Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,815)

Search Parameters:
Keywords = network organizations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2397 KiB  
Review
Research Progress on the Regulatory Mechanism of the Waxy Gene in Rice Starch Synthesis
by Fei Chen, Yunsheng Song, Yi Jiang, Penghui Cao, Yajie Yu, Minghui Dong, Yulin Xie, Caiyong Yuan, Yongliang Zhu and Zhongying Qiao
Curr. Issues Mol. Biol. 2025, 47(9), 678; https://doi.org/10.3390/cimb47090678 (registering DOI) - 23 Aug 2025
Abstract
Starch serves as a crucial storage substance in both cereal crops and root/tuber crops, with its composition and properties determining the quality of storage organs. The Waxy (Wx) gene, encoding a key enzyme in starch biosynthesis, plays a pivotal role in [...] Read more.
Starch serves as a crucial storage substance in both cereal crops and root/tuber crops, with its composition and properties determining the quality of storage organs. The Waxy (Wx) gene, encoding a key enzyme in starch biosynthesis, plays a pivotal role in this metabolic pathway. However, existing reviews seldom systematically elaborate on Wx gene regulatory mechanisms from the perspective of intrinsic molecular networks. Focusing on the model crop rice, this article synthesizes research advances in Wx-mediated starch biosynthesis regulation over the past decade. We analyze the structural features of the Wx gene and factors influencing its regulatory function during starch synthesis. In conclusion, future research directions are proposed to provide references for Wx gene studies in other crops, as well as theoretical foundations for rice varietal improvement and molecular design breeding. Full article
(This article belongs to the Section Molecular Plant Sciences)
21 pages, 1330 KiB  
Article
The Preventive Effects of GLP-1 Receptor Agonists and SGLT2 Inhibitors on Cancer Metastasis: A Network Meta-Analysis of 67 Randomized Controlled Trials
by Chih-Wei Hsu, Bing-Syuan Zeng, Chih-Sung Liang, Bing-Yan Zeng, Chao-Ming Hung, Brendon Stubbs, Yen-Wen Chen, Wei-Te Lei, Jiann-Jy Chen, Po-Huang Chen, Kuan-Pin Su, Tien-Yu Chen and Ping-Tao Tseng
Int. J. Mol. Sci. 2025, 26(17), 8202; https://doi.org/10.3390/ijms26178202 (registering DOI) - 23 Aug 2025
Abstract
Metastatic cancer, characterized by poor survival outcomes and grim prognosis, represents the final stage of malignancy. The current evidence regarding the prophylactic effects of glucagon-like peptide-1 (GLP-1) receptor agonists and sodium–glucose cotransporter 2 (SGLT2) inhibitors on metastatic cancer remains largely unexamined. With a [...] Read more.
Metastatic cancer, characterized by poor survival outcomes and grim prognosis, represents the final stage of malignancy. The current evidence regarding the prophylactic effects of glucagon-like peptide-1 (GLP-1) receptor agonists and sodium–glucose cotransporter 2 (SGLT2) inhibitors on metastatic cancer remains largely unexamined. With a confirmatory approach based on the Cochrane recommendation, we conducted a frequentist-based network meta-analysis (NMA) of randomized controlled trials (RCTs) evaluating such medications. The primary outcome was the incidence of metastatic cancer, while secondary outcomes included safety profiles assessed through dropout rates. The findings were reaffirmed by sensitivity analysis with a Bayesian-based NMA. This NMA of 207,606 participants from 67 RCTs revealed that only efpeglenatide demonstrated a statistically significant reduction in metastatic cancer events compared to controls (odds ratio = 0.26, 95% confidence intervals = 0.09 to 0.70, p = 0.010, number needed to treat = 188.4). Efpeglenatide’s efficacy was not confined to specific cancer types. Safety profiles were comparable across all treatments. These findings indicate that efpeglenatide may possess a broad, systemic preventive effect against metastatic cancers, potentially operating through mechanisms that are not restricted to individual organ systems. Further research is warranted to elucidate the molecular pathways underlying its anti-metastatic properties and to explore its role in preventive oncology. Full article
Show Figures

Figure 1

16 pages, 251 KiB  
Article
Should I Stay at Home Alone? Lived Experiences of Loneliness Among Older Adults: A Qualitative Study
by Maria Shuk Yu Hung, Michael Man Ho Li and Ken Hok Man Ho
Healthcare 2025, 13(17), 2101; https://doi.org/10.3390/healthcare13172101 (registering DOI) - 23 Aug 2025
Abstract
Background: Loneliness and social isolation among older people are currently widespread and recognized as the foremost public health problems globally and locally. Hong Kong, which exhibits a rapid aging trend and an expanding elderly population, is inevitably facing these issues. This study explored [...] Read more.
