Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = near-earth flight vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9743 KiB  
Article
UAV-Based Survey of the Earth Pyramids at the Kuklica Geosite (North Macedonia)
by Ivica Milevski, Bojana Aleksova and Slavoljub Dragićević
Heritage 2025, 8(1), 6; https://doi.org/10.3390/heritage8010006 - 26 Dec 2024
Cited by 1 | Viewed by 1765
Abstract
This paper presents methods for a UAV-based survey of the site “Kuklica” near Kratovo, North Macedonia. Kuklica is a rare natural complex with earth pyramids, and because of its exceptional scientific, educational, touristic, and cultural significance, it was proclaimed to be a Natural [...] Read more.
This paper presents methods for a UAV-based survey of the site “Kuklica” near Kratovo, North Macedonia. Kuklica is a rare natural complex with earth pyramids, and because of its exceptional scientific, educational, touristic, and cultural significance, it was proclaimed to be a Natural Monument in 2008. However, after the proclamation, the interest in visiting this site and the threats in terms of its potential degradation rapidly grew, increasing the need for a detailed survey of the site and monitoring. Given the site’s small size (0.5 km2), the freely available satellite images and digital elevation models are not suitable for comprehensive analysis and monitoring of the site, especially in terms of the individual forms within the site. Instead, new tools are increasingly being used for such tasks, including UAVs (unmanned aerial vehicles) and LiDAR (Light Detection and Ranging). Since professional LiDAR is very expensive and still not readily available, we used a low-cost UAV (DJI Mini 4 Pro) to carry out a detailed survey. First, the flight path, the altitude of the UAV, the camera angle, and the photo recording intervals were precisely planned and defined. Also, the ground markers (checkpoints) were carefully selected. Then, the photos taken by the drone were aligned and processed using Agisoft Metashape software (v. 2.1.4), producing a digital elevation model and orthophoto imagery with a very high (sub-decimeter) resolution. Following this procedure, more than 140 earth pyramids were delineated, ranging in height from 1 to 2 m and to 30 m at their highest. At this stage, a very accurate UAV-based 3D model of the most remarkable earth pyramids was developed (the accuracy was checked using the iPhone 14 Pro LiDAR module), and their morphometrical properties were calculated. Also, the site’s erosion rate and flash flood potential were calculated, showing high susceptibility to both. The final goal was to monitor the changes and to minimize the degradation of the unique landscape, thus better protecting the geosite and its value. Full article
(This article belongs to the Section Geoheritage and Geo-Conservation)
Show Figures

Figure 1

18 pages, 4668 KiB  
Article
Autonomous Trajectory Planning Method for Stratospheric Airship Regional Station-Keeping Based on Deep Reinforcement Learning
by Sitong Liu, Shuyu Zhou, Jinggang Miao, Hai Shang, Yuxuan Cui and Ying Lu
Aerospace 2024, 11(9), 753; https://doi.org/10.3390/aerospace11090753 - 13 Sep 2024
Cited by 8 | Viewed by 1901
Abstract
The stratospheric airship, as a near-space vehicle, is increasingly utilized in scientific exploration and Earth observation due to its long endurance and regional observation capabilities. However, due to the complex characteristics of the stratospheric wind field environment, trajectory planning for stratospheric airships is [...] Read more.
The stratospheric airship, as a near-space vehicle, is increasingly utilized in scientific exploration and Earth observation due to its long endurance and regional observation capabilities. However, due to the complex characteristics of the stratospheric wind field environment, trajectory planning for stratospheric airships is a significant challenge. Unlike lower atmospheric levels, the stratosphere presents a wind field characterized by significant variability in wind speed and direction, which can drastically affect the stability of the airship’s trajectory. Recent advances in deep reinforcement learning (DRL) have presented promising avenues for trajectory planning. DRL algorithms have demonstrated the ability to learn complex control strategies autonomously by interacting with the environment. In particular, the proximal policy optimization (PPO) algorithm has shown effectiveness in continuous control tasks and is well suited to the non-linear, high-dimensional problem of trajectory planning in dynamic environments. This paper proposes a trajectory planning method for stratospheric airships based on the PPO algorithm. The primary contributions of this paper include establishing a continuous action space model for stratospheric airship motion; enabling more precise control and adjustments across a broader range of actions; integrating time-varying wind field data into the reinforcement learning environment; enhancing the policy network’s adaptability and generalization to various environmental conditions; and enabling the algorithm to automatically adjust and optimize flight paths in real time using wind speed information, reducing the need for human intervention. Experimental results show that, within its wind resistance capability, the airship can achieve long-duration regional station-keeping, with a maximum station-keeping time ratio (STR) of up to 0.997. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

