Bifunctional Nd-Doped LGSB Crystals: A Roadmap for Crystal Growth and Improved Laser Emission Performance in the NIR and Green Domains
Highlights
- High-quality Nd:LGSB crystals with incongruent melting were grown by the Czochralski method.
- Nd3+ doping ions substitute only La3+ cations in the LGSB crystal matrix.
- NIR and green laser emissions in the CW regime were obtained.
Abstract
:1. Introduction
2. Crystal Growth, Compositional, and Structural Analyses
3. Nonlinear Optical Properties
4. Optical Properties and Laser Emission Performances
4.1. Spectroscopic Investigation
4.1.1. Optical Transmission
4.1.2. Room Temperature Absorption and Emission Spectra
Crystal | σabs (cm2) | σem (cm2) | ||
---|---|---|---|---|
λ = 808 nm | λ = 1063 nm | |||
σ | π | σ | π | |
3.5% Nd:LGSB [24] | 4.7 × 10−20 | 1.1 × 10−20 | 1.9 × 10−19 | 1.8 × 10−19 |
4.6% Nd:LGSB [35] | 5.1 × 10−20 FWHM = 3.2 nm | 1.3 × 10−20 FWHM = 8.3 nm | 2.1 × 10−19 FWHM = 6.5 nm | 1.8 × 10−19 FWHM = 7.3 nm |
Nd:LSB [34] | 7.1 × 10−20 FWHM = 3 nm | 1.9 × 10−20 FWHM = 5 nm | 1.3 × 10−19 FWHM = 4 nm | 5 × 10−20 FWHM = 4 nm |
Nd:YAB [25] | 2.58 × 10−20 | 0.94 × 10−20 | 1.11 × 10−19 | 1.18 × 10−19 |
Nd:YAG [36] | 7 × 10−20 FWHM = 0.8 nm | 3.3 × 10−19 FWHM = 0.5 nm |
4.1.3. Low-Temperature Absorption and Emission Spectra
4.1.4. Fluorescence Lifetime and Quantum Efficiency
4.2. Laser Emission Performances
4.2.1. NIR Laser Emission
- (i)
- Output Power and Efficiency:
- The c-cut sample achieved a higher maximum output power (Pout) of 1.35 W compared to 0.81 W for the a-cut sample. This represents a significant improvement in output power for the c-cut orientation.
- ηoa was also higher for the c-cut sample (0.63) than for the a-cut sample (0.52). Similarly, ηsa for the c-cut sample of 0.68 exceeded that of the a-cut sample of 0.63 corresponding to the OCM with TOC = 0.05.
- (ii)
- Polarization:
- The c-cut sample emitted a randomly polarized laser beam, while the a-cut sample produced a linearly polarized beam with a polarization ratio of 100:1. The a-cut crystal emitted σ-polarized light, which is advantageous due to the higher emission cross-section for this polarization.
- (iii)
- Beam Profile:
- The near-field distribution of the c-cut sample exhibited a circular beam shape with diameter of 4.8 mm × 4.9 mm (1/e2 definition). In contrast, the a-cut sample displayed a slightly elliptical beam profile with diameters of 2.2 mm × 2.3 mm. This ellipticity may result from temperature gradients or differences in thermal expansion coefficients along the axes of the uniaxial crystal.
- 2 at.% Nd:YAG achieved a slope efficiency of ηsa = 0.56 and a maximum output power of Pout = 12.3 W. While Nd:YAG excels in output power, the c-cut 4.6 at.% Nd:LGSB outperformed it in slope efficiency (ηsa = 0.68), making Nd:LGSB more attractive for energy-efficient applications.
- 0.7 at.% Nd:YVO4 reached a high slope efficiency of ηsa = 0.66, comparable to the c-cut 4.6 at.% Nd:LGSB (ηsa = 0.68), but with higher output power. However, Nd:YVO4 lacks the bifunctional capabilities of Nd:LGSB.
