as well, was prevented by EV treatment. Here, we provided and validated a fluidically isolated system represented by microfluidic devices for studying human MN and myotube interactions in healthy and Dexa-induced atrophic conditions—allowing the isolation of subcellular compartments for region-specific analyses—and demonstrated the efficacy of AFSC-EVs in counteracting NMJ perturbations. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Diseases)
Show Figures

Figure 1

16 pages, 2852 KiB  
Article
Oligonucleotide Enhancing Compound Increases Tricyclo-DNA Mediated Exon-Skipping Efficacy in the Mdx Mouse Model
by Flavien Bizot, Abdallah Fayssoil, Cécile Gastaldi, Tabitha Irawan, Xaysongkhame Phongsavanh, Arnaud Mansart, Thomas Tensorer, Elise Brisebard, Luis Garcia, Rudolph L Juliano and Aurélie Goyenvalle
Cells 2023, 12(5), 702; https://doi.org/10.3390/cells12050702 - 23 Feb 2023
Cited by 4 | Viewed by 3987
Abstract
Nucleic acid-based therapeutics hold great promise for the treatment of numerous diseases, including neuromuscular disorders, such as Duchenne muscular dystrophy (DMD). Some antisense oligonucleotide (ASO) drugs have already been approved by the US FDA for DMD, but the potential of this therapy is [...] Read more.
Nucleic acid-based therapeutics hold great promise for the treatment of numerous diseases, including neuromuscular disorders, such as Duchenne muscular dystrophy (DMD). Some antisense oligonucleotide (ASO) drugs have already been approved by the US FDA for DMD, but the potential of this therapy is still limited by several challenges, including the poor distribution of ASOs to target tissues, but also the entrapment of ASO in the endosomal compartment. Endosomal escape is a well recognized limitation that prevents ASO from reaching their target pre-mRNA in the nucleus. Small molecules named oligonucleotide-enhancing compounds (OEC) have been shown to release ASO from endosomal entrapment, thus increasing ASO nuclear concentration and ultimately correcting more pre-mRNA targets. In this study, we evaluated the impact of a therapy combining ASO and OEC on dystrophin restoration in mdx mice. Analysis of exon-skipping levels at different time points after the co-treatment revealed improved efficacy, particularly at early time points, reaching up to 4.4-fold increase at 72 h post treatment in the heart compared to treatment with ASO alone. Significantly higher levels of dystrophin restoration were detected two weeks after the end of the combined therapy, reaching up to 2.7-fold increase in the heart compared to mice treated with ASO alone. Moreover, we demonstrated a normalization of cardiac function in mdx mice after a 12-week-long treatment with the combined ASO + OEC therapy. Altogether, these findings indicate that compounds facilitating endosomal escape can significantly improve the therapeutic potential of exon-skipping approaches offering promising perspectives for the treatment of DMD. Full article
(This article belongs to the Special Issue Nucleic Acid Therapeutics (NATs): Advances and Perspectives)
Show Figures

Figure 1

25 pages, 8282 KiB  
Article
Hyaluronan Regulates Neuronal and Immune Function in the Rat Small Intestine and Colonic Microbiota after Ischemic/Reperfusion Injury
by Annalisa Bosi, Davide Banfi, Michela Bistoletti, Lucia Martina Catizzone, Anna Maria Chiaravalli, Paola Moretto, Elisabetta Moro, Evgenia Karousou, Manuela Viola, Maria Cecilia Giron, Francesca Crema, Carlo Rossetti, Giorgio Binelli, Alberto Passi, Davide Vigetti, Cristina Giaroni and Andreina Baj
Cells 2022, 11(21), 3370; https://doi.org/10.3390/cells11213370 - 25 Oct 2022
Cited by 9 | Viewed by 3495
Abstract
Background: Intestinal ischemia and reperfusion (IRI) injury induces acute and long-lasting damage to the neuromuscular compartment and dysmotility. This study aims to evaluate the pathogenetic role of hyaluronan (HA), a glycosaminoglycan component of the extracellular matrix, as a modulator of the enteric neuronal [...] Read more.
Background: Intestinal ischemia and reperfusion (IRI) injury induces acute and long-lasting damage to the neuromuscular compartment and dysmotility. This study aims to evaluate the pathogenetic role of hyaluronan (HA), a glycosaminoglycan component of the extracellular matrix, as a modulator of the enteric neuronal and immune function and of the colonic microbiota during in vivo IRI in the rat small intestine. Methods: mesenteric ischemia was induced in anesthetized adult male rats for 60 min, followed by 24 h reperfusion. Injured, sham-operated and non-injured animals were treated with the HA synthesis inhibitor, 4-methylumbelliferone (4-MU 25 mg/kg). Fecal microbiota composition was evaluated by Next Generation Sequencing. Neutrophil infiltration, HA homeostasis and toll like receptor (TLR2 and TLR4) expression in the small intestine were evaluated by immunohistochemical and biomolecular approaches (qRT-PCR and Western blotting). Neuromuscular responses were studied in vitro, in the absence and presence of the selective TLR2/4 inhibitor, Sparstolonin B (SsnB 10, 30 µM). Results: 4-MU significantly reduced IRI-induced enhancement of potentially harmful Escherichia and Enterococcus bacteria. After IRI, HA levels, neutrophil infiltration, and TLR2 and TLR4 expression were significantly enhanced in the muscularis propria, and were significantly reduced to baseline levels by 4-MU. In the injured, but not in the non-injured and sham-operated groups, SsnB reduced both electrical field-stimulated (EFS, 0.1–40 Hz) contractions and EFS-induced (10 Hz) non-cholinergic non-adrenergic relaxations. Conclusions: enhanced HA levels after intestinal IRI favors harmful bacteria overgrowth, increases neutrophil infiltration and promotes the upregulation of bacterial target receptors, TLR2 and TLR4, in the muscularis propria, inducing a pro-inflammatory state. TLR2 and TLR4 activation may, however, underlay a provisional benefit on excitatory and inhibitory neuronal pathways underlying peristalsis. Full article
Show Figures