17 pages, 6118 KiB  
Article
UAV Atmosphere Sounding for Rocket Launch Support
by Karol Piotr Bęben, Tomasz Noga, Dawid Cieśliński, Dawid Kulpa and Marcin Ryszard Spiralski
Sensors 2023, 23(24), 9639; https://doi.org/10.3390/s23249639 - 5 Dec 2023
Cited by 1 | Viewed by 2399
Abstract
One of the crucial branches of activity at the Łukasiewicz Research Network—Institute of Aviation is developing a suborbital rocket vehicle capable of launching small payloads beyond the Earth’s atmosphere, reaching over 100 km in altitude. Ensuring safety is a primary concern, particularly given [...] Read more.
One of the crucial branches of activity at the Łukasiewicz Research Network—Institute of Aviation is developing a suborbital rocket vehicle capable of launching small payloads beyond the Earth’s atmosphere, reaching over 100 km in altitude. Ensuring safety is a primary concern, particularly given the finite flight zone and impact area. Crucial to safety analysis is the wind profile, especially in the very first seconds of a flight, when rocket velocity is of the same order as the wind speed. Traditional near-ground wind data sources, ranging from wind towers to numerical models of the atmosphere, have limitations. Wind towers are costly and unfeasible at many test ranges used for launches, while numerical modeling may not reflect the specific ground profile near the launcher due to their large cell size (2 to +10 km). Meteorological balloons are not favorable for such measurements as they aim to provide the launch operator with a wind profile at high altitudes, and are launched only 1–2 times per flight attempt. Our study sought to prototype a wind measurement system designed to acquire near-ground wind profile data. It focuses on measuring wind direction and speed at near-ground altitudes with higher flight frequency, offering data on demand shortly before launch to help ensure safety. This atmosphere sounding system consists of an Unmanned Aerial Vehicle (UAV) equipped with an onboard ultrasonic wind sensor. Some reports in the literature have discussed the possibility of using UAV-borne anemometers, but the topic of measurement errors introduced by placing the anemometer onboard an UAV remains under studied. Limited research in this area underlines the need for experimental validation of design choices–for specific types of UAVs, anemometers, and mounting. This paper presents a literature review, a detailed overview of the prototyped system, and flight test results in both natural (outdoor) and controlled (indoor, no wind) conditions. Data from the UAV system’s anemometer was benchmarked against a stationary reference weather station, in order to examine the influence of the UAV’s rotor on the anemometer readings. Our findings show a wind speed Root Mean Square Error (RMSE) of 5 m/s and a directional RMSE of below 5.3° (both averaged for 1 min). The results were also compared with similar UAV-based wind measurements. The prototyped system was successfully used in a suborbital rocket launch campaign, thus demonstrating the feasibility of integrating UAVs with dedicated sensors for performing regular meteorological measurements in automatic mode. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

