Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = naringenin rutinoside

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 499 KB  
Article
Secondary Metabolite Profiling of Satureja aintabensis P.H. Davis and Satureja spicigera (K. Koch) Boiss. by LC-HRMS and Evaluation of Antioxidant and Anticholinergic Activities
by Ayşe Nur Yıldız, Sema Çarıkçı, Tuncay Dirmenci, Murat Kartal, İlhami Gülcin and Ahmet C. Gören
Life 2025, 15(8), 1272; https://doi.org/10.3390/life15081272 - 11 Aug 2025
Cited by 1 | Viewed by 1073
Abstract
In this study, phenolic compounds of methanol extracts obtained from the leaves and branches of Satureja aintabensis P.H. Davis and Satureja spicigera (K. Koch) Boiss. species were determined as mg/kg extract using the liquid chromatography high resolution mass spectrometry technique. The in vitro [...] Read more.
In this study, phenolic compounds of methanol extracts obtained from the leaves and branches of Satureja aintabensis P.H. Davis and Satureja spicigera (K. Koch) Boiss. species were determined as mg/kg extract using the liquid chromatography high resolution mass spectrometry technique. The in vitro inhibitory effects of these extracts against enzymes associated with neurodegenerative Alzheimer’s disease (AD) were also evaluated. The relationship between secondary metabolite structures and biological activities was discussed. The major components of S. aintabensis were determined as hesperidin (6.465% of the extract; 64.65 g/kg), syringic acid (5.964% of the extract; 59.64 g/kg), rosmarinic acid (5.248% of the extract; 52.48 g/kg) and naringenin (0.395% of the extract; 3946.84 mg/kg), while syringic acid (3.081% of the extract; 30.81 g/kg), rosmarinic acid (2.757% of the extract; 27.57 g/kg), hesperidin (1.723% of the extract; 17.23 g/kg), and luteolin-7-O-rutinoside (1.682% of the extract; 16.82 g/kg) were determined in S. spicigera. AChE and BChE enzyme inhibition of the extracts were analyzed. The species showed moderate inhibition against AChE enzyme and low inhibition against BChE enzyme. The antioxidant properties of both plant extracts were evaluated by measuring three radical scavenging capacities and the ability to reduce Fe3+, and Cu2+ ions. S. aintabensis showed better antioxidant capacity in all methods except DPPH scavaging assay. These data clearly show that both species, especially S. aintabensis, have emerged as a new and important natural source of hesperidin, syringic acid and rosmarinic acid and an antioxidant agent for pharmaceutical and nutraceutical applications. Full article
(This article belongs to the Special Issue Bioactive Compounds for Medicine and Health)
Show Figures

Graphical abstract

20 pages, 7607 KB  
Article
Identification of the Dof Gene Family in Quinoa and Its Potential Role in Regulating Flavonoid Synthesis Under Different Stress Conditions
by Guangtao Qian, Jinrong Yang, Mingyu Wang and Lixin Li
Biology 2025, 14(4), 446; https://doi.org/10.3390/biology14040446 - 20 Apr 2025
Cited by 2 | Viewed by 1149
Abstract
Quinoa (Chenopodium quinoa Willd.), often referred to as the “golden grain”, is a highly nutritious crop that has garnered significant global attention due to its exceptional nutritional profile and health benefits. Flavonoids present in quinoa have been shown to possess antioxidant, anti-inflammatory, [...] Read more.
Quinoa (Chenopodium quinoa Willd.), often referred to as the “golden grain”, is a highly nutritious crop that has garnered significant global attention due to its exceptional nutritional profile and health benefits. Flavonoids present in quinoa have been shown to possess antioxidant, anti-inflammatory, antiviral, anticancer, and antidepressant properties. The DNA binding with one finger (Dof) transcription factor is crucial for regulating growth, development, and stress responses. However, the identification of the Dof family using the latest quinoa genomic data and its function in abiotic stress response have not been fully elucidated. Here, 36 CqDof genes were identified from the quinoa genome and classified into ten subfamilies through phylogenetic analysis. Physicochemical property analysis predicted that CqDofs predominantly encode basic, hydrophilic, and unstable nuclear proteins. CqDofs were distributed across 15 chromosomes, with segmental duplication being the primary driver of their expansion. Subsequently, basic information on CqDofs was systematically analyzed, including conserved motifs, gene structure, cis-acting elements, and expression patterns. Notably, the promoter regions of all CqDof genes were enriched with cis-acting elements related to light responsiveness. Further analysis revealed that red and blue light significantly affected CqDof expression and flavonoid accumulation (epigallocatechin, rutin, naringenin, morin, pinocembrin, quercetin-7-O-rutinoside, quercetin-3-O-glucoside, and naringenin), in which 5 CqDofs exhibited a pronounced response to both light conditions and showed a significant correlation with flavonoid levels. Finally, RT-PCR analysis indicated that the expression levels of CqDofs (except CqDof21) were significantly upregulated under drought, salt, and saline-alkali stresses. These findings lay the groundwork for future studies on how CqDofs regulate flavonoid biosynthesis under different light qualities and function in abiotic stress. Full article
Show Figures