- 6 at.% Nd:YAB achieved a ηsa = 0.38 being significantly lower than the ηsa = 0.56 obtained by the 3.5 at.% Nd:LGSB with the same crystallographic orientation. This demonstrates the superior lasing performance of Nd:LGSB crystals.
- 10 at.% Nd:LSB crystal delivered a maximum Pout = 0.32 W with ηsa = 0.55, being outperformed by the Nd:LGSB in both slope efficiency and output power.
4.2.2. SFD Laser Emission
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Q.; Zhang, P.; Lu, Q.; Yan, H.; Shi, H.; Yu, Z.; Sun, T.; Li, R.; Wang, Q.; Wu, Y.; et al. Application and development of blue and green laser in industrial manufacturing: A review. Opt. Laser Technol. 2024, 170, 110202. [Google Scholar] [CrossRef]
- Li, Z.; Li, L.; Zhang, J.; Feng, W. System modeling and sliding mode control of fast steering mirror for space laser communication. Mech. Syst. Signal Process. 2024, 211, 111206. [Google Scholar] [CrossRef]
- Song, Y.; Ghafari, Y.; Asefnejad, A.; Toghraie, D. An overview of selective laser sintering 3D printing technology for biomedical and sports device applications: Processes, materials, and applications. Opt. Laser Technol. 2024, 171, 110459. [Google Scholar] [CrossRef]
- Juda, M.; Bedliński, M.; Roszkowska, A.M.; Wierzbowska, J. Clinical Evaluation of Corneal Endothelial Parameters following Laser Refractive Surgery in Myopic Eyes: A Review. J. Clin. Med. 2024, 13, 1665. [Google Scholar] [CrossRef]
- Lee, H.C.; Pacheco, N.E.; Fichera, L.; Russo, S. When the end effector is a laser: A review of robotics in laser surgery. Adv. Intell. Syst. 2022, 4, 2200130. [Google Scholar] [CrossRef]
- Cios, A.; Ciepielak, M.; Szymański, Ł.; Lewicka, A.; Cierniak, S.; Stankiewicz, W.; Mendrycka, M.; Lewicki, S. Effect of different wavelengths of laser irradiation on the skin cells. Int. J. Mol. Sci. 2021, 22, 2437. [Google Scholar] [CrossRef] [PubMed]
- Lavinsky, D.; Wang, J.; Huie, P.; Dalal, R.; Lee, S.J.; Lee, D.Y.; Palanker, D. Nondamaging retinal laser therapy: Rationale and applications to the macula. IOVS 2016, 57, 2488–2500. [Google Scholar] [CrossRef] [PubMed]
- Sawruk, N.; Schober, A. Engineering Laser Systems for Aerospace and Defense Applications. Appl. Ind. Opt. Spectrosc. Imaging Metrol. 2019, M3A-2. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Mohsin, M.; Ali, S.M.Z. Survey and technological analysis of laser and its defense applications. Def. Technol. 2021, 17, 583–592. [Google Scholar] [CrossRef]
- Szemkus, S.; Kempf, B.; Jahn, S.; Wiehl, G.; Heringhaus, F.; Rettenmayr, M. Laser additive manufacturing of contact materials. J. Mater. Process. Technol. 2018, 252, 612–617. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, S.; Wang, P.; Qiu, W.; Zhang, G. Progress in applications of laser induced cavitation on surface processing. Opt. Laser Technol. 2024, 170, 110212. [Google Scholar] [CrossRef]
- Wang, H.; Deng, D.; Zhai, Z.; Yao, Y. Laser-processed functional surface structures for multi-functional applications—A review. J. Manuf. Process. 2024, 116, 247–283. [Google Scholar] [CrossRef]