Figure 1

10 pages, 1444 KiB  
Communication
Novel Small Molecule Inhibitors That Prevent the Neuroparalysis of Tetanus Neurotoxin
by Giulia Zanetti, Andrea Mattarei, Florigio Lista, Ornella Rossetto, Cesare Montecucco and Marco Pirazzini
Pharmaceuticals 2021, 14(11), 1134; https://doi.org/10.3390/ph14111134 - 8 Nov 2021
Cited by 3 | Viewed by 3389
Abstract
Tetanus neurotoxin (TeNT) is a protein exotoxin produced by Clostridium tetani that causes the deadly spastic neuroparalysis of tetanus. It consists of a metalloprotease light chain and of a heavy chain linked via a disulphide bond. TeNT binds to the neuromuscular junction (NMJ) [...] Read more.
Tetanus neurotoxin (TeNT) is a protein exotoxin produced by Clostridium tetani that causes the deadly spastic neuroparalysis of tetanus. It consists of a metalloprotease light chain and of a heavy chain linked via a disulphide bond. TeNT binds to the neuromuscular junction (NMJ) and it is retro-axonally transported into vesicular compartments to the spinal cord, where it is released and taken up by inhibitory interneuron. Therein, the catalytic subunit is translocated into the cytoplasm where it cleaves its target protein VAMP-1/2 with consequent blockage of the release of inhibitory neurotransmitters. Vaccination with formaldehyde inactivated TeNT prevents the disease, but tetanus is still present in countries where vaccination coverage is partial. Here, we show that small molecule inhibitors interfering with TeNT trafficking or with the reduction of the interchain disulphide bond block the activity of the toxin in neuronal cultures and attenuate tetanus symptoms in vivo. These findings are relevant for the development of therapeutics against tetanus based on the inhibition of toxin molecules that are being retro-transported to or are already within the spinal cord and are, thus, not accessible to anti-TeNT immunoglobulins. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

