Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = near-infrared regime

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6021 KiB  
Article
Hyperspectral Signatures for Detecting the Concrete Hydration Process Using Neural Networks
by Shiming Li, Alfred Strauss, Damjan Grba, Maximilian Granzner, Benjamin Täubling-Fruleux and Thomas Zimmermann
Infrastructures 2025, 10(7), 172; https://doi.org/10.3390/infrastructures10070172 - 4 Jul 2025
Viewed by 292
Abstract
The curing process of a concrete sample has a significant influence on hydration and its strength. This means that inadequate curing conditions lead to a loss of concrete quality and negative consequences in structural engineering. In addition, different state-of-the-art (SOTA) curing surface treatments [...] Read more.
The curing process of a concrete sample has a significant influence on hydration and its strength. This means that inadequate curing conditions lead to a loss of concrete quality and negative consequences in structural engineering. In addition, different state-of-the-art (SOTA) curing surface treatments and hydration periods have a significant effect on durability. This paper introduces an innovative non-destructive method to detect the development of the hydration process under different treatment conditions. Hyperspectral imaging is a non-contact measurement technique that provides detailed information on hydration characteristics within an electromagnetic wavelength range. A comparative laboratory measurement was conducted on twelve concrete samples, subjected to three curing treatments and four curing surface treatments, over a hydration period from the 1st to the 56th day. Additionally, artificial neural networks and convolutional neural networks have achieved classification accuracies of 67.8% (hydration time), 83.3% (curing regime), and 87.6% (surface type), demonstrating the feasibility of using neural networks for hydration monitoring. In this study, the results revealed differences in near-infrared spectral signatures, representing the type of curing treatment, curing surface, and hydration time of the concrete. The dataset was classified and analyzed using neural networks. For each hydration treatment, three different models were developed to achieve better prediction performance for hyperspectral imaging analysis. This method demonstrated a high level of reliability in investigating curing surface treatments, curing treatments, and hydration time. A recommended method for using hyperspectral imaging to evaluate the cured quality of concrete will be developed in future research. Full article
(This article belongs to the Special Issue Advances in Structural Health Monitoring of the Built Environment)
Show Figures

Figure 1

14 pages, 2819 KiB  
Article
Multisite Fe3+ Luminescent Centers in the LiGaO2:Fe Nanocrystalline Phosphor
by Ajeesh Kumar Somakumar, Ivo Romet, Agnieszka Grabias, Marcin Kruk, Shusaku Hayama, Damian Wlodarczyk, Justyna Barzowska, Yadhu Krishnan Edathumkandy, Eduard Feldbach, Puxian Xiong, Yaroslav Zhydachevskyy, Monika Trzaskowska, Hanka Przybylinska and Andrzej Suchocki
Molecules 2025, 30(11), 2331; https://doi.org/10.3390/molecules30112331 - 27 May 2025
Viewed by 602
Abstract
An extensive experimental study of trivalent iron (Fe3+) ions in orthorhombic lithium gallate nanocrystals was undertaken. Various spectroscopic methods, such as Raman spectroscopy, extended X-ray absorption fine structure, the Mössbauer effect, electron paramagnetic resonance, photoluminescence, thermoluminescence, and cathodoluminescence were used to [...] Read more.
An extensive experimental study of trivalent iron (Fe3+) ions in orthorhombic lithium gallate nanocrystals was undertaken. Various spectroscopic methods, such as Raman spectroscopy, extended X-ray absorption fine structure, the Mössbauer effect, electron paramagnetic resonance, photoluminescence, thermoluminescence, and cathodoluminescence were used to investigate the synthesized phosphor. This study revealed the existence of multiple Fe3+ sites, out of which the tetrahedral sites are preferentially occupied. Extensive optical studies showed that the Fe3+ doped lithium gallate phosphor is a promising candidate for various luminescence and thermoluminescence-related applications in the near-infrared regime. Full article
(This article belongs to the Special Issue Chemistry Innovatives in Perovskite Based Materials)
Show Figures