- Kumar, D.; Agarwal, A.K. Laser ignition versus conventional spark ignition system performance for hydrogen-enriched natural gas-air mixtures in a constant volume combustion chamber. Appl. Therm. Eng. 2024, 257, 123988. [Google Scholar] [CrossRef]
- Grigore, O.V.; Pavel, N. Multiple-beam output, high-peak power passively Q-switched Nd: YAG/Cr4+: YAG laser for ignition application-Modeling of laser pulse characteristics and thermal behavior. Results Eng. 2024, 24, 103358. [Google Scholar] [CrossRef]
- Grigore, O.-V.; Pavel, N. Laser ignition of hydrogen/air mixtures in a constant-volume combustion chamber using a pulse-burst Nd:YAG/Cr4+:YAG laser spark plug. Opt. Express 2024, 32, 30344–30359. [Google Scholar] [CrossRef] [PubMed]
- Brown, D. Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers. IEEE J. Quant. Electron. 1997, 33, 861–873. [Google Scholar] [CrossRef]
- Krupke, W. Ytterbium solid-state lasers. The first decade. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1287–1296. [Google Scholar] [CrossRef]
- Frede, M.; Kracht, D.; Engelbrecht, M.; Fallnich, C. Compact high-power end-pumped Nd: YAG laser. Opt. Laser Technol. 2006, 38, 183–185. [Google Scholar] [CrossRef]
- Sato, Y.; Taira, T.; Pavel, N.; Lupei, V. Laser operation with near quantum-defect slope efficiency in Nd: YVO4 under direct pumping into the emitting level. Appl. Phys. Lett. 2003, 82, 844–846. [Google Scholar] [CrossRef]
- Bartschke, J.; Knappe, R.; Boller, K.J.; Wallenstein, R. Investigation of efficient self-frequency-doubling Nd: YAB lasers. IEEE J. Quantum Electron. 1997, 33, 2295–2300. [Google Scholar] [CrossRef]
- Gheorghe, L.; Khaled, F.; Achim, A.; Voicu, F.; Loiseau, P.; Aka, G. Czochralski growth and characterization of incongruent melting LaxGdyScz(BO3)4 (x + y + z = 4) nonlinear optical crystal. Cryst. Growth Des. 2016, 16, 3473–3479. [Google Scholar] [CrossRef]
- Shannon, R.T.; Prewitt, C.T. Revised values of effective ionic radii. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1970, 26, 1046–1048. [Google Scholar] [CrossRef]
- Greculeasa, M.; Broasca, A.; Voicu, F.; Hau, S.; Croitoru, G.; Stanciu, G.; Gheorghe, C.; Pavel, N.; Gheorghe, L. Bifunctional LaxNdyGdzSc4−x−y−z(BO3)4 crystal: Czochralski growth, linear and nonlinear optical properties, and near-infrared laser emission performances. Opt. Laser Technol. 2020, 131, 106433. [Google Scholar] [CrossRef]
- Broasca, A.; Greculeasa, M.; Voicu, F.; Stanciu, G.; Hau, S.; Gheorghe, C.; Brandus, C.A.; Pavel, N.; Enculescu, M.; Gheorghe, L. Growth and characterization of 3.5 at.% Nd:LGSB bifunctional crystal. Opt. Mater. 2022, 123, 111832. [Google Scholar] [CrossRef]
- Jaque, D.; Capmany, J.; García, J.S.; Brenier, A.; Boulon, G.; Solé, J.G. Nd3+ ion based self frequency doubling solid state lasers. Opt. Mater. 1999, 13, 147–157. [Google Scholar] [CrossRef]