Figure 1

25 pages, 4494 KB  
Article
Pulp or Peel? Comparative Analysis of the Phytochemical Content and Selected Cosmetic-Related Properties of Annona cherimola L., Diospyros kaki Thumb., Cydonia oblonga Mill. and Fortunella margarita Swingle Pulp and Peel Extracts
by Magdalena Lasota, Paulina Lechwar, Wirginia Kukula-Koch, Marcin Czop, Karolina Czech and Katarzyna Gaweł-Bęben
Molecules 2024, 29(5), 1133; https://doi.org/10.3390/molecules29051133 - 3 Mar 2024
Cited by 10 | Viewed by 4591
Abstract
Fruit peels might be a valuable source of active ingredients for cosmetics, leading to more sustainable usage of plant by-products. The aim of the study was to evaluate the phytochemical content and selected biological properties of hydroglycolic extracts from peels and pulps of [...] Read more.
Fruit peels might be a valuable source of active ingredients for cosmetics, leading to more sustainable usage of plant by-products. The aim of the study was to evaluate the phytochemical content and selected biological properties of hydroglycolic extracts from peels and pulps of Annona cherimola, Diospyros kaki, Cydonia oblonga, and Fortunella margarita as potential cosmetic ingredients. Peel and pulp extracts were compared for their antiradical activity (using DPPH and ABTS radical scavenging assays), skin-lightening potential (tyrosinase inhibitory assay), sun protection factor (SPF), and cytotoxicity toward human fibroblast, keratinocyte, and melanoma cell lines. The total content of polyphenols and/or flavonoids was significantly higher in peel than in pulp extracts, and the composition of particular active compounds was also markedly different. The HPLC-MS fingerprinting revealed the presence of catechin, epicatechin and rutoside in the peel of D. kaki, whereas kaempferol glucoside and procyanidin A were present only in the pulp. In A. cherimola, catechin, epicatechin and rutoside were identified only in the peel of the fruit, whereas procyanidins were traced only in the pulp extracts. Quercetin and luteolinidin were found to be characteristic compounds of F. margarita peel extract. Naringenin and hesperidin were found only in the pulp of F. margarita. The most significant compositional variety between the peel and pulp extracts was observed for C. oblonga: Peel extracts contained a higher number of active components (e.g., vicenin-2, kaempferol rutinoside, or kaempferol galactoside) than pulp extract. The radical scavenging potential of peel extracts was higher than of the pulp extracts. D. kaki and F. margarita peel and pulp extracts inhibited mushroom and murine tyrosinases at comparable levels. The C. oblonga pulp extract was a more potent mushroom tyrosinase inhibitor than the peel extract. Peel extract of A. cherimola inhibited mushroom tyrosinase but activated the murine enzyme. F. margarita pulp and peel extracts showed the highest in vitro SPF. A. cherimola, D. kaki, and F. margarita extracts were not cytotoxic for fibroblasts and keratinocytes up to a concentration of 2% (v/v) and the peel extracts were cytotoxic for A375 melanoma cells. To summarize, peel extracts from all analyzed fruit showed comparable or better cosmetic-related properties than pulp extracts and might be considered multifunctional active ingredients of skin lightening, anti-aging, and protective cosmetics. Full article
(This article belongs to the Special Issue Natural Bioactive Compounds from Edible and Inedible Parts of Plants)
Show Figures