Graphical abstract

13 pages, 12842 KiB  
Article
Strong Coupling Based on Quasibound States in the Continuum of Nanograting Metasurfaces in Near-Infrared Region
by Yulun Zhao, Junqiang Li, Yuchang Liu, Yadong Yue, Yongchuan Dang, Yilin Wang, Kun Liang and Li Yu
Photonics 2025, 12(5), 508; https://doi.org/10.3390/photonics12050508 - 19 May 2025
Viewed by 572
Abstract
Quasibound states in the continuum (qBICs) have aroused much attention as a feasible stage to investigate optical strong coupling due to their extremely high-quality factors (Q-factors) and extraordinary electromagnetic field enhancement. However, current demonstrations of strong coupling based on qBICs have primarily focused [...] Read more.
Quasibound states in the continuum (qBICs) have aroused much attention as a feasible stage to investigate optical strong coupling due to their extremely high-quality factors (Q-factors) and extraordinary electromagnetic field enhancement. However, current demonstrations of strong coupling based on qBICs have primarily focused on the visible spectral range, while research in the near-infrared (NIR) regime remains scarce. In this work, we design a nanograting metasurface supporting Friedrich–Wintgen bound states in the continuum (FW BICs). We demonstrate that FW BIC formation stems from destructive interference between Fabry–Pérot cavity modes and metal–dielectric hybrid guided-mode resonances. To investigate the qBIC–exciton coupling system, we simulated the interaction between MoTe2 excitons and nanograting metasurfaces. A Rabi splitting of 55.4 meV was observed, which satisfies the strong coupling criterion. Furthermore, a chiral medium layer is modeled inside the nanograting metasurface by rewriting the weak expression and boundary conditions. A mode splitting of the qBIC–chiral medium system in the circular dichroism (CD) spectrum demonstrates that the chiral response successfully transferred from the chiral medium layer to the exciton–polaritons systems through strong coupling. In comparison to the existing studies, our work demonstrates a significantly larger CD signal under the same Pascal parameters and with a thinner chiral dielectric layer. Our work provides a new ideal platform for investigating the strong coupling based on quasibound states in the continuum, which exhibits promising applications in near-infrared chiral biomedical detection. Full article
Show Figures

Figure 1

2 pages, 899 KiB  
Correction
Correction: Shen et al. Black Phosphorus Nano-Polarizer with High Extinction Ratio in Visible and Near-Infrared Regime. Nanomaterials 2019, 9, 168
by Wanfu Shen, Chunguang Hu, Shuchun Huo, Zhaoyang Sun, Guofang Fan, Jing Liu, Lidong Sun and Xiaotang Hu
Nanomaterials 2025, 15(10), 703; https://doi.org/10.3390/nano15100703 - 8 May 2025
Viewed by 301
Abstract
In the original publication [...] Full article
Show Figures

Figure 5

20 pages, 7088 KiB  
Article
Using Low-Cost Proximal Sensing Sensors for Detecting the Water Status of Deficit-Irrigated Orange Orchards in Mediterranean Climatic Conditions
by Sabrina Toscano, Simona Consoli, Giuseppe Longo-Minnolo, Serena Guarrera, Alberto Continella, Giulia Modica, Alessandra Gentile, Giuseppina Las Casas, Salvatore Barbagallo and Daniela Vanella
Agronomy 2025, 15(3), 550; https://doi.org/10.3390/agronomy15030550 - 24 Feb 2025
Viewed by 650
Abstract
Water scarcity in the Mediterranean significantly affects the sustainability of citrus cultivation in eastern Sicily, a key production area in Italy. Innovative monitoring approaches are crucial for assessing citrus water status and applying precise irrigation strategies. This study evaluates the potential of low-cost [...] Read more.
Water scarcity in the Mediterranean significantly affects the sustainability of citrus cultivation in eastern Sicily, a key production area in Italy. Innovative monitoring approaches are crucial for assessing citrus water status and applying precise irrigation strategies. This study evaluates the potential of low-cost proximal sensors based on thermal infrared (TIR) (e.g., canopy temperature, Tc; ΔT; crop water stress index, CWSI) and visible near-infrared (VNIR) (e.g., normalized difference vegetation index, NDVI) data, combined with stem water potential (SWP), for determining citrus water status proxies across four fields under different water regimes (full irrigation, FI, and deficit irrigation, DI) and cultivar/rootstock combinations. Temporal and spatial differences were detected for most variables during the irrigation season. A 6% decrease in NDVI corresponded to higher Tc values in July (up to 37.6 °C). CWSI highlighted cumulative water deficits, reaching 0.65 ± 0.15 in September. More negative SWP values (−1.91 ± 0.38 MPa) were found under DI compared to FI (−1.70 ± 0.17 MPa) conditions. Microclimatic differences influenced ΔT, with lower values in fields 3–4, despite site-specific SWP, NDVI, and Tc variations. The use of VNIR and TIR tools provided valuable insights for describing the spatial and temporal variability of citrus water status indicators under Mediterranean conditions, supporting their sustainable irrigation management. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

16 pages, 3173 KiB  
Review
Bifunctional Nd-Doped LGSB Crystals: A Roadmap for Crystal Growth and Improved Laser Emission Performance in the NIR and Green Domains
by Alin Broasca, Madalin Greculeasa, Flavius Voicu, Cristina Gheorghe, Stefania Hau, Catalina Alice Susala and Lucian Gheorghe
Materials 2025, 18(5), 964; https://doi.org/10.3390/ma18050964 - 21 Feb 2025
Viewed by 500
Abstract
Herein we present a roadmap for tailoring the crystal growth conditions, near-infrared (NIR) laser emission, and self-frequency doubling (SFD) performances of newly developed Nd-doped LaxGdySc4−x−y(BO3)4 (Nd:LGSB) crystals. Three different Nd3+ doping concentrations of [...] Read more.
Herein we present a roadmap for tailoring the crystal growth conditions, near-infrared (NIR) laser emission, and self-frequency doubling (SFD) performances of newly developed Nd-doped LaxGdySc4−x−y(BO3)4 (Nd:LGSB) crystals. Three different Nd3+ doping concentrations of 2.3 at.%, 3.5 at.%, and 4.6 at.% were investigated. Considering their incongruent melting, special conditions were employed for the growth using the Czochralski technique. Laser emission performances at 1062 nm in the CW regime were evaluated for uncoated crystal samples with different orientations (a-cut, c-cut, and SFD-cut). The highest slope efficiency ηsa = 0.68 was obtained for the 4.6 at.% c-cut Nd:LGSB crystal, with a randomly polarized emission. The a-cut 4.6 at.% Nd:LGSB crystal delivered a linearly polarized beam with a slope efficiency ηsa = 0.63. The SFD-cut 2.3 at.% and 3.5 at.% Nd:LGSB crystals achieved slightly lower efficiencies of ~ 0.56. The SFD capabilities of 2.3 at.% and 3.5 at.% Nd:LGSB crystals were also explored. Green laser emission at ~531 nm was achieved with a diode-to-green conversion efficiency increasing significantly from 0.17% to 1.44%, respectively. These results demonstrate that the Nd-doping concentration, crystal orientation, and sample length of Nd:LGSB crystals, must be carefully selected depending on the specific requirements of the intended application. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