Background: Loneliness and social isolation among older people are currently widespread and recognized as the foremost public health problems globally and locally. Hong Kong, which exhibits a rapid aging trend and an expanding elderly population, is inevitably facing these issues. This study explored the lived experiences of loneliness among older adults in Hong Kong. Methods: Qualitative interviews were conducted among older adults in the community aged 60 or above who were cared for by migrant domestic workers and presented varying levels of loneliness. Purposive sampling was used to select subjects for face-to-face, semi-structured individual interviews, with consent for audio recording, which led to the inclusion of 19 older adults, among whom five were male, nine lived with a spouse, and three lived with their children. Interpretative phenomenological analysis was adopted. Results: We identified a core theme, “Should I stay at home alone?”, and the following four interrelated themes: (1) experience of inadequate social support and networks, (2) altered family dynamics and support, (3) deterioration in physical functions and mobility limitations, and (4) experience of negative and complex emotions. Conclusions: Based on our investigation into the lived experience of loneliness among older adults locally, we recommend that the government, non-governmental organizations, and healthcare institutions establish appropriate strategies and integrated services to address the social, physical, familial, and emotional issues in this population to foster healthy aging, improve their quality of life, and encourage support from families and communities. Full article
25 pages, 14212 KiB  
Article
Optimization of Composting Locations for Livestock Manure in Bangladesh: Spatial Analysis-Based Potential Environmental Benefits Assessment
by Zinat Mahal, Helmut Yabar and Md Faisal Abedin Khan
Clean Technol. 2025, 7(3), 72; https://doi.org/10.3390/cleantechnol7030072 - 22 Aug 2025
Abstract
For sustainable livestock manure management, composting is a common practice for supplying nutrients to crops. Therefore, optimizing plant locations for composting from livestock manure is essential in Bangladesh. This study performed a land suitability analysis using Geographic Information System (GIS) spatial modeling to [...] Read more.
For sustainable livestock manure management, composting is a common practice for supplying nutrients to crops. Therefore, optimizing plant locations for composting from livestock manure is essential in Bangladesh. This study performed a land suitability analysis using Geographic Information System (GIS) spatial modeling to identify suitable sites for composting plants, which was optimized through network analysis. After spatial analysis, 15, 42, and 147 locations were identified for large-scale, medium-scale, and small-scale manure-based compost production, respectively, across different scenarios. As a result, approximately 1537.74 kilotons/year of compost can be generated from 2703.86 kilotons of livestock manure, replacing about 44.31% of synthetic fertilizer use in Bangladesh in 2024. The potential reduction in greenhouse gas (GHG) emissions was assessed at 1986.76 gigagrams CO2eq/year, with nutrient leaching reduction potentials of 15.11 and 10.98 kilotons/year for nitrogen and phosphorus, respectively. Additionally, around 4.51 million tons of livestock manure can be disposed of annually by establishing composting plants. However, assessing the potential environmental benefits by optimizing composting plant locations can support the development of strategies to produce organic fertilizer by utilizing natural resources in Bangladesh. Full article
Show Figures

Figure 1

28 pages, 1133 KiB  
Article
Mapping the Cognitive Architecture of Health Beliefs: A Multivariate Conditional Network of Perceived Salt-Related Disease Risks
by Stanisław Surma, Łukasz Lewandowski, Karol Momot, Tomasz Sobierajski, Joanna Lewek, Bogusław Okopień and Maciej Banach
Nutrients 2025, 17(17), 2728; https://doi.org/10.3390/nu17172728 - 22 Aug 2025
Abstract
Background: Public beliefs about dietary risks, such as excessive salt intake, are often not isolated misconceptions but part of structured cognitive systems. This study aimed to explore how individuals organize their beliefs and misperceptions regarding salt-related health consequences. Material and Methods: Using data [...] Read more.