21 pages, 2651 KiB  
Article
Sub-Cellular Metabolomics Contributes Mitochondria-Specific Metabolic Insights to a Mouse Model of Leigh Syndrome
by Gunter van der Walt, Jeremie Z. Lindeque, Shayne Mason and Roan Louw
Metabolites 2021, 11(10), 658; https://doi.org/10.3390/metabo11100658 - 28 Sep 2021
Cited by 6 | Viewed by 4073
Abstract
Direct injury of mitochondrial respiratory chain (RC) complex I by Ndufs4 subunit mutations results in complex I deficiency (CID) and a progressive encephalomyopathy, known as Leigh syndrome. While mitochondrial, cytosolic and multi-organelle pathways are known to be involved in the neuromuscular LS pathogenesis, [...] Read more.
Direct injury of mitochondrial respiratory chain (RC) complex I by Ndufs4 subunit mutations results in complex I deficiency (CID) and a progressive encephalomyopathy, known as Leigh syndrome. While mitochondrial, cytosolic and multi-organelle pathways are known to be involved in the neuromuscular LS pathogenesis, compartment-specific metabolomics has, to date, not been applied to murine models of CID. We thus hypothesized that sub-cellular metabolomics would be able to contribute organelle-specific insights to known Ndufs4 metabolic perturbations. To that end, whole brains and skeletal muscle from late-stage Ndufs4 mice and age/sex-matched controls were harvested for mitochondrial and cytosolic isolation. Untargeted 1H-NMR and semi-targeted LC-MS/MS metabolomics was applied to the resulting cell fractions, whereafter important variables (VIPs) were selected by univariate statistics. A predominant increase in multiple targeted amino acids was observed in whole-brain samples, with a more prominent effect at the mitochondrial level. Similar pathways were implicated in the muscle tissue, showing a greater depletion of core metabolites with a compartment-specific distribution, however. The altered metabolites expectedly implicate altered redox homeostasis, alternate RC fueling, one-carbon metabolism, urea cycling and dysregulated proteostasis to different degrees in the analyzed tissues. A first application of EDTA-chelated magnesium and calcium measurement by NMR also revealed tissue- and compartment-specific alterations, implicating stress response-related calcium redistribution between neural cell compartments, as well as whole-cell muscle magnesium depletion. Altogether, these results confirm the ability of compartment-specific metabolomics to capture known alterations related to Ndufs4 KO and CID while proving its worth in elucidating metabolic compartmentalization in said pathways that went undetected in the diluted whole-cell samples previously studied. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Graphical abstract

10 pages, 19249 KiB  
Article
Compression Garments Reduce Soft Tissue Vibrations and Muscle Activations during Drop Jumps: An Accelerometry Evaluation
by Liqin Deng, Yang Yang, Chenhao Yang, Ying Fang, Xini Zhang, Li Liu and Weijie Fu
Sensors 2021, 21(16), 5644; https://doi.org/10.3390/s21165644 - 21 Aug 2021
Cited by 13 | Viewed by 4329
Abstract
Objectives: To explore the effects of wearing compression garments on joint mechanics, soft tissue vibration and muscle activities during drop jumps. Methods: Twelve healthy male athletes were recruited to execute drop jumps from heights of 30, 45 and 60 cm whilst wearing compression [...] Read more.
Objectives: To explore the effects of wearing compression garments on joint mechanics, soft tissue vibration and muscle activities during drop jumps. Methods: Twelve healthy male athletes were recruited to execute drop jumps from heights of 30, 45 and 60 cm whilst wearing compression shorts (CS) and control shorts (CON). Sagittal plane kinematics, ground reaction forces, accelerations of the quadriceps femoris (QF), hamstrings (HM) and shoe heel-cup, and electromyography images of the rectus femoris (RF) and biceps femoris (BF) were collected. Results: Compared with wearing CON, wearing CS significantly reduced the QF peak acceleration at 45 and 60 cm and the HM peak acceleration at 30 cm. Wearing CS significantly increased the damping coefficient for QF and HM at 60 cm compared with wearing CON. Moreover, the peak transmissibility when wearing CS was significantly lower than that when wearing CON for all soft tissue compartments and heights, except for QF at 30 cm. Wearing CS reduced the RF activity during the pre-, post-, and eccentric activations for all heights and concentric activations at 45 cm; it also reduced the BF activity during post- and eccentric activations at 30 and 60 cm, respectively. The hip and knee joint moments and power or jump height were unaffected by the garment type. Conclusion: Applying external compression can reduce soft tissue vibrations without compromising neuromuscular performance during strenuous physical activities that involve exposure to impact-induced vibrations. Full article
(This article belongs to the Special Issue Advanced Applications in Wearable Biosensors)
Show Figures

Figure 1

30 pages, 2159 KiB  
Review
Next Stage Approach to Tissue Engineering Skeletal Muscle
by Gregory Reid, Fabio Magarotto, Anna Marsano and Michela Pozzobon
Bioengineering 2020, 7(4), 118; https://doi.org/10.3390/bioengineering7040118 - 30 Sep 2020
Cited by 16 | Viewed by 6246
Abstract
Large-scale muscle injury in humans initiates a complex regeneration process, as not only the muscular, but also the vascular and neuro-muscular compartments have to be repaired. Conventional therapeutic strategies often fall short of reaching the desired functional outcome, due to the inherent complexity [...] Read more.
Large-scale muscle injury in humans initiates a complex regeneration process, as not only the muscular, but also the vascular and neuro-muscular compartments have to be repaired. Conventional therapeutic strategies often fall short of reaching the desired functional outcome, due to the inherent complexity of natural skeletal muscle. Tissue engineering offers a promising alternative treatment strategy, aiming to achieve an engineered tissue close to natural tissue composition and function, able to induce long-term, functional regeneration after in vivo implantation. This review aims to summarize the latest approaches of tissue engineering skeletal muscle, with specific attention toward fabrication, neuro-angiogenesis, multicellularity and the biochemical cues that adjuvate the regeneration process. Full article
(This article belongs to the Special Issue Advances in Skeletal Muscle Tissue Engineering)
Show Figures

Graphical abstract

13 pages, 5849 KiB  
Article
Spatial Reorganization of Myoelectric Activities in Extensor Digitorum for Sustained Finger Force Production
by Zhixian Gao, Shangjie Tang, Xiaoying Wu, Qiang Fu, Xingyu Fan, Yun Zhao, Lintao Hu, Lin Chen and Wensheng Hou
Sensors 2019, 19(3), 555; https://doi.org/10.3390/s19030555 - 29 Jan 2019
Cited by 2 | Viewed by 3405
Abstract
The study aims to explore the spatial distribution of multi-tendinous muscle modulated by central nervous system (CNS) during sustained contraction. Nine subjects were recruited to trace constant target forces with right index finger extension. Surface electromyography (sEMG) of extensor digitorum (ED) were recorded [...] Read more.
The study aims to explore the spatial distribution of multi-tendinous muscle modulated by central nervous system (CNS) during sustained contraction. Nine subjects were recruited to trace constant target forces with right index finger extension. Surface electromyography (sEMG) of extensor digitorum (ED) were recorded with a 32-channel electrode array. Nine successive topographic maps (TM) were obtained. Pixel wise analysis was utilized to extract subtracted topographic maps (STM), which exhibited inhomogeneous distribution. STMs were characterized into hot, warm, and cool regions corresponding to higher, moderate, and lower change ranges, respectively. The relative normalized area (normalized to the first phase) of these regions demonstrated different changing trends as rising, plateauing, and falling over time, respectively. Moreover, the duration of these trends were found to be affected by force level. The rising/falling periods were longer at lower force levels, while the plateau can be achieved from the initial phase for higher force output (45% maximal voluntary contraction). The results suggested muscle activity reorganization in ED plays a role to maintain sustained contraction. Furthermore, the decreased dynamical regulation ability to spatial reorganization may be prone to induce fatigue. This finding implied that spatial reorganization of muscle activity as a regulation mechanism contribute to maintain constant force production. Full article
(This article belongs to the Special Issue Neurophysiological Data Denoising and Enhancement)
Show Figures

Figure 1

18 pages, 644 KiB  
Article
Strategy for Treating Motor Neuron Diseases Using a Fusion Protein of Botulinum Toxin Binding Domain and Streptavidin for Viral Vector Access: Work in Progress
by Daniel B. Drachman, Robert N. Adams, Uma Balasubramanian and Yang Lu
Toxins 2010, 2(12), 2872-2889; https://doi.org/10.3390/toxins2122872 - 20 Dec 2010
Cited by 4 | Viewed by 9736
Abstract
Although advances in understanding of the pathogenesis of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) have suggested attractive treatment strategies, delivery of agents to motor neurons embedded within the spinal cord is problematic. We have designed a strategy based on the [...] Read more.
Although advances in understanding of the pathogenesis of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) have suggested attractive treatment strategies, delivery of agents to motor neurons embedded within the spinal cord is problematic. We have designed a strategy based on the specificity of botulinum toxin, to direct entry of viral vectors carrying candidate therapeutic genes into motor neurons. We have engineered and expressed fusion proteins consisting of the binding domain of botulinum toxin type A fused to streptavidin (SAv). This fusion protein will direct biotinylated viral vectors carrying therapeutic genes into motor nerve terminals where they can enter the acidified endosomal compartments, be released and undergo retrograde transport, to deliver the genes to motor neurons. Both ends of the fusion proteins are shown to be functionally intact. The binding domain end binds to mammalian nerve terminals at neuromuscular junctions, ganglioside GT1b (a target of botulinum toxin), and a variety of neuronal cells including primary chick embryo motor neurons, N2A neuroblastoma cells, NG108-15 cells, but not to NG CR72 cells, which lack complex gangliosides. The streptavidin end binds to biotin, and to a biotinylated Alexa 488 fluorescent tag. Further studies are in progress to evaluate the delivery of genes to motor neurons in vivo, by the use of biotinylated viral vectors. Full article
(This article belongs to the Special Issue Toxins as Therapeutics)
Show Figures

Figure 1

Back to TopTop