Graphical abstract

13 pages, 3066 KB  
Article
Metabolomic and Transcriptomic Insights into Anthocyanin Biosynthesis in ‘Ziyan’ Tea Plants under Varied Photoperiod and Temperature Conditions
by Chunjing Yang, Wei Chen, Dandan Tang, Xiaoqin Tan, Liqiang Tan and Qian Tang
Agronomy 2024, 14(1), 56; https://doi.org/10.3390/agronomy14010056 - 25 Dec 2023
Cited by 8 | Viewed by 2635
Abstract
(1) Background: Anthocyanins, the main pigments in plants, are influenced by both temperature and photoperiod. However, the specific mechanisms underlying anthocyanin accumulation in tea plants in response to these two environmental factors remain unclear. (2) Methods: This study subjected potted ‘Ziyan’ tea plants [...] Read more.
(1) Background: Anthocyanins, the main pigments in plants, are influenced by both temperature and photoperiod. However, the specific mechanisms underlying anthocyanin accumulation in tea plants in response to these two environmental factors remain unclear. (2) Methods: This study subjected potted ‘Ziyan’ tea plants to four types of day-length and temperature treatments (HL (28 °C, 16 h), HS (28 °C, 8 h), LL (18 °C, 16 h), and LS (18 °C, 8 h)), and then conducted targeted metabolomic and transcriptomic analyses of the samples. (3) Results: Long photoperiods and low temperatures both promoted anthocyanin accumulation in the new shoots of the tea plants. Furthermore, the enhancing effects of these two environmental factors on anthocyanin accumulation are additive and exhibit interactive effects. Through a combined analysis of metabolomics and transcriptomics, five key differentially accumulated metabolites (DAMs) and twenty-two key differentially expressed genes (DEGs) were identified, the latter being found to participate in the regulation of anthocyanin biosynthesis pathways under varying light and temperature conditions. In summary, extended photoperiods primarily increase the content levels of ten metabolites, including cyanidin and naringenin-7-O-glucoside, by upregulating CHS, F3H, and ANS genes. In contrast, low temperatures primarily enhance the synthesis of seven anthocyanins, including cyanidin and cyanidin-3-O-rutinoside, by upregulating the ANS and UFGT genes. (4) Conclusions: Collectively, the differences in the expression levels of CHS, F3H, ANS, and UFGT might be responsible for ‘Ziyan’ tea plants’ purple shoot coloration, providing important data towards the discovery of candidate genes and molecular bases controlling the purple leaves of these tea plants under varied photoperiods and temperatures. Full article
(This article belongs to the Special Issue Horticultural Crop Secondary Metabolism)
Show Figures

Figure 1

15 pages, 7378 KB  
Article
Comparative Metabolomics Analysis of Different Perilla Varieties Provides Insights into Variation in Seed Metabolite Profiles and Antioxidant Activities
by Senouwa Segla Koffi Dossou, Qianchun Deng, Feng Li, Nanjun Jiang, Rong Zhou, Lei Wang, Donghua Li, Meilian Tan, Jun You and Linhai Wang
Foods 2023, 12(23), 4370; https://doi.org/10.3390/foods12234370 - 4 Dec 2023
Cited by 8 | Viewed by 2883
Abstract
Perilla seeds are essential functional foods and key ingredients in traditional medicine. Herein, we investigated the variation in phytochemical profiles and antioxidant activities of twelve different perilla seeds. The seeds showed significant variations in total phenolic and flavonoid contents ranging from 16.92 to [...] Read more.
Perilla seeds are essential functional foods and key ingredients in traditional medicine. Herein, we investigated the variation in phytochemical profiles and antioxidant activities of twelve different perilla seeds. The seeds showed significant variations in total phenolic and flavonoid contents ranging from 16.92 to 37.23 mg GAE/g (GAE, gallic acid equivalent) and 11.6 to 19.52 mg CAE/g (CAE, catechin equivalent), respectively. LC-QqQ-MS (liquid chromatography triple quadrupole tandem mass spectrometry)-based widely targeted metabolic profiling identified a total of 975 metabolites, including 68–269 differentially accumulated metabolites (DAMs). Multivariate analyses categorized the seeds into four groups based on the seed coat and leaf colors. Most key bioactive DAMs, including flavonoids (quercetin-3’-O-glucoside, prunin, naringenin, naringenin chalcone, butin, genistin, kaempferol-3-O-rutinoside, etc.), amino acids (valine, lysine, histidine, glutamine, threonine, etc.), and vitamins (B1, B3, B6, U, etc.) exhibited the highest relative content in PL3 (brown seed, purple leaf), PL1 (white seed, green-purple leaf), and PL4 (white seed, green leaf) groups, respectively. Meanwhile, key differentially accumulated phenolic acids showed a higher relative content in PL1 and PL4 than in other groups. Both seeds exhibited high antioxidant activities, although those of PL2 (brown seed, green leaf) group seeds were the lowest. Our results may facilitate the comprehensive use of perilla seeds in food and pharmaceutical industries. Full article
Show Figures