17 pages, 1049 KiB  
Article
An Adaptive Launch Control for Balloon-Borne UAVs with Large Wingspans
by Yanpeng Hu, Yanfei Hu, Xiaomiao Ding, Guannan Zeng and Jin Guo
Appl. Sci. 2022, 12(21), 10992; https://doi.org/10.3390/app122110992 - 30 Oct 2022
Cited by 2 | Viewed by 2433
Abstract
Near space has attracted major countries’ attention due to the fact that it is a new cognitive space of Earth and acts as an important national security space. Near-space solar-powered unmanned aerial vehicles (UAVs) are becoming a focus of research in the aviation [...] Read more.
Near space has attracted major countries’ attention due to the fact that it is a new cognitive space of Earth and acts as an important national security space. Near-space solar-powered unmanned aerial vehicles (UAVs) are becoming a focus of research in the aviation field. However, it is difficult for solar-powered UAVs to climb such high heights and achieving optimal cruising levels is challenging. A balloon-borne-based aircraft that rises with the help of a balloon avoids difficult climbing processes and initiates a new research direction in the near-space aviation domain. Simultaneously, the special mode of taking off poses a great challenge for the pull-up control of balloon-borne aircraft, especially for large wingspan aircraft. In this paper, we propose an adaptive launch control for the pull-up process of large-scale balloon-borne-based aircraft. First, the flight control of the pull-up process for a large-scale balloon-borne-based aircraft is analyzed. Then, a flight dynamic model considering elastic deformation is established. Finally, an adaptive aircraft pull-up control algorithm is proposed. We evaluate it by performing simulation experiments and comparing it with the latest control algorithm utilized in physical experiments. The experiment’s results demonstrate the effectiveness of the proposed algorithm with respect to overcoming challenges in controlling pull-up processes and its superiority compared to the latest control algorithm. Full article
(This article belongs to the Special Issue Advances in Unmanned Aerial Vehicle (UAV) System)
Show Figures

Figure 1

22 pages, 8287 KiB  
Article
Comparison of GNSS-, TLS- and Different Altitude UAV-Generated Datasets on the Basis of Spatial Differences
by Huseyin Yurtseven
ISPRS Int. J. Geo-Inf. 2019, 8(4), 175; https://doi.org/10.3390/ijgi8040175 - 3 Apr 2019
Cited by 26 | Viewed by 8349
Abstract
In this study, different in-situ and close-range sensing surveying techniques were compared based on the spatial differences of the resultant datasets. In this context, the DJI Phantom 3 Advanced and Trimble UX5 Unmanned Aerial Vehicle (UAV) platforms, Zoller + Fröhlich 5010C phase comparison [...] Read more.
In this study, different in-situ and close-range sensing surveying techniques were compared based on the spatial differences of the resultant datasets. In this context, the DJI Phantom 3 Advanced and Trimble UX5 Unmanned Aerial Vehicle (UAV) platforms, Zoller + Fröhlich 5010C phase comparison for continuous wave-based Terrestrial Laser Scanning (TLS) system and Network Real Time Kinematic (NRTK) Global Navigation Satellite System (GNSS) receiver were used to obtain the horizontal and vertical information about the study area. All data were collected in a gently (mean slope angle 4%) inclined, flat vegetation-free, bare-earth valley bottom near Istanbul, Turkey (the size is approximately 0.7 ha). UAV data acquisitions were performed at 25-, 50-, 120-m (with DJI Phantom 3 Advanced) and 350-m (with Trimble UX5) flight altitudes (above ground level, AGL). The imagery was processed with the state-of-the-art SfM (Structure-from-Motion) photogrammetry software. The ortho-mosaics and digital elevation models were generated from UAV-based photogrammetric and TLS-based data. GNSS- and TLS-based data were used as reference to calculate the accuracy of the UAV-based geodata. The UAV-results were assessed in 1D (points), 2D (areas) and 3D (volumes) based on the horizontal (X- and Y-directions) and vertical (Z-direction) differences. Various error measures, including the RMSE (Root Mean Square Error), ME (Mean Error) or MAE (Mean Average Error), and simple descriptive statistics were used to calculate the residuals. The comparison of the results is simplified by applying a normalization procedure commonly used in multi-criteria-decision-making analysis or visualizing offset. According to the results, low-altitude (25 and 50 m AGL) flights feature higher accuracy in the horizontal dimension (e.g., mean errors of 0.085 and 0.064 m, respectively) but lower accuracy in the Z-dimension (e.g., false positive volumes of 2402 and 1160 m3, respectively) compared to the higher-altitude flights (i.e., 120 and 350 m AGL). The accuracy difference with regard to the observed terrain heights are particularly striking, depending on the compared error measure, up to a factor of 40 (i.e., false positive values for 120 vs. 50 m AGL). This error is attributed to the “doming-effect”—a broad-scale systematic deformation of the reconstructed terrain surface, which is commonly known in SfM photogrammetry and results from inaccuracies in modeling the radial distortion of the camera lens. Within the scope of the study, the “doming-effect” was modeled as a functional surface by using the spatial differences and the results were indicated that the “doming-effect” increases inversely proportional to the flight altitude. Full article
Show Figures