Background: Public beliefs about dietary risks, such as excessive salt intake, are often not isolated misconceptions but part of structured cognitive systems. This study aimed to explore how individuals organize their beliefs and misperceptions regarding salt-related health consequences. Material and Methods: Using data from an international online survey, we applied a system of multivariate proportional odds logistic regression (POLR) models to estimate conditional associations among beliefs about salt’s links to various diseases—including cardiovascular, metabolic, renal, neuropsychiatric, and mortality outcomes. In addition, exploratory and confirmatory factor analyses (EFA and CFA) were conducted to identify and validate latent constructs underlying the belief items. Beliefs were modeled as interdependent, controlling for latent constructs, sociodemographics, and self-reported health awareness. Statistically significant associations (p < 0.05) were visualized via a heatmap of beta coefficients. Results: Physicians showed almost universal agreement that salt contributes to hypertension (µ = 0.97), compared to non-medical respondents (µ = 0.85; p < 0.0001). Beliefs about mortality (µ = 1.55 for MDs vs. 0.99 for non-medical; p < 0.0001) emerged as central hubs in the belief network. Strong inter-item associations were observed, such as between hypertension and heart failure (β = −0.39), and between obesity and type 2 diabetes (β = −0.94). Notably, cognitive gaps were found, including a lack of association between atrial fibrillation and stroke, and non-reciprocal links between hypertension and heart failure. Conclusions: Beliefs about the health effects of salt are structured and sometimes asymmetrical, reflecting underlying reasoning patterns rather than isolated ignorance. Understanding these structures provides a systems-level view of health literacy and may inform more effective public health communication and education strategies. Full article
(This article belongs to the Special Issue Nutritional Aspects of Cardiovascular Disease Risk Factors)
20 pages, 9307 KiB  
Article
Effects of Hyperedge Overlap and Internal Structure on Hypernetwork Synchronization Dynamics
by Hong-Yu Chen, Xiu-Juan Ma, Fu-Xiang Ma and Hai-Bing Xiao
Entropy 2025, 27(9), 889; https://doi.org/10.3390/e27090889 - 22 Aug 2025
Abstract
The internal structure of hyperedges has become central to understanding collective dynamics in hypernetworks. This study investigates the impact of hyperedge overlap on network synchronization when hyperedge structures are explicitly considered. We propose a modified hyper-adjacency matrix that captures the internal organization of [...] Read more.
The internal structure of hyperedges has become central to understanding collective dynamics in hypernetworks. This study investigates the impact of hyperedge overlap on network synchronization when hyperedge structures are explicitly considered. We propose a modified hyper-adjacency matrix that captures the internal organization of the hyperedges while preserving the higher-order properties. Using this framework, we examine how non-complete connections within hyperedges influence synchronization as the overlap increases. Our findings reveal clear differences from fully connected hyperedge models. Furthermore, spectral graph theory and numerical simulations confirm that the structural variations induced by overlaps significantly regulate global synchronization. This work extends the theoretical framework of hypernetwork synchronization and highlights the critical role of hyperedge overlaps in shaping the internal hyperedge structure. Full article
(This article belongs to the Topic Recent Trends in Nonlinear, Chaotic and Complex Systems)
Show Figures

Figure 1

51 pages, 2520 KiB  
Review
Bone-Derived Factors: Regulating Brain and Treating Alzheimer’s Disease
by Qiao Guan, Yanting Cao, Jun Zou and Lingli Zhang
Biology 2025, 14(9), 1112; https://doi.org/10.3390/biology14091112 - 22 Aug 2025
Abstract
In recent years, the bidirectional regulatory mechanism of the bone-brain axis has become a hotspot for interdisciplinary research. In this paper, we systematically review the anatomical and functional links between bone and the central nervous system, focusing on the regulation of brain function [...] Read more.