Figure 1

15 pages, 3154 KB  
Article
Metabolic Insight into Cold Stress Response in Two Contrasting Maize Lines
by Tao Yu, Jianguo Zhang, Jingsheng Cao, Xin Li, Sinan Li, Changhua Liu and Lishan Wang
Life 2022, 12(2), 282; https://doi.org/10.3390/life12020282 - 14 Feb 2022
Cited by 18 | Viewed by 3637
Abstract
Maize (Zea mays L.) is sensitive to a minor decrease in temperature at early growth stages, resulting in deteriorated growth at later stages. Although there are significant variations in maize germplasm in response to cold stress, the metabolic responses as stress tolerance [...] Read more.
Maize (Zea mays L.) is sensitive to a minor decrease in temperature at early growth stages, resulting in deteriorated growth at later stages. Although there are significant variations in maize germplasm in response to cold stress, the metabolic responses as stress tolerance mechanisms are largely unknown. Therefore, this study aimed at providing insight into the metabolic responses under cold stress at the early growth stages of maize. Two inbred lines, tolerant (B144) and susceptible (Q319), were subjected to cold stress at the seedling stage, and their corresponding metabolic profiles were explored. The study identified differentially accumulated metabolites in both cultivars in response to induced cold stress with nine core conserved cold-responsive metabolites. Guanosine 3′,5′-cyclic monophosphate was detected as a potential biomarker metabolite to differentiate cold tolerant and sensitive maize genotypes. Furthermore, Quercetin-3-O-(2″′-p-coumaroyl)sophoroside-7-O-glucoside, Phloretin, Phloretin-2′-O-glucoside, Naringenin-7-O-Rutinoside, L-Lysine, L-phenylalanine, L-Glutamine, Sinapyl alcohol, and Feruloyltartaric acid were regulated explicitly in B144 and could be important cold-tolerance metabolites. These results increase our understanding of cold-mediated metabolic responses in maize that can be further utilized to enhance cold tolerance in this significant crop. Full article
(This article belongs to the Special Issue Abiotic Stress Signaling and Responses in Plants)
Show Figures

Figure 1

12 pages, 1397 KB  
Article
LC-ESI-MS/MS Identification of Biologically Active Phenolics in Different Extracts of Alchemilla acutiloba Opiz
by Katarzyna Dos Santos Szewczyk, Wioleta Pietrzak, Katarzyna Klimek, Anna Grzywa-Celińska, Rafał Celiński and Marek Gogacz
Molecules 2022, 27(3), 621; https://doi.org/10.3390/molecules27030621 - 18 Jan 2022
Cited by 19 | Viewed by 3004
Abstract
Liquid chromatography electrospray ionization tandem mass spectrometric (LC-ESI-MS/MS) qualitative and quantitative analysis of different extracts from the aerial parts and roots of Alchemilla acutiloba led to the identification of phenolic acids and flavonoids. To the best of our knowledge, isorhamnetin 3-glucoside, kaempferol 3-rutinoside, [...] Read more.
Liquid chromatography electrospray ionization tandem mass spectrometric (LC-ESI-MS/MS) qualitative and quantitative analysis of different extracts from the aerial parts and roots of Alchemilla acutiloba led to the identification of phenolic acids and flavonoids. To the best of our knowledge, isorhamnetin 3-glucoside, kaempferol 3-rutinoside, narcissoside, naringenin 7-glucoside, 3-O-methylquercetin, naringenin, eriodictyol, rhamnetin, and isorhamnetin were described for the first time in Alchemilla genus. In addition, the antioxidant, anti-inflammatory and cytotoxic activity of all extracts were evaluated. The results clearly showed that among analyzed extracts, the butanol extract of the aerial parts exhibited the highest biological activity comparable with the positive controls used. Full article
(This article belongs to the Special Issue Chromatographic Science of Natural Products II)
Show Figures