- Gheorghe, L.; Greculeasa, M.; Broasca, A.; Voicu, F.; Stanciu, G.; Belikov, K.N.; Bryleva, E.Y.; Gaiduk, O. Incongruent Melting LaxYySc4−x−y(BO3)4: LYSB Nonlinear Optical Crystal Grown by the Czochralski Method. ACS Appl. Mater. Interfaces 2019, 11, 20987–20994. [Google Scholar] [CrossRef]
- Ye, N.; Stone-Sundberg, J.; Hruschka, M.; Aka, G.; Kong, W.; Keszler, D. Nonlinear optical crystal YxLayScz(BO3)4 (x + y + z = 4). Chem. Mater. 2005, 17, 2687–2692. [Google Scholar] [CrossRef]
- Maillard, A.A.; Maillard, R.S.; Loiseau, P.; Aka, G.; Villeval, P.; Rytz, D. Defect Similitude in LYSB and YAB Crystals and ONL Characterization. In Proceedings of the 2014 Advanced Solid State Lasers, OSA Technical Digest, Shanghai, China, 16–21 November 2014. [Google Scholar]
- Chen, C.; Wu, Y.; Li, R. The Anionic Group-Theory of the Non-Linear Optical Effect and its Applications in the Development of New High-Quality NLO Crystals in the Borate Series. Int. Rev. Phys. Chem. 1989, 8, 65–91. [Google Scholar] [CrossRef]
- Yu, J.; Liu, L.; Zhai, N.; Zhang, X.; Wang, G.; Wang, X.; Chen, C. Crystal growth and optical properties of YAl3(BO3)4 for UV applications. J. Cryst. Growth 2012, 341, 61–65. [Google Scholar] [CrossRef]
- Rytz, D.; Gross, A.; Vernay, S.; Wesemann, V. YAl3(BO3)4: A novel NLO crystal for frequency conversion to UV wavelengths. In Proceedings of the Solid State Lasers and Amplifiers III, Strasbourg, France, 16 April 2008; Volume 6998, p. 699814. [Google Scholar] [CrossRef]
- Krupke, W.F. Induced-emission cross sections in neodymium laser glasses. IEEE J. Quantum Electron. 1974, 10, 450–457. [Google Scholar] [CrossRef]
- Broasca, A.; Greculeasa, M.; Voicu, F.; Hau, S.; Gheorghe, C.; Croitoru, G.; Pavel, N.; Stanciu, G.; Petris, A.; Gheorghe, P.; et al. LGYSB:Nd—High-Performance Lasing in the Near-Infrared Region. J. Am. Chem. Soc. 2024, 146, 2196–2207. [Google Scholar] [CrossRef]
- Meyn, J.P.; Jensen, T.; Huber, G. Spectroscopic properties, and efficient diode-pumped laser operation of neodymium-doped lanthanum scandium borate. IEEE J. Quantum Electron. 1994, 30, 913–917. [Google Scholar] [CrossRef]
- Brandus, C.A.; Hau, S.; Broasca, A.; Greculeasa, M.; Voicu, F.M.; Gheorghe, C.; Gheorghe, L.; Dascalu, T. Efficient 1 µm laser emission of Czochralski-grown Nd: LGSB single crystal. Materials 2019, 12, 2005. [Google Scholar] [CrossRef] [PubMed]
- Svelto, O.; Hanna, D.C. Principles of Lasers; Springer: New York, NY, USA, 2010. [Google Scholar]
- Brandus, C.A.; Broasca, A.; Greculeasa, M.; Voicu, F.M.; Gheorghe, L.; Pavel, N. Diode-pumped bifunctional Nd:LGSB laser passively Q-switched by a Cr4+:YAG saturable absorber. Opt. Mater. Express 2021, 11, 685–694. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, L.; Zhang, S.; Meng, X.; Cheng, R.; Shao, Z. Investigation of LD end-pumped Nd: YVO4 crystals with various doping levels and lengths. Opt. Laser Technol. 2001, 33, 47–51. [Google Scholar] [CrossRef]
- L’huillier, J.A.; Bitz, G.; Wesemann, V.; von Loewis of Menar, P.; Wallenstein, R.; Borsutzky, A.; Ackermann, L.; Dupré, K.; Rytz, D.; Vernay, S. Characterization and laser performance of a new material: 2 at.% Nd:YAG grown by the Czochralski method. Appl. Opt. 2022, 41, 4377–4384. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.K.; Taira, T.; Sato, Y.; Yu, Y.M. Laser Emission under 4F5/2 and 4F3/2 Pumping in Nd: LSB Micro-Laser. Jpn. J. Appl. Phys. 2004, 43, L70–L72. [Google Scholar] [CrossRef]
- Jiang, H.D.; Wang, J.Y.; Hu, X.B.; Zhang, H.J.; Teng, B.; Zhang, C.Q.; Li, J.; Liu, J.; Li, S.T. Spectroscopic properties and diode laser-pumped operation of Nd:YAl3(BO3)4 crystal. Phys. Status Solidi 2002, 189, 253–260. [Google Scholar] [CrossRef]
- Huang, Z. Effect of pump wavelength on Nd3+: YAB self-frequency-doubling laser. J. Opt. Soc. Am. B 2013, 30, 33–39. [Google Scholar] [CrossRef]
Starting Melt Composition | Crystal Composition |
---|---|
La0.653Nd0.025Gd0.572Sc2.75(BO3)4 | La0.745Nd0.023Gd0.452Sc2.78(BO3) |
La0.640Nd0.038Gd0.572Sc2.75(BO3)4 | La0.733Nd0.035Gd0.452Sc2.78(BO3)4 |
La0.628Nd0.05Gd0.572Sc2.75(BO3)4 | La0.721Nd0.046Gd0.452Sc2.781(BO3)4 |
Crystal | (θ, φ) (deg.) | Δn | ρ (deg.) | Δθ × L (deg. × cm) | Δλ × L (nm × cm) | d11 (pm/V) |
---|---|---|---|---|---|---|
LGSB [21] | (35.8, 60) | 0.078 | 2.60 | 0.030 | 0.79 | 1.35 |
Nd:LGSB (4.6 at.%) | (35.3, 60) | 0.077 | 2.43 | 0.033 | 0.71 | 1.35 |
YAB [30] | (30.8, 60) | 0.071 | 2.23 | 0.035 | 1.43 | 1.69 [31] |
Crystal | Concentration (at.%) | Orientation | Length (mm) | ηsa | Pout max (W) |
---|---|---|---|---|---|
Nd:LGSB [this work] | 4.6 | a-cut | 3 | 0.60 | 0.81 |
c-cut | 6.1 | 0.68 | 1.35 | ||
2.3 | SFD-cut | 3.7 | 0.55 | 0.67 | |
3.5 | SFD-cut | 6 | 0.56 | 2.1 | |
Nd:YVO4 [38] | 3.15 | a-cut | 1 | 0.35 | 0.11 |
Nd:YVO4 [39] | 0.7 | - | 4 | 0.66 | 12.1 |
Nd:YAG [39] | 2 | [111] | 6 | 0.56 | 12.3 |
Nd:LSB [40] | 10 | - | 1 | 0.55 | 0.32 |
Nd:YAB [41] | 6 | SFD-cut | 4 | 0.38 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broasca, A.; Greculeasa, M.; Voicu, F.; Gheorghe, C.; Hau, S.; Susala, C.A.; Gheorghe, L. Bifunctional Nd-Doped LGSB Crystals: A Roadmap for Crystal Growth and Improved Laser Emission Performance in the NIR and Green Domains. Materials 2025, 18, 964. https://doi.org/10.3390/ma18050964
Broasca A, Greculeasa M, Voicu F, Gheorghe C, Hau S, Susala CA, Gheorghe L. Bifunctional Nd-Doped LGSB Crystals: A Roadmap for Crystal Growth and Improved Laser Emission Performance in the NIR and Green Domains. Materials. 2025; 18(5):964. https://doi.org/10.3390/ma18050964
Chicago/Turabian StyleBroasca, Alin, Madalin Greculeasa, Flavius Voicu, Cristina Gheorghe, Stefania Hau, Catalina Alice Susala, and Lucian Gheorghe. 2025. "Bifunctional Nd-Doped LGSB Crystals: A Roadmap for Crystal Growth and Improved Laser Emission Performance in the NIR and Green Domains" Materials 18, no. 5: 964. https://doi.org/10.3390/ma18050964
APA StyleBroasca, A., Greculeasa, M., Voicu, F., Gheorghe, C., Hau, S., Susala, C. A., & Gheorghe, L. (2025). Bifunctional Nd-Doped LGSB Crystals: A Roadmap for Crystal Growth and Improved Laser Emission Performance in the NIR and Green Domains. Materials, 18(5), 964. https://doi.org/10.3390/ma18050964