22 pages, 8100 KiB  
Article
Optically Controlled Drug Delivery Through Microscale Brain–Machine Interfaces Using Integrated Upconverting Nanoparticles
by Levente Víg, Anita Zátonyi, Bence Csernyus, Ágoston C. Horváth, Márton Bojtár, Péter Kele, Miklós Madarász, Balázs Rózsa, Péter Fürjes, Petra Hermann, Orsolya Hakkel, László Péter and Zoltán Fekete
Sensors 2024, 24(24), 7987; https://doi.org/10.3390/s24247987 - 14 Dec 2024
Viewed by 5206
Abstract
The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding [...] Read more.
The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study. With the upconverted higher energy photons, we demonstrate the induction of photochemical (cleaving) reactions that enable the local release of specific dyes as a model system near the implant. The modified ECoG electrodes can be implanted in brain tissue to act as an uncaging system that releases small amounts of substance while simultaneously measuring the evoked neural response upon light activation. In this paper, several technological challenges like the surface modification of UCNPs, the immobilization of particles on the implantable platform, and measuring the stability of integrated UCNPs in in vitro and in vivo conditions are addressed in detail. Besides the chemical, mechanical, and optical characterization of the ready-to-use devices, the effect of nanoparticles on the original electrophysiological function is also evaluated. The results confirm that silicone-based brain–machine interfaces can be efficiently complemented with UCNPs to facilitate local model drug release. Full article
(This article belongs to the Special Issue Sensing Technologies in Neuroscience and Brain Research)
Show Figures

Figure 1

13 pages, 2174 KiB  
Article
Leveraging Femtosecond Laser Ablation for Tunable Near-Infrared Optical Properties in MoS2-Gold Nanocomposites
by Ilya A. Zavidovskiy, Ilya V. Martynov, Daniil I. Tselikov, Alexander V. Syuy, Anton A. Popov, Sergey M. Novikov, Andrei V. Kabashin, Aleksey V. Arsenin, Gleb I. Tselikov, Valentyn S. Volkov and Alexey D. Bolshakov
Nanomaterials 2024, 14(23), 1961; https://doi.org/10.3390/nano14231961 - 6 Dec 2024
Cited by 3 | Viewed by 1976
Abstract
Transition metal dichalcogenides (TMDCs), particularly molybdenum disulfide (MoS2), have gained significant attention in the field of optoelectronics and photonics due to their unique electronic and optical properties. The integration of TMDCs with plasmonic materials allows to tailor the optical response and [...] Read more.
Transition metal dichalcogenides (TMDCs), particularly molybdenum disulfide (MoS2), have gained significant attention in the field of optoelectronics and photonics due to their unique electronic and optical properties. The integration of TMDCs with plasmonic materials allows to tailor the optical response and offers significant advantages for photonic applications. This study presents a novel approach to synthesize MoS2-Au nanocomposites utilizing femtosecond laser ablation in liquid to achieve tunable optical properties in the near-infrared (NIR) region. By adjusting ablation and fragmentation protocols, we successfully synthesize various core–shell and core–shell–satellite nanoparticle composites, such as MoS2/MoSxOy, MoSxOy/Au, and MoS2/MoSxOy/Au. UV-visible absorption spectroscopy unveils considerable changes in the optical response of the particles depending on the fabrication regime due to structural modifications. Hybrid nanoparticles exhibit enhanced photothermal properties when subjected to NIR-I laser irradiation, demonstrating potential benefits for selective photothermal therapy. Our findings underscore that the engineered nanocomposites not only facilitate green synthesis but also pave the way for tailored therapeutic applications, highlighting their role as promising candidates in the field of nanophotonics and cancer treatment. Full article
(This article belongs to the Special Issue Optical Composites, Nanophotonics and Metamaterials)
Show Figures

Figure 1

11 pages, 947 KiB  
Article
Regression Models for In Vivo Discrimination of the Iberian Pig Feeding Regime after Near Infrared Spectroscopy Analysis of Faeces
by Pablo Rodríguez-Hernández, Vicente Rodríguez-Estévez, Cristina Burguillo-Martín and Nieves Núñez-Sánchez
Animals 2024, 14(11), 1548; https://doi.org/10.3390/ani14111548 - 24 May 2024
Viewed by 1123
Abstract
The Iberian pig is a native breed of the Iberian Peninsula, which holds an international reputation due to the superior quality and the added value of its products. Different rearing practices and feeding regimes are regulated, resulting in different labelling schemes. However, there [...] Read more.
The Iberian pig is a native breed of the Iberian Peninsula, which holds an international reputation due to the superior quality and the added value of its products. Different rearing practices and feeding regimes are regulated, resulting in different labelling schemes. However, there is no official analytical methodology that is standardised for certification purposes in the sector. Near Infrared Spectroscopy (NIRS) is a technology that provides information about the physicochemical composition of a sample, with several advantages that have enabled its implementation in different fields. Although it has already been successfully used for the analysis of Iberian pig’s final products, samples evaluated with NIRS technology are characterised by a postmortem collection. The goal of this study was to evaluate the potential of NIRS analysis of faeces for in vivo discrimination of the Iberian pig feeding regime, using the spectral information per se for the development of modified partial least squares regressions. Faecal samples were used due to their easy collection, especially in extensive systems where pig handling is difficult. A total of 166 individual samples were collected from 12 farms, where the three different feeding regimes available in the sector were ensured. Although slight differences were detected depending on the chemometric approach, the best models obtained a classification success and a prediction accuracy of over 94% for feeding regime discrimination. The results are considered very satisfactory and suggest NIRS analysis of faeces as a promising approach for the in vivo discrimination of the Iberian pigs’ diet, and its implementation during field inspections, a significative achievement for the sector. Full article
(This article belongs to the Special Issue Sustainable Practices for Forage-Based Livestock Production Systems)
Show Figures

Figure 1

11 pages, 2797 KiB  
Communication
Sensing Characteristic Analysis of All-Dielectric Metasurfaces Based on Fano Resonance in Near-Infrared Regime
by Yongpeng Zhao, Qingfubo Geng, Jian Liu and Zhaoxin Geng
Photonics 2024, 11(5), 482; https://doi.org/10.3390/photonics11050482 - 20 May 2024
Cited by 1 | Viewed by 1653
Abstract
A novel, all-dielectric metasurface, featuring a missing wedge-shaped nanodisk, is proposed to investigate optical characteristics. By introducing symmetry-breaking to induce Fano resonance, the metasurface achieves an impressive Q-factor of 1202 in the near-infrared spectrum, with a remarkably narrow full width at half maximum [...] Read more.
A novel, all-dielectric metasurface, featuring a missing wedge-shaped nanodisk, is proposed to investigate optical characteristics. By introducing symmetry-breaking to induce Fano resonance, the metasurface achieves an impressive Q-factor of 1202 in the near-infrared spectrum, with a remarkably narrow full width at half maximum (FWHM) of less than 1 nm. The ability to adjust the wavelength resonance by manipulating the structure of the wedge-shaped nanodisk offers a simple and efficient approach for metasurface design. This breakthrough holds great potential for various applications in sensing and optical filtering, marking a significant advancement in the field of nanophotonics. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing and Measurement II)
Show Figures

Figure 1

11 pages, 872 KiB  
Article
Teaming up Radio and Sub-mm/FIR Observations to Probe Dusty Star-Forming Galaxies
by Meriem Behiri, Marika Giulietti, Vincenzo Galluzzi, Andrea Lapi, Elisabetta Liuzzo and Marcella Massardi
Galaxies 2024, 12(2), 14; https://doi.org/10.3390/galaxies12020014 - 29 Mar 2024
Cited by 1 | Viewed by 1787
Abstract
In this paper, we investigate the benefits of teaming up data from the radio to the far-infrared (FIR) regime for the characterization of dusty star-forming galaxies (DSFGs). These galaxies are thought to be the star-forming progenitors of local massive quiescent galaxies and to [...] Read more.
In this paper, we investigate the benefits of teaming up data from the radio to the far-infrared (FIR) regime for the characterization of dusty star-forming galaxies (DSFGs). These galaxies are thought to be the star-forming progenitors of local massive quiescent galaxies and to play a pivotal role in the reconstruction of the cosmic star formation rate density up to high redshift. Due to their dust-enshrouded nature, DSFGs are often invisible in the near-infrared/optical/UV bands. Therefore, they necessitate observations at longer wavelengths, primarily the FIR band, where dust emission occurs, and the radio band, which is not affected by dust absorption. Combining data from these two spectral windows makes it possible to characterize even the dustiest objects, enabling the retrieval of information about their age, dust temperature, and star-formation status, and facilitates the differentiation between various galaxy populations that evolve throughout cosmic history. Despite the detection of faint radio sources being a challenging task, this study demonstrates that an effective strategy to build statistically relevant samples of DSFGs would be reaching deep sensitivities in the radio band, even restricted to smaller areas, and then combining these radio observations with FIR/submm data. Additionally, this paper quantifies the improvement in the spectral energy distribution (SED) reconstruction of DSFGs by incorporating ALMA band measurements, in particular, in its upgraded status thanks to the anticipated Wideband Sensitivity Upgrade. Full article
(This article belongs to the Special Issue The Observation and Detection of Dusty Star-Forming Galaxies)
Show Figures

Figure 1

16 pages, 3250 KiB  
Article
An Aquaphotomics Approach for Investigation of Water-Stress-Induced Changes in Maize Plants
by Daniela Moyankova, Petya Stoykova, Petya Veleva, Nikolai K. Christov, Antoniya Petrova and Stefka Atanassova
Sensors 2023, 23(24), 9678; https://doi.org/10.3390/s23249678 - 7 Dec 2023
Cited by 4 | Viewed by 1533
Abstract
The productivity of plants is considerably affected by various environmental stresses. Exploring the specific pattern of the near-infrared spectral data acquired non-destructively from plants subjected to stress can contribute to a better understanding of biophysical and biochemical processes in plants. Experiments for investigating [...] Read more.
The productivity of plants is considerably affected by various environmental stresses. Exploring the specific pattern of the near-infrared spectral data acquired non-destructively from plants subjected to stress can contribute to a better understanding of biophysical and biochemical processes in plants. Experiments for investigating NIR spectra of maize plants subjected to water stress were conducted. Two maize lines were used: US corn-belt inbred line B37 and mutant inbred XM 87-136, characterized by very high drought tolerance. After reaching the 4-leaf stage, 10 plants from each line were subjected to water stress, and 10 plants were used as control, kept under a regular water regime. The drought lasted until day 17 and then the plants were recovered by watering for 4 days. A MicroNIR OnSite-W Spectrometer (VIAVI Solutions Inc., Chandler, AZ, USA) was used for in vivo measurement of each maize leaf spectra. PLS models for determining drought days were created and aquagrams were calculated separately for the plants’ second, third, and fourth leaves. Differences in absorption spectra were observed between control, stressed, and recovered maize plants, as well as between different measurement days of stressed plants. Aquagrams were used to visualize the water spectral pattern in maize leaves and how it changes along the drought process. Full article
(This article belongs to the Topic Advances in Non-Destructive Testing Methods, 2nd Edition)
Show Figures

Figure 1

9 pages, 945 KiB  
Communication
Differences in Faecal Nutritional Components in Three Species of Saharan Gazelles on Standard Diets in Relation to Species, Age and Sex
by Stipan Čupić, Jorge Cassinello, Tomáš Kušta and Francisco Ceacero
Animals 2023, 13(21), 3408; https://doi.org/10.3390/ani13213408 - 2 Nov 2023
Cited by 1 | Viewed by 1843
Abstract
Various environmental, individual, and species-specific factors may affect digestive efficiency in wild ruminants. The study of faecal nutritional components is a commonly used technique to understand these effects, assuming that faecal nitrogen and fibre contents reflect the diet’s nutritional quality and digestibility. Recent [...] Read more.
Various environmental, individual, and species-specific factors may affect digestive efficiency in wild ruminants. The study of faecal nutritional components is a commonly used technique to understand these effects, assuming that faecal nitrogen and fibre contents reflect the diet’s nutritional quality and digestibility. Recent studies have highlighted the relatively high influence of factors like sex, age, weight or body condition on digestive efficiency. This manuscript is focused on the inter-specific variability in faecal nutritional components under the same feeding regime, using three captive populations of closely related gazelles as model species. Faecal samples from 193 individuals were analysed through Near InfraRed Spectroscopy. Species, sex and age influence on faecal nitrogen and fibres (ADF and NDF) were investigated. We found inter-specific differences in the faecal content of the three studied nutritional components. Cuvier’s gazelle showed lower faecal nitrogen content, suggesting lower digestive efficiency than dorcas and dama gazelles. Sex and age also had a moderate effect, especially in faecal nitrogen, but these effects were not constant across the three studied species. On the contrary, faecal fibres were highly constant (i.e., dependent on diet quality). These results confirm that individual factors affecting faecal nutritional components are also species-specific. Full article
(This article belongs to the Collection Comparative Animal Nutrition and Metabolism)
Show Figures

Figure 1

14 pages, 5360 KiB  
Article
Ultrafast Infrared Laser Crystallization of Amorphous Ge Films on Glass Substrates
by Yuzhu Cheng, Alexander V. Bulgakov, Nadezhda M. Bulgakova, Jiří Beránek, Martin Zukerstein, Ilya A. Milekhin, Alexander A. Popov and Vladimir A. Volodin
Micromachines 2023, 14(11), 2048; https://doi.org/10.3390/mi14112048 - 31 Oct 2023
Cited by 5 | Viewed by 2024
Abstract
Amorphous germanium films on nonrefractory glass substrates were annealed by ultrashort near-infrared (1030 nm, 1.4 ps) and mid-infrared (1500 nm, 70 fs) laser pulses. Crystallization of germanium irradiated at a laser energy density (fluence) range from 25 to 400 mJ/cm2 under single-shot [...] Read more.
Amorphous germanium films on nonrefractory glass substrates were annealed by ultrashort near-infrared (1030 nm, 1.4 ps) and mid-infrared (1500 nm, 70 fs) laser pulses. Crystallization of germanium irradiated at a laser energy density (fluence) range from 25 to 400 mJ/cm2 under single-shot and multishot conditions was investigated using Raman spectroscopy. The dependence of the fraction of the crystalline phase on the fluence was obtained for picosecond and femtosecond laser annealing. The regimes of almost complete crystallization of germanium films over the entire thickness were obtained (from the analysis of Raman spectra with excitation of 785 nm laser). The possibility of scanning laser processing is shown, which can be used to create films of micro- and nanocrystalline germanium on flexible substrates. Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication)
Show Figures

Figure 1

15 pages, 750 KiB  
Article
Preliminary Feasibility of Near-Infrared Spectroscopy to Authenticate Grazing in Dairy Goats through Milk and Faeces Analysis
by Pablo Rodríguez-Hernández, Cipriano Díaz-Gaona, Carolina Reyes-Palomo, Santos Sanz-Fernández, Manuel Sánchez-Rodríguez, Vicente Rodríguez-Estévez and Nieves Núñez-Sánchez
Animals 2023, 13(15), 2440; https://doi.org/10.3390/ani13152440 - 28 Jul 2023
Cited by 1 | Viewed by 1418
Abstract
Consumers are increasingly prone to request information about the production systems of the food they buy. For this purpose, certification and authentication methodologies are necessary not only to protect the choices of consumers, but also to protect producers and production systems. The objective [...] Read more.
Consumers are increasingly prone to request information about the production systems of the food they buy. For this purpose, certification and authentication methodologies are necessary not only to protect the choices of consumers, but also to protect producers and production systems. The objective of this preliminary work was to authenticate the grazing system of dairy goats using Near-Infrared Spectroscopy (NIRS) analyses of milk and faeces of the animals. Spectral information and several mathematical pre-treatments were used for the development of six discriminant models based on different algorithms for milk and faeces samples. Results showed that the NIRS spectra of both types of samples had some differences when the two feeding regimes were compared. Therefore, good discrimination rates were obtained with both strategies (faeces and milk samples), with classification percentages of up to 100% effectiveness. Discrimination of feeding regime and grazing authentication based on NIRS analysis of milk samples and an alternative sample such as faeces is considered as a potential approach for dairy goats and small ruminant production. Full article
(This article belongs to the Special Issue Lactation Physiology and Milk Quality of Small Ruminants)
Show Figures

Graphical abstract

Back to TopTop