Figure 1

15 pages, 2548 KB  
Article
Citrus Flavanone Narirutin, In Vitro and In Silico Mechanistic Antidiabetic Potential
by Ashraf Ahmed Qurtam, Hamza Mechchate, Imane Es-safi, Mohammed Al-zharani, Fahd A. Nasr, Omar M. Noman, Mohammed Aleissa, Hamada Imtara, Abdulmalik M. Aleissa, Mohamed Bouhrim and Ali S. Alqahtani
Pharmaceutics 2021, 13(11), 1818; https://doi.org/10.3390/pharmaceutics13111818 - 31 Oct 2021
Cited by 34 | Viewed by 4661
Abstract
Citrus fruits and juices have been studied extensively for their potential involvement in the prevention of various diseases. Flavanones, the characteristic polyphenols of citrus species, are the primarily compounds responsible for these studied health benefits. Using in silico and in vitro methods, we [...] Read more.
Citrus fruits and juices have been studied extensively for their potential involvement in the prevention of various diseases. Flavanones, the characteristic polyphenols of citrus species, are the primarily compounds responsible for these studied health benefits. Using in silico and in vitro methods, we are exploring the possible antidiabetic action of narirutin, a flavanone family member. The goal of the in silico research was to anticipate how narirutin would interact with eight distinct receptors implicated in diabetes control and complications, namely, dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), alpha-amylase (AAM), peroxisome proliferator-activated receptor gamma (PPAR-γ), alpha-glucosidase (AGL), while the in vitro study looked into narirutin’s possible inhibitory impact on alpha-amylase and alpha-glucosidase. The results indicate that the studied citrus flavanone interacted remarkably with most of the receptors and had an excellent inhibitory activity during the in vitro tests suggesting its potent role among the different constituent of the citrus compounds in the management of diabetes and also its complications. Full article
(This article belongs to the Special Issue The Role of Natural Products on Diabetes Mellitus Treatment)
Show Figures

Graphical abstract

17 pages, 323 KB  
Article
Phenolic Profiles, Antioxidant, and Inhibitory Activities of Kadsura heteroclita (Roxb.) Craib and Kadsura coccinea (Lem.) A.C. Sm.
by Varittha Sritalahareuthai, Piya Temviriyanukul, Nattira On-nom, Somsri Charoenkiatkul and Uthaiwan Suttisansanee
Foods 2020, 9(9), 1222; https://doi.org/10.3390/foods9091222 - 2 Sep 2020
Cited by 39 | Viewed by 6713
Abstract
Kadsura spp. in the Schisandraceae family are woody vine plants, which produce edible red fruits that are rich in nutrients and antioxidant activities. Despite their valuable food applications, Kadsura spp. are only able to grow naturally in the forest, and reproduction handled by [...] Read more.
Kadsura spp. in the Schisandraceae family are woody vine plants, which produce edible red fruits that are rich in nutrients and antioxidant activities. Despite their valuable food applications, Kadsura spp. are only able to grow naturally in the forest, and reproduction handled by botanists is still in progress with a very low growth rate. Subsequently, Kadsura spp. were listed as endangered species by the International Union for Conservation of Nature and Natural Resources (IUCN) in 2011. Two different Kadsura spp., including Kadsura coccinea (Lem.) A.C. Sm. and Kadsura heteroclita (Roxb.) Craib, are mostly found in northern Thailand. These rare, wild fruits are unrecognizable to outsiders, and there have only been limited investigations into its biological properties. This study, therefore, aimed to comparatively investigate the phenolic profiles, antioxidant activities, and inhibitory activities against the key enzymes involved in diabetes (α-glucosidase and α-amylase) and Alzheimer’s disease (acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and beta-secretase 1 (BACE-1)) in different fruit parts (exocarp, mesocarp (edible part), seed, and core) of Kadsura coccinea (Lem.) A.C. Sm. and Kadsura heteroclita (Roxb.) Craib. The results suggested that Kadsura spp. extracts were rich in flavonol (quercetin), flavanone (naringenin), anthocyanidins (cyanidin and delphinidin), and anthocyanins (cyanidin 3-O-glucoside (kuromanin), cyanidin 3-O-galactoside (ideain), cyanidin 3-O-rutinoside (keracyanin), and cyanidin 3,5-di-O-glucoside (cyanin)). These flavonoids were found to be responsible for the high antioxidant activities and key enzyme inhibitions detected in Kadsura spp. extracts. The findings of the present study can support further development of Kadsura spp. as a potential source of phenolics and anti-oxidative agents with health benefits against diabetes and Alzheimer’s disease. Besides, exocarp and the core of Kadsura spp. exhibited higher phenolic contents, antioxidant activities, and key enzyme inhibitory activities compared to the mesocarp and seeds, respectively. This information can promote the use of fruit parts other than the edible mesocarp for future food applications using Kadsura spp. rather than these being wasted. Full article
(This article belongs to the Special Issue The Benefits of Plant Extracts for Human Health)
Show Figures