In recent years, the bidirectional regulatory mechanism of the bone-brain axis has become a hotspot for interdisciplinary research. In this paper, we systematically review the anatomical and functional links between bone and the central nervous system, focusing on the regulation of brain function by bone-derived signals and their clinical translational potential. At the anatomical level, the blood–brain barrier permeability mechanism and the unique structure of the periventricular organs establish the anatomical basis for bone-brain information transmission. Innovative discoveries indicate that the bone cell network (bone marrow mesenchymal stem cells, osteoblasts, osteoclasts, and bone marrow monocytes) directly regulates neuroplasticity and the inflammatory microenvironment through the secretion of factors such as osteocalcin, lipid transporter protein 2, nuclear factor κB receptor-activating factor ligand, and fibroblast growth factor 23, as well as exosome-mediated remote signaling. Clinical studies have revealed a bidirectional vicious cycle between osteoporosis and Alzheimer’s disease: reduced bone density exacerbates Alzheimer’s disease pathology through pathways such as PDGF-BB, while AD-related neurodegeneration further accelerates bone loss. The breakthrough lies in the discovery that anti-osteoporotic drugs, such as bisphosphonates, improve cognitive function. In contrast, neuroactive drugs modulate bone metabolism, providing new strategies for the treatment of comorbid conditions. Additionally, whole-body vibration therapy shows potential for non-pharmacological interventions by modulating bone-brain interactions through the mechano-osteoclast signaling axis. In the future, it will be essential to integrate multiple groups of biomarkers to develop early diagnostic tools that promote precise prevention and treatment of bone-brain comorbidities. This article provides a new perspective on the mechanisms and therapeutic strategies of neuroskeletal comorbidities. Full article
(This article belongs to the Special Issue Bone Cell Biology)
24 pages, 26970 KiB  
Article
Using a High-Precision YOLO Surveillance System for Gun Detection to Prevent Mass Shootings
by Jonathan Hsueh and Chao-Tung Yang
AI 2025, 6(9), 198; https://doi.org/10.3390/ai6090198 - 22 Aug 2025
Abstract
Mass shootings are forms of loosely defined violent crimes typically involving four or more casualties by firearm and have become increasingly more frequent, and organized and speedy responses from police are necessary to mitigate harm and neutralize the perpetrator. Recent, widely publicized police [...] Read more.
Mass shootings are forms of loosely defined violent crimes typically involving four or more casualties by firearm and have become increasingly more frequent, and organized and speedy responses from police are necessary to mitigate harm and neutralize the perpetrator. Recent, widely publicized police responses to mass shooting events have been criticized by the media, government, and public. With the advancements in artificial intelligence, specifically single-shot detection (SSD) models, computer programs can detect harmful weapons within efficient time frames. We utilized YOLO (You Only Look Once), an SSD with a Convolutional Neural Network, and used versions 5, 7, 8, 9, 10, and 11 to develop our detection system. For our data, we used a Roboflow dataset that contained almost 17,000 images of real-life handgun scenarios, designed to skew towards positive instances. We trained each model on our dataset and exchanged different hyperparameters, conducting a randomized trial. Finally, we evaluated the performance based on precision metrics. Using a Python-based design, we tested our model’s capabilities for surveillance functions. Our experimental results showed that our best-performing model was YOLOv10s, with an mAP-50 (mean average precision 50) of 98.2% on our dataset. Our model showed potential in edge computing settings. Full article
49 pages, 5065 KiB  
Review
Drosophila as a Model for Studying the Roles of Lamins in Normal Tissues and Laminopathies
by Aleksandra Zielińska, Marta Rowińska, Aleksandra Tomczak and Ryszard Rzepecki
Cells 2025, 14(17), 1303; https://doi.org/10.3390/cells14171303 - 22 Aug 2025
Abstract
Nuclear processes are fundamental to the regulation of cellular, tissue, and organismal function, especially in complex multicellular systems. Central to these processes are lamins and lamin-associated proteins, which contribute to nuclear structure, gene expression, and chromatin organization. The discovery that mutations in genes [...] Read more.
Nuclear processes are fundamental to the regulation of cellular, tissue, and organismal function, especially in complex multicellular systems. Central to these processes are lamins and lamin-associated proteins, which contribute to nuclear structure, gene expression, and chromatin organization. The discovery that mutations in genes coding for lamins and lamina-associated proteins give rise to rare disorders—collectively called laminopathies—has intensified interest in this field among cell biologists and medical scientists. While many practical and clinically relevant questions about phenotype development and potential treatments require mammalian models, key molecular mechanisms and interactions have also been effectively studied in both vertebrate and invertebrate systems. This review focuses on a discussion of Drosophila lamins, their major properties, functions, interactions and post-translational modifications, with comparison to mammalian lamins, and a discussion of the value of fly models in studies of lamins in muscle tissue development and function in comparison to mammalian lamin B-type and A/C-type. In this paper, we have discussed the overall impact of lamin Dm and lamin C level manipulations on overall phenotype, especially on larval and adult muscles. We have thoroughly discussed the conclusions, which may have been drawn from experiments with overexpression of lamin C mutants mimicking lamin A laminopathy mutations. We have presented and discussed the suggestion that the mechanisms underlying Drosophila muscle phenotype development are similar not only to human dystrophic laminopathies but also to classical human muscular dystrophies such as Duchenne muscular dystrophy and Hutchison–Gilford Progeria syndrome. We suggest that the activation of the stress response contributes to the laminopathic phenotype detected in Drosophila. Finely, this review discusses in depth the lamin Dm and lamin C interactomes, discrepancies between String-based interactome networks, and our map of interactomes based on manual verification of experimental data on Drosophila lamin interactions. Full article
(This article belongs to the Section Cellular Biophysics)
21 pages, 1557 KiB  
Review
Physiopathology of the Brain Renin-Angiotensin System
by Cristina Cueto-Ureña, María Jesús Ramírez-Expósito, María Pilar Carrera-González and José Manuel Martínez-Martos
Life 2025, 15(8), 1333; https://doi.org/10.3390/life15081333 - 21 Aug 2025
Abstract
The renin-angiotensin system (RAS) has evolved from being considered solely a peripheral endocrine system for cardiovascular control to being recognized as a complex molecular network with important functions in the central nervous system (CNS) and peripheral nervous system (PNS). Here we examine the [...] Read more.
The renin-angiotensin system (RAS) has evolved from being considered solely a peripheral endocrine system for cardiovascular control to being recognized as a complex molecular network with important functions in the central nervous system (CNS) and peripheral nervous system (PNS). Here we examine the organization, mechanisms of action, and clinical implications of cerebral RAS in physiological conditions and in various neurological pathologies. The cerebral RAS operates autonomously, synthesizing its main components locally due to restrictions imposed by the blood–brain barrier. The key elements of the system are (pro)renin; (pro)renin receptor (PRR); angiotensinogen; angiotensin-converting enzyme types 1 and 2 (ACE1 and ACE2); angiotensin I (AngI), angiotensin II (AngII), angiotensin III (AngIII), angiotensin IV (AngIV), angiotensin A (AngA), and angiotensin 1-7 (Ang(1-7)) peptides; RAS-regulating aminopeptidases; and AT1 (AT1R), AT2 (AT2R), AT4 (AT4R/IRAP), and Mas (MasR) receptors. More recently, alamandine and its MrgD receptor have been included. They are distributed in specific brain regions such as the hypothalamus, hippocampus, cerebral cortex, and brainstem. The system is organized into two opposing axes: the classical axis (renin/ACE1/AngII/AT1R) with vasoconstrictive, proinflammatory, and prooxidative effects, and the alternative axes AngII/AT2R, AngIV/AT4R/IRAP, ACE2/Ang(1-7)/MasR and alamandine/MrgD receptor, with vasodilatory, anti-inflammatory, and neuroprotective properties. This functional duality allows us to understand its role in neurological physiopathology. RAS dysregulation is implicated in multiple neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and neuropsychiatric disorders such as depression and anxiety. In brain aging, an imbalance toward hyperactivation of the renin/ACE1/AngII/AT1R axis is observed, contributing to cognitive impairment and neuroinflammation. Epidemiological studies and clinical trials have shown that pharmacological modulation of the RAS using ACE inhibitors (ACEIs) and AT1R antagonists (ARA-II) not only controls blood pressure but also offers neuroprotective benefits, reducing the incidence of cognitive decline and dementia. These effects are attributed to direct mechanisms on the CNS, including reduction of oxidative stress, decreased neuroinflammation, and improved cerebral blood flow. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

49 pages, 1267 KiB  
Article
Strategy, Structure and Systems: Sun Tzu’s Thinking and the Holonic Network of the Toyota Dealer System (TDS)—A Romanian Case Study
by Aurel Burciu, Carla Alexandra Barbosa Pereira, Nicolae-Florin Prunău, Rozalia Kicsi, Denisa-Alexandra Chifan, Camelia Băeșu and Alexandra Maria Danileț
Systems 2025, 13(8), 723; https://doi.org/10.3390/systems13080723 - 21 Aug 2025
Abstract
Globally, 93 million cars are currently produced, with Toyota accounting for about 10% of the global market. However, its position is more modest in the Electric Vehicle (EV) industry. The automotive industry in Romania began at Dacia Pitesti in the 1970s, based on [...] Read more.
Globally, 93 million cars are currently produced, with Toyota accounting for about 10% of the global market. However, its position is more modest in the Electric Vehicle (EV) industry. The automotive industry in Romania began at Dacia Pitesti in the 1970s, based on a license obtained from Renault. This research explores how a profound strategic vision, inspired by Sun Tzu’s philosophy, can influence a company’s organizational structure over time. In Toyota’s case, this vision resulted in a dealer network that functions not only as a logistics system but also as a holonic system. The study is based on 194 questionnaires administered by the authors, along with 40 interviews with managers and specialists from Toyota Dealers Romania. Its novelty lies in analyzing the Toyota Dealer System (TDS) through the concept of holonic networks. The study concludes that the success of keiretsu groups is explained by combining Sun Tzu’s thinking with the principles of holonic networks. The findings are valuable both conceptually, for future research, and practically, as they offer clear directions for developing strategies and organizing a company’s market relationships. Full article
(This article belongs to the Section Supply Chain Management)
25 pages, 7381 KiB  
Article
Noctiluca scintillans Bloom Reshapes Microbial Community Structure, Interaction Networks, and Metabolism Patterns in Qinhuangdao Coastal Waters, China
by Yibo Wang, Min Zhou, Xinru Yue, Yang Chen, Du Su and Zhiliang Liu
Microorganisms 2025, 13(8), 1959; https://doi.org/10.3390/microorganisms13081959 - 21 Aug 2025
Abstract
The coastal waters of Qinhuangdao are a major hotspot for harmful algal blooms (HABs) in the Bohai Sea, with Noctiluca scintillans being one of the primary algal species responsible for these events. A comprehensive understanding of the microbial community structure and functional responses [...] Read more.
The coastal waters of Qinhuangdao are a major hotspot for harmful algal blooms (HABs) in the Bohai Sea, with Noctiluca scintillans being one of the primary algal species responsible for these events. A comprehensive understanding of the microbial community structure and functional responses to N. scintillans bloom events is crucial for elucidating their underlying mechanisms and ecological impacts. This study investigated the microbial community dynamics, metabolic shifts, and the environmental drivers associated with a N. scintillans bloom in the coastal waters of Qinhuangdao, China, using high-throughput sequencing of 16S and 18S rRNA genes, co-occurrence network analysis, and metabolic pathway prediction. The results revealed that the proliferation of autotrophic phytoplankton, such as Minutocellus spp., likely provided a nutritional foundation and favorable conditions for the N. scintillans bloom. The bloom significantly altered the community structures of prokaryotes and microeukaryotes, resulting in significantly lower α-diversity indices in the blooming region (BR) compared to the non-blooming region (NR). Co-occurrence network analyses demonstrated reduced network complexity and stability in the BR, with keystone taxa primarily belonging to Flavobacteriaceae and Rhodobacteraceae. Furthermore, the community structures of both prokaryotes and microeukaryotes correlated with multiple environmental factors, particularly elevated levels of NH4+-N and PO43−-P. Metabolic predictions indicated enhanced anaerobic respiration, fatty acid degradation, and nitrogen assimilation pathways, suggesting microbial adaptation to bloom-induced localized hypoxia and high organic matter. Notably, ammonia assimilation was upregulated, likely as a detoxification strategy. Additionally, carbon flux was redirected through the methylmalonyl-CoA pathway and pyruvate-malate shuttle to compensate for partial TCA cycle downregulation, maintaining energy balance under oxygen-limited conditions. This study elucidates the interplay between N. scintillans blooms, microbial interactions, and functional adaptations, providing insights for HAB prediction and management in coastal ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

26 pages, 914 KiB  
Article
Species Diversity and Resource Status of Macrofungi in Beijing: Insights from Natural and Urban Habitats
by Dong-Mei Liu, Shi-Hui Wang, Ke Wang, Jia-Xin Li, Wen-Qiang Yang, Xi-Xi Han, Bin Cao, Shuang-Hui He, Wei-Wei Liu and Rui-Lin Zhao
J. Fungi 2025, 11(8), 607; https://doi.org/10.3390/jof11080607 - 21 Aug 2025
Abstract
This study systematically documented macrofungal diversity in Beijing, China (field surveys conducted from 2020 to 2024) using line-transect and random sampling. A total of 1056 species were identified, spanning 2 phyla, 7 classes, 25 orders, 109 families, and 286 genera. The inventory includes [...] Read more.
This study systematically documented macrofungal diversity in Beijing, China (field surveys conducted from 2020 to 2024) using line-transect and random sampling. A total of 1056 species were identified, spanning 2 phyla, 7 classes, 25 orders, 109 families, and 286 genera. The inventory includes 12 new species, 456 new records for Beijing, 79 new records for China, and comprises 116 edible, 56 edible–medicinal, 123 medicinal, and 58 poisonous species. Among these, 542 species were assessed against China’s Macrofungi Redlist, revealing eight species needing conservation attention (seven Near Threatened, one Vulnerable). Analysis revealed stark differences in dominant taxa between natural ecosystems (protected areas) and urban green spaces/parks. In natural areas, macrofungi are dominated by 31 families (e.g., Russulaceae, Cortinariaceae) and 47 genera (e.g., Russula, Cortinarius). Ectomycorrhizal lineages prevailed, highlighting their critical role in forest nutrient cycling, plant symbiosis, and ecosystem integrity. In urban areas, 10 families (e.g., Agaricaceae, Psathyrellaceae) and 17 genera (e.g., Leucocoprinus, Coprinellus) were dominant. Saprotrophic genera dominated, indicating their adaptation to decomposing organic matter in human-modified habitats and the provision of ecosystem services. The study demonstrates relatively high macrofungal diversity in Beijing. The distinct functional guild composition—ectomycorrhizal dominance in natural areas versus saprotrophic prevalence in urban zones—reveals complementary ecosystem functions and underscores the conservation value of protected habitats for maintaining vital mycorrhizal networks. These findings provide fundamental data and scientific support for regional biodiversity conservation and sustainable macrofungal resource development. Full article
(This article belongs to the Special Issue Edible and Medicinal Macrofungi, 4th Edition)
Show Figures

Figure 1

18 pages, 359 KiB  
Review
Nitrogen-Driven Orchestration of Lateral Root Development: Molecular Mechanisms and Systemic Integration
by Xichao Sun, Yingchen Gu, Yingqi Liu, Zheng Liu and Peng Wang
Biology 2025, 14(8), 1099; https://doi.org/10.3390/biology14081099 - 21 Aug 2025
Abstract
N, as plants’ most essential nutrient, profoundly shapes root system architecture (RSA), with LRs being preferentially regulated. This review synthesizes the intricate molecular mechanisms underpinning N sensing, signaling, and its integration into developmental pathways governing LR initiation, primordium formation, emergence, and elongation. We [...] Read more.
N, as plants’ most essential nutrient, profoundly shapes root system architecture (RSA), with LRs being preferentially regulated. This review synthesizes the intricate molecular mechanisms underpinning N sensing, signaling, and its integration into developmental pathways governing LR initiation, primordium formation, emergence, and elongation. We delve deeply into the roles of specific transporters (NRT1.1, nitrate transporter 2.1 (NRT2.1)), transcription factors (Arabidopsis nitrate regulated 1 (ANR1), NLP7, TGACG motif-binding factor (TGA), squamosa promoter-binding protein-like 9 (SPL9)) and intricate hormone signaling networks (auxin, abscisic acid, cytokinins, ethylene) modulated by varying N availability (deficiency, sufficiency, excess) and chemical forms (NO3, NH4+, organic N). Emphasis is placed on the systemic signaling pathways, including peptide-mediated long-distance communication (CEP—C-terminally encoded peptide receptor 1 (CEPR1)) and the critical role of the shoot in modulating root responses. Furthermore, we explore the emerging significance of carbon–nitrogen (C/N) balance, post-translational modifications (ubiquitination, phosphorylation), epigenetic regulation, and the complex interplay with other nutrients (phosphorus (P), sulfur (S)) and environmental factors in shaping N-dependent LR plasticity. Recent advances utilizing single-cell transcriptomics and advanced imaging reveal unprecedented cellular heterogeneity in LR responses to N. Understanding this sophisticated regulatory network is paramount for developing strategies to enhance nitrogen use efficiency (NUE) in crops. This synthesis underscores how N acts as a master regulator, dynamically rewiring developmental programs through molecular hubs that synchronize nutrient sensing with root morphogenesis—a key adaptive strategy for resource acquisition in heterogeneous soils. Full article
(This article belongs to the Section Plant Science)
15 pages, 622 KiB  
Review
Artificial Intelligence in the Diagnosis and Imaging-Based Assessment of Pelvic Organ Prolapse: A Scoping Review
by Marian Botoncea, Călin Molnar, Vlad Olimpiu Butiurca, Cosmin Lucian Nicolescu and Claudiu Molnar-Varlam
Medicina 2025, 61(8), 1497; https://doi.org/10.3390/medicina61081497 - 21 Aug 2025
Abstract
Background and Objectives: Pelvic organ prolapse (POP) is a complex condition affecting the pelvic floor, often requiring imaging for accurate diagnosis and treatment planning. Artificial intelligence (AI), particularly deep learning (DL), is emerging as a powerful tool in medical imaging. This scoping [...] Read more.
Background and Objectives: Pelvic organ prolapse (POP) is a complex condition affecting the pelvic floor, often requiring imaging for accurate diagnosis and treatment planning. Artificial intelligence (AI), particularly deep learning (DL), is emerging as a powerful tool in medical imaging. This scoping review aims to synthesize current evidence on the use of AI in the imaging-based diagnosis and anatomical evaluation of POP. Materials and Methods: Following the PRISMA-ScR guidelines, a comprehensive search was conducted in PubMed, Scopus, and Web of Science for studies published between January 2020 and April 2025. Studies were included if they applied AI methodologies, such as convolutional neural networks (CNNs), vision transformers (ViTs), or hybrid models, to diagnostic imaging modalities such as ultrasound and magnetic resonance imaging (MRI) to women with POP. Results: Eight studies met the inclusion criteria. In these studies, AI technologies were applied to 2D/3D ultrasound and static or stress MRI for segmentation, anatomical landmark localization, and prolapse classification. CNNs were the most commonly used models, often combined with transfer learning. Some studies used hybrid models of ViTs, demonstrating high diagnostic accuracy. However, all studies relied on internal datasets, with limited model interpretability and no external validation. Moreover, clinical deployment and outcome assessments remain underexplored. Conclusions: AI shows promise in enhancing POP diagnosis through improved image analysis, but current applications are largely exploratory. Future work should prioritize external validation, standardization, explainable AI, and real-world implementation to bridge the gap between experimental models and clinical utility. Full article
(This article belongs to the Section Obstetrics and Gynecology)
Show Figures

Graphical abstract

Back to TopTop