Graphical abstract

16 pages, 4110 KiB  
Article
Sensitivity-Compensated Micro-Pressure Flexible Sensor for Aerospace Vehicle
by Xiaozhou Lü, Jianan Jiang, Hui Wang, Qiaobo Gao, Shaobo Zhao, Ning Li, Jiayi Yang, Songlin Wang, Weimin Bao and Renjie Chen
Sensors 2019, 19(1), 72; https://doi.org/10.3390/s19010072 - 25 Dec 2018
Cited by 27 | Viewed by 5211
Abstract
When flight vehicles (e.g., aerospace vehicles, Low Earth Orbit (LEO) satellites, near-space aircrafts, Unmanned Aerial Vehicles (UAVs) and drones) fly at high speed, their surfaces suffer the micro-pressure from high-altitude thin air. The long-term effect of this pressure causes the surface components of [...] Read more.
When flight vehicles (e.g., aerospace vehicles, Low Earth Orbit (LEO) satellites, near-space aircrafts, Unmanned Aerial Vehicles (UAVs) and drones) fly at high speed, their surfaces suffer the micro-pressure from high-altitude thin air. The long-term effect of this pressure causes the surface components of flight vehicle to deform or fall off, which can lead to a serious accident. To solve this problem, this paper proposes a sensitivity-compensated micro-pressure flexible sensor based on hyper-elastic plastic material and plate parallel capacitance. The sensor is able to measure a range of 0–6 kPa micro-pressure suffered by the flight vehicle’s surface with high sensitivity and flexible devices. In this paper, we propose the principle, structure design and fabrication of the sensitivity-compensated micro-pressure flexible sensor. We carried out experiments to obtain the static characteristic curve between micro-pressure and the output capacitance of the sensor devices, and investigated the relationship between sensitivity and geometric parameters. We also compared the performance of the flexible sensor before and after sensitivity compensation. The result shows that the sensor can measure a range of 0–2 kPa and 2–6 kPa with a sensitivity of 0.27 kPa−1 and 0.021 kPa−1, which are 80% and 141.38% higher than the sensor before compensation; a linearity of 1.39% and 2.88%, which are 51.7% and 13.1% higher than the sensor before compensation; and a hysteresis and repeatability of 4.95% and 2.38%, respectively. The sensor has potential applications in flight vehicles to measure the micro-pressure with high sensitivity and flexibility. Full article
(This article belongs to the Special Issue Aerospace Sensors and Multisensor Systems)
Show Figures

Figure 1

13 pages, 1377 KiB  
Article
Local Observability Analysis of Star Sensor Installation Errors in a SINS/CNS Integration System for Near-Earth Flight Vehicles
by Yanqiang Yang, Chunxi Zhang and Jiazhen Lu
Sensors 2017, 17(1), 167; https://doi.org/10.3390/s17010167 - 16 Jan 2017
Cited by 34 | Viewed by 4503
Abstract
Strapdown inertial navigation system/celestial navigation system (SINS/CNS) integrated navigation is a fully autonomous and high precision method, which has been widely used to improve the hitting accuracy and quick reaction capability of near-Earth flight vehicles. The installation errors between SINS and star sensors [...] Read more.
Strapdown inertial navigation system/celestial navigation system (SINS/CNS) integrated navigation is a fully autonomous and high precision method, which has been widely used to improve the hitting accuracy and quick reaction capability of near-Earth flight vehicles. The installation errors between SINS and star sensors have been one of the main factors that restrict the actual accuracy of SINS/CNS. In this paper, an integration algorithm based on the star vector observations is derived considering the star sensor installation error. Then, the star sensor installation error is accurately estimated based on Kalman Filtering (KF). Meanwhile, a local observability analysis is performed on the rank of observability matrix obtained via linearization observation equation, and the observable conditions are presented and validated. The number of star vectors should be greater than or equal to 2, and the times of posture adjustment also should be greater than or equal to 2. Simulations indicate that the star sensor installation error could be readily observable based on the maneuvering condition; moreover, the attitude errors of SINS are less than 7 arc-seconds. This analysis method and conclusion are useful in the ballistic trajectory design of near-Earth flight vehicles. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop