Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,195)

Search Parameters:
Keywords = neurodevelopmental

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1508 KB  
Article
Familial Molecular Burden in Autism Spectrum Disorder: A Next-Generation Sequencing Study of Polish Affected Families
by Monika Wawszczak-Kasza, Jarosław Rachuna, Łukasz Madej, Wojciech Lewitowicz, Piotr Lewitowicz and Agata Horecka-Lewitowicz
Int. J. Mol. Sci. 2025, 26(19), 9672; https://doi.org/10.3390/ijms26199672 - 3 Oct 2025
Abstract
Autism spectrum disorder (ASD) is a heritable neurodevelopmental condition with a complex genetic architecture. Dissecting the interplay between inherited variants and high-impact de novo variants is critical for understanding its etiology. We conducted a family-based study involving 42 families with ASD (139 individuals). [...] Read more.
Autism spectrum disorder (ASD) is a heritable neurodevelopmental condition with a complex genetic architecture. Dissecting the interplay between inherited variants and high-impact de novo variants is critical for understanding its etiology. We conducted a family-based study involving 42 families with ASD (139 individuals). Using a targeted next-generation sequencing (NGS) panel of 236 genes, we identified and characterized rare inherited and de novo variants in affected probands, parents, and unaffected siblings. Our analysis revealed a complex genetic landscape marked by diverse inheritance patterns. De novo variants were predominantly observed in individuals with atypical autism, while biparental (homozygous) inheritance was more common in Asperger syndrome. Maternally inherited variants showed significant enrichment in intronic regions, pointing to a potential regulatory role. We also detected variants in several high-confidence ASD risk genes, including SHANK3, MYT1L, MCPH1, NIPBL, and TSC2, converging on pathways central to synaptic function and neurogenesis. Across the cohort, five variants of uncertain significance (VUS) were identified, comprising two inherited variants in ABCC8 and additional variants in CUL23, TSC2, and MCPH1. Our findings underscore the profound genetic heterogeneity of ASD and suggest that distinct genetic mechanisms and inheritance patterns may contribute to different clinical presentations within the spectrum. This highlights the power of family-based genomic analyses in elucidating the complex interplay of inherited and de novo variants that underlies ASD. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

26 pages, 984 KB  
Review
Emerging Role of Tripartite Synaptic Transmission in the Pathomechanism of Autosomal-Dominant Sleep-Related Hypermotor Epilepsy
by Tomoka Oka, Ruri Okubo, Eishi Motomura and Motohiro Okada
Int. J. Mol. Sci. 2025, 26(19), 9671; https://doi.org/10.3390/ijms26199671 - 3 Oct 2025
Abstract
Autosomal-dominant sleep-related hypermotor epilepsy (ADSHE) was the first distinct genetic epilepsy proven to be caused by mutation of the CHRNA4 gene, originally reported in 1994. In the past three decades, pathomechanisms of ADSHE associated with mutant nicotinic acetylcholine receptors (nAChRs) have been explored [...] Read more.
Autosomal-dominant sleep-related hypermotor epilepsy (ADSHE) was the first distinct genetic epilepsy proven to be caused by mutation of the CHRNA4 gene, originally reported in 1994. In the past three decades, pathomechanisms of ADSHE associated with mutant nicotinic acetylcholine receptors (nAChRs) have been explored via various studies, including in vitro experiments and genetic rodent models. However, findings emphasize that functional abnormalities of ADSHE-mutant nAChRs alone cannot generate ictogenesis; rather, development of abnormalities in various other transmission systems induced by ADSHE-mutant nAChRs during the neurodevelopmental process before the ADSHE onset is involved in development of epileptogenesis/ictogenesis. Intra-thalamic GABAergic disinhibition induced by loss-of-function of S284L-mutant nAChRs (S286L-mutant nAChRs in rat ADSHE models) contributes to enhancing propagation of physiological ripple-burst high-frequency oscillation (HFO) and Erk signaling during sleep, leading to enhancement of the trafficking of pannexin1, connexin43, and P2X7 purinergic receptor to the astroglial plasma membrane. The combination of activation of physiological ripple-HFO and upregulation of astroglial hemichannels under the GABAergic disinhibition plays an important role in generation of epileptogenic fast-ripple-HFO during sleep. Therefore, loss-of-function of the S284L-mutation alone cannot drive ictogenesis but contributes to the development of epileptogenesis as an initial abnormality. Based on these recent findings using genetic rat ADSHE models, harboring the rat S286L-mutant Chrna4 corresponding to the human S284L-mutant CHRNA4, this report proposes hypothetical pathomechanisms of ADSHE. Full article
Show Figures

Figure 1

22 pages, 1699 KB  
Review
Connected but at Risk: Social Media Exposure and Psychiatric and Psychological Outcomes in Youth
by Giuseppe Marano, Francesco Maria Lisci, Sara Rossi, Ester Maria Marzo, Gianluca Boggio, Caterina Brisi, Gianandrea Traversi, Osvaldo Mazza, Roberto Pola, Eleonora Gaetani and Marianna Mazza
Children 2025, 12(10), 1322; https://doi.org/10.3390/children12101322 - 2 Oct 2025
Abstract
Background: The widespread use of social media among children and adolescents has raised increasing concern about its potential impact on mental health. Given the unique neurodevelopmental vulnerabilities during adolescence, understanding how digital platforms influence psychiatric outcomes is critical. Objectives: This narrative review aims [...] Read more.
Background: The widespread use of social media among children and adolescents has raised increasing concern about its potential impact on mental health. Given the unique neurodevelopmental vulnerabilities during adolescence, understanding how digital platforms influence psychiatric outcomes is critical. Objectives: This narrative review aims to synthesize current evidence on the relationship between social media exposure and key psychiatric symptoms in youth, including depression, anxiety, body image disturbances, suicidality, and emotional dysregulation. Methods: We conducted a comprehensive narrative review of the literature, drawing from longitudinal, cross-sectional, and neuroimaging studies published in peer-reviewed journals. Specific attention was given to moderators (e.g., age, gender, and personality traits) and mediators (e.g., sleep, emotion regulation, and family context) influencing the relationship between social media use and mental health outcomes. Results: Evidence indicates that certain patterns of social media use, especially passive or compulsive engagement, are associated with increased risk of depression, anxiety, body dissatisfaction, and suicidal ideation. Adolescent girls, younger users, and those with low self-esteem or poor emotional regulation are particularly vulnerable. Neuroimaging studies show that social media activates reward-related brain regions, which may reinforce problematic use. Family support and digital literacy appear to mitigate negative effects. Conclusions: Social media use is not uniformly harmful; its psychological impact depends on how, why, and by whom it is used. Multilevel prevention strategies, including media education, parental involvement, and responsible platform design, are essential to support healthy adolescent development in the digital age. Full article
(This article belongs to the Special Issue Advances in Mental Health and Well-Being in Children (2nd Edition))
Show Figures

Figure 1

18 pages, 748 KB  
Review
Statistical Methods for Multi-Omics Analysis in Neurodevelopmental Disorders: From High Dimensionality to Mechanistic Insight
by Manuel Airoldi, Veronica Remori and Mauro Fasano
Biomolecules 2025, 15(10), 1401; https://doi.org/10.3390/biom15101401 - 2 Oct 2025
Abstract
Neurodevelopmental disorders (NDDs), including autism spectrum disorder, intellectual disability, and attention-deficit/hyperactivity disorder, are genetically and phenotypically heterogeneous conditions affecting millions worldwide. High-throughput omics technologies—transcriptomics, proteomics, metabolomics, and epigenomics—offer a unique opportunity to link genetic variation to molecular and cellular mechanisms underlying these disorders. [...] Read more.
Neurodevelopmental disorders (NDDs), including autism spectrum disorder, intellectual disability, and attention-deficit/hyperactivity disorder, are genetically and phenotypically heterogeneous conditions affecting millions worldwide. High-throughput omics technologies—transcriptomics, proteomics, metabolomics, and epigenomics—offer a unique opportunity to link genetic variation to molecular and cellular mechanisms underlying these disorders. However, the high dimensionality, sparsity, batch effects, and complex covariance structures of omics data present significant statistical challenges, requiring robust normalization, batch correction, imputation, dimensionality reduction, and multivariate modeling approaches. This review provides a comprehensive overview of statistical frameworks for analyzing high-dimensional omics datasets in NDDs, including univariate and multivariate models, penalized regression, sparse canonical correlation analysis, partial least squares, and integrative multi-omics methods such as DIABLO, similarity network fusion, and MOFA. We illustrate how these approaches have revealed convergent molecular signatures—synaptic, mitochondrial, and immune dysregulation—across transcriptomic, proteomic, and metabolomic layers in human cohorts and experimental models. Finally, we discuss emerging strategies, including single-cell and spatially resolved omics, machine learning-driven integration, and longitudinal multi-modal analyses, highlighting their potential to translate complex molecular patterns into mechanistic insights, biomarkers, and therapeutic targets. Integrative multi-omics analyses, grounded in rigorous statistical methodology, are poised to advance mechanistic understanding and precision medicine in NDDs. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

43 pages, 2230 KB  
Review
NGS Approaches in Clinical Diagnostics: From Workflow to Disease-Specific Applications
by Desiree Brancato, Simone Treccarichi, Francesca Bruno, Elvira Coniglio, Mirella Vinci, Salvatore Saccone, Francesco Calì and Concetta Federico
Int. J. Mol. Sci. 2025, 26(19), 9597; https://doi.org/10.3390/ijms26199597 - 1 Oct 2025
Abstract
Next-Generation Sequencing (NGS) techniques have become a cornerstone of molecular diagnostics, enabling high-throughput, parallel analysis of multiple disease-associated genes. Their targeted design allows streamlined interpretation and optimised diagnostic yield, especially in disorders with known genetic heterogeneity. In this review, we provide a comprehensive [...] Read more.
Next-Generation Sequencing (NGS) techniques have become a cornerstone of molecular diagnostics, enabling high-throughput, parallel analysis of multiple disease-associated genes. Their targeted design allows streamlined interpretation and optimised diagnostic yield, especially in disorders with known genetic heterogeneity. In this review, we provide a comprehensive overview of the clinical application of NGS techniques—targeted gene panels, whole exome sequencing (WES) and whole genome sequencing (WGS)—detailing the methodological workflow and the critical steps involved in their implementation. Particular emphasis is placed on the genes identified through NGS that are implicated in neurodevelopmental, neurodegenerative, psychiatric, neuromuscular, cardiovascular, and metabolic disorders. We also compare the advantages and limitations of panel-based diagnostics versus WES and WGS, and discuss future directions, including the integration of long-read sequencing technologies into multidisciplinary clinical practice. Finally, we consider how these advances may ultimately bridge biomedical research and clinical practise to improve the diagnosis and management of multifactorial diseases. Full article
(This article belongs to the Special Issue Molecular Progression of Genome-Related Diseases: 2nd Edition)
Show Figures

Figure 1

17 pages, 935 KB  
Systematic Review
Potential Genetic Intersections Between ADHD and Alzheimer’s Disease: A Systematic Review
by Riccardo Borgonovo, Lisa M. Nespoli, Martino Ceroni, Lisa M. Arnaud, Lucia Morellini, Marianna Lissi and Leonardo Sacco
NeuroSci 2025, 6(4), 97; https://doi.org/10.3390/neurosci6040097 - 1 Oct 2025
Abstract
Background: attention-deficit/hyperactivity disorder (ADHD) and Alzheimer’s disease (AD) are distinct neurological conditions that may share genetic and molecular underpinnings. ADHD, a neurodevelopmental disorder, affects approximately 5% of children and 3% of adults globally, while AD, a neurodegenerative disorder, is the leading cause of [...] Read more.
Background: attention-deficit/hyperactivity disorder (ADHD) and Alzheimer’s disease (AD) are distinct neurological conditions that may share genetic and molecular underpinnings. ADHD, a neurodevelopmental disorder, affects approximately 5% of children and 3% of adults globally, while AD, a neurodegenerative disorder, is the leading cause of dementia in older adults. Emerging evidence suggests potential overlapping contributors, including pathways related to synaptic plasticity, neuroinflammation, and oxidative stress. Methods: this systematic review investigated potential genetic predispositions linking Attention-Deficit/Hyperactivity Disorder (ADHD) and Alzheimer’s Disease (AD). Following PRISMA guidelines, a search was conducted in Web of Science, Embase, PsycINFO, and PubMed using keywords related to ADHD, AD, and genetic factors. Studies included were original human studies utilizing genetic analyses and ADHD polygenic risk scores (PRS), with AD confirmed using established diagnostic criteria. Exclusion criteria comprised non-original studies, animal research, and articles not addressing genetic links between ADHD and AD. Screening was conducted with Rayyan software, assessing relevance based on titles, abstracts, and full texts. Results:. The search identified 1450 records, of which 1092 were screened after duplicates were removed. Following exclusions, two studies met inclusion criteria. One study analyzed ADHD-PRS in 212 cognitively unimpaired older adults using amyloid-beta (Aβ) PET imaging and tau biomarkers. The findings revealed that ADHD-PRS was associated with progressive cognitive decline, increased tau pathology, and frontoparietal atrophy in Aβ-positive individuals, suggesting that ADHD genetic liability may exacerbate AD pathology. Another study assessed ADHD-PRS in a cohort of 10,645 Swedish twins, examining its association with 16 somatic conditions. The results showed modest risk increases for cardiometabolic, autoimmune, and neurological conditions, with mediation effects through BMI, education, tobacco use, and alcohol misuse, but no direct link between ADHD-PRS and dementia. Discussion and conclusion: this review highlights preliminary but conflicting evidence for a genetic intersection between ADHD and AD. One study suggests that ADHD genetic liability may exacerbate AD-related pathology in Aβ-positive individuals, whereas another large registry-based study finds no direct link to dementia, with associations largely mediated by lifestyle factors. The potential ADHD–AD relationship is likely complex and context-dependent, influenced by biomarker status and environmental confounders. Longitudinal studies integrating genetics, biomarkers, and detailed lifestyle data are needed to clarify this relationship. Full article
34 pages, 5208 KB  
Article
Setting Up Our Lab-in-a-Box: Paving the Road Towards Remote Data Collection for Scalable Personalized Biometrics
by Mona Elsayed, Jihye Ryu, Joseph Vero and Elizabeth B. Torres
J. Pers. Med. 2025, 15(10), 463; https://doi.org/10.3390/jpm15100463 - 1 Oct 2025
Abstract
Background: There is an emerging need for new scalable behavioral assays, i.e., assays that are feasible to administer from the comfort of the person’s home, with ease and at higher frequency than clinical visits or visits to laboratory settings can afford us today. [...] Read more.
Background: There is an emerging need for new scalable behavioral assays, i.e., assays that are feasible to administer from the comfort of the person’s home, with ease and at higher frequency than clinical visits or visits to laboratory settings can afford us today. This need poses several challenges which we address in this work along with scalable solutions for behavioral data acquisition and analyses aimed at diversifying various populations under study here and to encourage citizen-driven participatory models of research and clinical practices. Methods: Our methods are centered on the biophysical fluctuations unique to the person and on the characterization of behavioral states using standardized biorhythmic time series data (from kinematic, electrocardiographic, voice, and video-based tools) in naturalistic settings, outside a laboratory environment. The methods are illustrated with three representative studies (58 participants, 8–70 years old, 34 males, 24 females). Data is presented across the nervous systems under a proposed functional taxonomy that permits data organization according to nervous systems’ maturation and decline levels. These methods can be applied to various research programs ranging from clinical trials at home, to remote pedagogical settings. They are aimed at creating new standardized biometric scales to screen and diagnose neurological disorders across the human lifespan. Results: Using this remote data collection system under our new unifying statistical platform for individualized behavioral analysis, we characterize the digital ranges of biophysical signals of neurotypical participants and report departure from normative ranges in neurodevelopmental and neurodegenerative disorders. Each study provides parameter spaces with self-emerging clusters whereby data points corresponding to a cluster are probability distribution parameters automatically classifying participants into different continuous Gamma probability distribution families. Non-parametric analysis reveals significant differences in distributions’ shape and scale (p < 0.01). Data reduction is realizable from full probability distribution families to a single parameter, the Gamma scale, amenable to represent each participant within each subclass, and each cluster of similar participants within each cohort. We report on data integration from stochastic analyses that serve to differentiate participants and propose new ways to highly scale our research, education, and clinical practices. Conclusions: This work highlights important methodological and analytical techniques for developing personalized and scalable biometrics across various populations outside a laboratory setting. Full article
(This article belongs to the Special Issue Personalized Medicine in Neuroscience: Molecular to Systems Approach)
Show Figures

Figure 1

17 pages, 2025 KB  
Article
Cerebellar Mechanisms Underlying Autism-like Cognitive Deficits in Mouse Offspring with Prenatal Valproic Acid Exposure
by Juan Wang, Xu-Lan Zhou, Zi-Han Ma, Li Liu, Qian Zhou, Jia-Wei Wen, Jia-Hui Wen, Hui Su, Yu-Han Zhang and Xiao-Chun Xia
Toxics 2025, 13(10), 833; https://doi.org/10.3390/toxics13100833 - 30 Sep 2025
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in social communication and repetitive behaviors, involving various brain regions. Emerging evidence highlights the critical role of the cerebellum in the pathophysiology of autism; however, the underlying molecular mechanisms remain poorly [...] Read more.
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in social communication and repetitive behaviors, involving various brain regions. Emerging evidence highlights the critical role of the cerebellum in the pathophysiology of autism; however, the underlying molecular mechanisms remain poorly understood. This study aimed to establish a prenatal valproic acid (VPA)-induced mouse model of ASD and explore the potential molecular mechanisms underlying cerebellar ASD-like phenotypes through DIA-based proteomics and bioinformatics analyses. Significant cognitive impairment and anxiety-like behaviors were detected using an open field test and novel object test following VPA exposure, respectively. Additionally, reduced numbers of Purkinje cells with irregular arrangement were observed in the cerebellum. Furthermore, cerebellar proteomics analyses revealed that they identified 193 differentially expressed proteins (DEPs) involved in multiple pathways, including axon guidance, glutamatergic synapse, long-term potentiation, and calcium signaling, among others. Notably, dysfunction of glutamate receptor signaling and disruptions in axon-guidance signaling appear to be major molecular mechanisms underlying cerebellar impairment. Together, these findings suggest that Grin2b may serve as a critical molecule linking synaptic neurotransmission and neurodevelopmental disorders. Thus, Grin2b may represent a potential therapeutic target for addressing cognitive impairment in ASD. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Graphical abstract

10 pages, 1348 KB  
Article
The Aryl Hydrocarbon Receptor Mediates the Neurodevelopmental Toxicity of Perfluorooctane Sulfonamide in Zebrafish Larvae
by Pinyi Chen, Kang Wang, Jie Zhang, Yan Jiang and Tao Chen
Toxics 2025, 13(10), 832; https://doi.org/10.3390/toxics13100832 - 30 Sep 2025
Abstract
Perfluorooctane sulfonamide (PFOSA), the direct precursor to perfluorooctane sulfonate (PFOS), is widely present in the environment. Research has indicated that PFOSA is cardiotoxic and hepatotoxic, but its impact on neurodevelopment remains unclear. In the current study, we observed that exposure of PFOSA caused [...] Read more.
Perfluorooctane sulfonamide (PFOSA), the direct precursor to perfluorooctane sulfonate (PFOS), is widely present in the environment. Research has indicated that PFOSA is cardiotoxic and hepatotoxic, but its impact on neurodevelopment remains unclear. In the current study, we observed that exposure of PFOSA caused neurodevelopmental toxicity in zebrafish embryos in a dose-dependent manner, as evidenced by impaired motor abilities and decreased swimming distance. We then demonstrated that PFOSA exposure downregulated the mRNA expression of neurodevelopment-related genes including a1-tubulin, elavl3, ache and dat. Moreover, PFOSA exposure resulted in dose-dependent oxidative stress, which triggers apoptosis in the brains of zebrafish larvae. We further showed that inhibition of the aryl hydrocarbon receptor (AhR) alleviated the oxidative stress and apoptosis induced by PFOSA, thereby counteracting the neurodevelopmental abnormalities in zebrafish larvae. In conclusion, these findings indicate PFOSA causes neurodevelopmental disorders by inducing oxidative stress and apoptosis through the AhR pathway. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
Show Figures

Figure 1

20 pages, 3179 KB  
Article
Development of LC-MS/MS Database Based on 250 Potentially Highly Neuroactive Compounds and Their Metabolites
by Taylor Teitelbaum, Haoduo Zhao, Lauren E. Koval, Yun-Chung Hsiao, Chih-Wei Liu, Julia E. Rager, Stephanie M. Engel and Kun Lu
Metabolites 2025, 15(10), 650; https://doi.org/10.3390/metabo15100650 - 30 Sep 2025
Abstract
Background: Environmental chemicals are hypothesized to contribute to the development of neurodevelopmental disorders; however, only a fraction of the thousands of chemicals in common commercial use have validated assays. We recently developed the Environmental NeuRoactIve Chemicals (ENRICH) list of 250 chemicals prioritized for [...] Read more.
Background: Environmental chemicals are hypothesized to contribute to the development of neurodevelopmental disorders; however, only a fraction of the thousands of chemicals in common commercial use have validated assays. We recently developed the Environmental NeuRoactIve Chemicals (ENRICH) list of 250 chemicals prioritized for further testing due to their high likelihood of neuroactivity and human exposure, as derived through analysis across eight neuroactivity, exposure, and detection databases. Measuring some of these compounds in human biological media remains challenging due to the lack of information regarding their metabolites and detection frequencies. Methods: We created an LC-MS/MS database based on the targets in the ENRICH list using S9 human liver fractions to metabolize compounds individually and in groups into newly and previously discovered phase I metabolites. Results: The final database consisted of 274 compounds with 94 parent compounds and 182 metabolites being featured. A total of 55 novel metabolites were discovered. The confidence of the compounds, which were annotated correctly within the database, was high, increasing the odds of positive identifications within future exposomic work. The confidence of the annotations fell between the levels 1–3, with levels one and two consisting of 87% of the database. Conclusions: The creation of this database creates the opportunity for future biological studies centered around the impact these compounds and their metabolites have on the brain and for a better understanding of neurodevelopmental disorders and their origins. Full article
Show Figures

Graphical abstract

20 pages, 12181 KB  
Article
Neuroprotective and Neurotrophic Potential of Flammulina velutipes Extracts in Primary Hippocampal Neuronal Culture
by Sarmistha Mitra, Raju Dash, Md Abul Bashar, Kishor Mazumder and Il Soo Moon
Nutrients 2025, 17(19), 3107; https://doi.org/10.3390/nu17193107 - 30 Sep 2025
Abstract
Flammulina velutipes (enoki mushroom) is a functional edible mushroom rich in antioxidants, polysaccharides, mycosterols, fiber, and minerals. Accumulating evidence highlights its therapeutic potential across diverse pathological contexts, including boosting cognitive function. However, its role in neuromodulation has not been systematically explored. This study [...] Read more.
Flammulina velutipes (enoki mushroom) is a functional edible mushroom rich in antioxidants, polysaccharides, mycosterols, fiber, and minerals. Accumulating evidence highlights its therapeutic potential across diverse pathological contexts, including boosting cognitive function. However, its role in neuromodulation has not been systematically explored. This study examined the effects of methanolic and ethanolic extracts of F. velutipes on primary hippocampal neurons. Neurons were treated with different extract concentrations, followed by assessments of cell viability, cytoarchitecture, neuritogenesis, maturation, and neuroprotection under oxidative stress. The extracts were further characterized by GC-MS to identify bioactive metabolites, and molecular docking combined with MM-GBSA binding energy analysis was employed to predict potential modulators. Our results demonstrated that the methanolic extract significantly enhanced neurite outgrowth, improved neuronal cytoarchitecture, and promoted survival under oxidative stress, whereas the ethanolic extract produced moderate effects. Mechanistic studies indicated that these neuroprotective and neurodevelopmental benefits were mediated through activation of the NTRK receptors, as validated by both in vitro assays and molecular docking studies. Collectively, these findings suggest that F. velutipes extracts, particularly methanolic fractions, may serve as promising neuromodulatory agents for promoting neuronal development and protecting neurons from oxidative stress. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health—2nd Edition)
Show Figures

Figure 1

29 pages, 4385 KB  
Review
The Dual Role of Astrocytes in CNS Homeostasis and Dysfunction
by Aarti Tiwari, Satyabrata Rout, Prasanjit Deep, Chandan Sahu and Pradeep Kumar Samal
Neuroglia 2025, 6(4), 38; https://doi.org/10.3390/neuroglia6040038 - 29 Sep 2025
Abstract
Astrocytes are the most common type of glial cell in the central nervous system (CNS). They have many different functions that go beyond just supporting other cells. Astrocytes were once thought of as passive parts of the CNS. However, now they are known [...] Read more.
Astrocytes are the most common type of glial cell in the central nervous system (CNS). They have many different functions that go beyond just supporting other cells. Astrocytes were once thought of as passive parts of the CNS. However, now they are known to be active regulators of homeostasis and active participants in both neurodevelopmental and neurodegenerative processes. This article looks at the both sides of astrocytic function: how they safeguard synaptic integrity, ion and neurotransmitter balance, and blood-brain barrier (BBB) stability, as well as how astrocytes can become activated and participate in the immune response by releasing cytokines, upregulating interferons, and modulating the blood–brain barrier and inflammation disease condition. Astrocytes affect and influence neuronal function through the tripartite synapse, gliotransmission, and the glymphatic system. When someone is suffering from neurological disorders, reactive astrocytes become activated after being triggered by factors such as pro-inflammatory cytokines, chemokines, and inflammatory mediators, these reactive astrocytes, which have higher levels of glial fibrillary acidic protein (GFAP), can cause neuroinflammation, scar formation, and the loss of neurons. This review describes how astrocytes are involved in important CNS illnesses such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, and ischemia. It also emphasizes how these cells can change from neuroprotective to neurotoxic states depending on the situation. Researchers look at important biochemical pathways, such as those involving toll-like receptors, GLP-1 receptors, and TREM2, to see if they can change how astrocytes respond. Astrocyte-derived substances, including BDNF, GDNF, and IL-10, are also essential for protecting and repairing neurons. Astrocytes interact with other CNS cells, especially microglia and endothelial cells, thereby altering the neuroimmune environment. Learning about the molecular processes that control astrocytic plasticity opens up new ways to treat glial dysfunction. This review focuses on the importance of astrocytes in the normal and abnormal functioning of the CNS, which has a significant impact on the development of neurotherapeutics that focus on glia. Full article
Show Figures

Figure 1

14 pages, 1118 KB  
Review
Congenital Human Cytomegalovirus and the Complement System
by Andrea Canto Garon, Yujun Liu and Fenyong Liu
Viruses 2025, 17(10), 1324; https://doi.org/10.3390/v17101324 - 29 Sep 2025
Abstract
Congenital human cytomegalovirus (HCMV) infection is the most common vertically transmitted viral infection, and it affects 1 in 200 live births worldwide. While neonates are often asymptomatic at birth, congenital HCMV infection can result in long-term complications, including microcephaly, sensorineural hearing loss, and [...] Read more.
Congenital human cytomegalovirus (HCMV) infection is the most common vertically transmitted viral infection, and it affects 1 in 200 live births worldwide. While neonates are often asymptomatic at birth, congenital HCMV infection can result in long-term complications, including microcephaly, sensorineural hearing loss, and neurodevelopmental abnormalities. Developing antiviral strategies for the treatment and prevention of congenital HCMV infections is a global public health priority. However, licensed anti-HCMV vaccines are not yet available, and therapeutic options for use during pregnancy remain limited. The complement system is a crucial component of the innate immune system that plays essential roles in both fetal development and maternal defense against infectious pathogens. In cases of congenital HCMV infection, complement may contribute to the successful containment of the virus, but dysregulation and overactivation could concurrently drive tissue-damaging inflammation. This review discusses the known roles of the complement system in fetal development and in HCMV pathogenesis and synthesizes existing research to develop the hypothesis that a dysregulated complement system is a key mechanism in the development of congenital HCMV-related pathogenesis and neurodevelopmental sequelae. We explore how HCMV may perturb the complement system during pregnancy and use one inhibitor example to illustrate the broader potential of targeting complement in limiting disease. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

32 pages, 1782 KB  
Review
Neurobiological and Behavioral Heterogeneity in Adolescents with Autism Spectrum Disorder
by Gerry Leisman, Rahela Alfasi and Robert Melillo
Brain Sci. 2025, 15(10), 1057; https://doi.org/10.3390/brainsci15101057 - 28 Sep 2025
Abstract
Background: Adolescents with autism spectrum disorder (ASD) display distinct neurodevelopmental trajectories marked by atypical neural activation and white matter maturation compared to neurotypical peers. Introduction: While improvements in face recognition and cognitive skills occur during childhood and adolescence, individuals with ASD often experience [...] Read more.
Background: Adolescents with autism spectrum disorder (ASD) display distinct neurodevelopmental trajectories marked by atypical neural activation and white matter maturation compared to neurotypical peers. Introduction: While improvements in face recognition and cognitive skills occur during childhood and adolescence, individuals with ASD often experience a plateau in these areas as they transition to adulthood, impacting daily living, executive function, social cognition, and emotional awareness. Results: Neuroimaging studies reveal altered white matter growth and connectivity in brain regions associated with social processing, which may underlie these functional challenges. Intellectual disability further compounds developmental difficulties by limiting foundational abilities and slowing progress. Discussion: The multifaceted and persistent service needs spanning legal, educational, vocational, health, and psychosocial domains highlight the necessity for coordinated, individualized, and family-centered approaches, particularly during the transition to adulthood. Advances in research integrating genetic, neurobiological, and behavioral data hold potential for refining diagnostic subgroups and personalizing interventions. Conclusion: Continued advocacy and innovation in service delivery are essential to address gaps in adult support systems and enhance long-term outcomes for individuals with ASD. Full article
(This article belongs to the Special Issue Rethinking Neurodevelopmental Disorders: Beyond One-Size-Fits-All)
Show Figures

Figure 1

27 pages, 3178 KB  
Review
The Role of GABA Pathway Components in Pathogenesis of Neurodevelopmental Disorders
by Ekaterina V. Marilovtseva, Amal Abdurazakov, Artemiy O. Kurishev, Vera A. Mikhailova and Vera E. Golimbet
Int. J. Mol. Sci. 2025, 26(19), 9492; https://doi.org/10.3390/ijms26199492 - 28 Sep 2025
Abstract
γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the central nervous system (CNS), regulates neuronal excitability, synaptic plasticity, and oscillatory activity essential for cognition, emotion, and behavior. Disruptions in GABAergic signaling are increasingly recognized as key contributors to a range of neurodevelopmental disorders [...] Read more.
γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the central nervous system (CNS), regulates neuronal excitability, synaptic plasticity, and oscillatory activity essential for cognition, emotion, and behavior. Disruptions in GABAergic signaling are increasingly recognized as key contributors to a range of neurodevelopmental disorders (NDDs), including schizophrenia (SZ), autism spectrum disorder (ASD), major depressive disorder (MDD), bipolar disorder (BD), and intellectual disability (ID). In this review, we analyze the data available from the literature concerning the components of the GABA pathway. We describe the main steps of GABA metabolism, including GABA synthesis and release, GABA receptors neurotransmission, GABA reuptake and catabolism, and evaluate their involvement in the pathogenesis of neurodevelopmental disorders. We suggest the possibility of existence of so far undescribed mechanisms which maintain the concentrations of GABA at a relatively physiological level when the function of glutamic acid decarboxylases is compromised by mutations. Searching for these mechanisms could be important for better understanding neurodevelopment and could give a clue for future searches for new therapeutic approaches for treating or alleviating the symptoms of BD and SZ. We also argue that the metabolic stage of the GABA pathway has only a minor direct effect on GABA signaling and rather causes clinical effects due to accumulation of neurotoxic byproducts. Full article
(This article belongs to the Special Issue Molecular Investigations in Neurodevelopmental Disorders)
Show Figures

Figure 1

Back to TopTop