Graphical abstract

15 pages, 2930 KB  
Article
Phenolic Composition of Artichoke Waste and Its Antioxidant Capacity on Differentiated Caco-2 Cells
by Nerea Jiménez-Moreno, María José Cimminelli, Francesca Volpe, Raul Ansó, Irene Esparza, Inés Mármol, María Jesús Rodríguez-Yoldi and Carmen Ancín-Azpilicueta
Nutrients 2019, 11(8), 1723; https://doi.org/10.3390/nu11081723 - 25 Jul 2019
Cited by 76 | Viewed by 6584
Abstract
Artichoke waste represents a huge amount of discarded material. This study presents the by-products (bracts, exterior leaves, and stalks) of the “Blanca de Tudela” artichoke variety as a potential source of phenolic compounds with promising antioxidant properties. Artichoke residues were subjected to different [...] Read more.
Artichoke waste represents a huge amount of discarded material. This study presents the by-products (bracts, exterior leaves, and stalks) of the “Blanca de Tudela” artichoke variety as a potential source of phenolic compounds with promising antioxidant properties. Artichoke residues were subjected to different extraction processes, and the antioxidant capacity and phenolic composition of the extracts were analyzed by spectrophotometric methods and high performance liquid chromatography (HPLC) analyses, respectively. The most abundant polyphenols in artichoke waste were chlorogenic acid, luteolin-7-O-rutinoside, and luteolin-7-O-glucoside. Minor quantities of cynarin, luteolin, apigenin-7-O-glucoside, apigenin-7-O-rutinoside, and naringenin-7-O-glucoside were also found. The antioxidant activity of the obtained extracts determined by ABTS [2, 2′-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)], DPPH (2,2-diphenyl-1-pycrilhydracyl), and FRAP (Ferric Ion Reducing Antioxidant Power) was highly correlated with the total concentration of phenolic compounds. Chlorogenic acid, luteolin-7-O-glucoside, and luteolin-7-O-rutinoside, the most abundant compounds in 60% methanol extracts, are the components most responsible for the antioxidant activity of the artichoke waste extracts. The extract with the best antioxidant capacity was selected to assay its antioxidant potential on a model intestinal barrier. This action of the hydroxycinnamic acids on intestinal cells (Caco-2) was confirmed. In summary, artichoke waste may be considered a very interesting ingredient for food functionalization and for therapeutic purposes. Full article
Show Figures

Graphical abstract

15 pages, 4534 KB  
Article
Long-Term Effect on Bioactive Components and Antioxidant Activity of Thermal and High-Pressure Pasteurization of Orange Juice
by Fabiana N. Vieira, Sónia Lourenço, Liliana G. Fidalgo, Sónia A. O. Santos, Armando J. D. Silvestre, Eliana Jerónimo and Jorge A. Saraiva
Molecules 2018, 23(10), 2706; https://doi.org/10.3390/molecules23102706 - 20 Oct 2018
Cited by 51 | Viewed by 8835
Abstract
The long-term effect of thermal pasteurization (TP) and high-pressure processing (HPP) of orange juices stored under refrigeration, on the bioactive components and antioxidant activity, was compared. Total phenolic content (TPC), flavonoid, anthocyanin, and carotenoid contents, the individual content of major phenolic components, and [...] Read more.
The long-term effect of thermal pasteurization (TP) and high-pressure processing (HPP) of orange juices stored under refrigeration, on the bioactive components and antioxidant activity, was compared. Total phenolic content (TPC), flavonoid, anthocyanin, and carotenoid contents, the individual content of major phenolic components, and the antioxidant activity, were evaluated in TP- and HPP-treated juices over a 36-day period. At day 0, no significant differences in TPC, and a decrease in carotenoid content after both treatments, were observed. TP caused a decrease of flavonoid and anthocyanin contents, while HPP increased flavonoid content. Three major phenolic components were identified: apigenin-6,8-di-C-glucoside, naringenin-7-O-rutinoside, and hesperetin-7-O-rutinoside, the latter increasing ca. 45% immediately after HPP. During storage, a decrease in TPC, and in the anthocyanin and carotenoid contents of both treated juices was observed, with higher anthocyanin and phenolic contents in HPP juices. A significant increase of hesperetin-7-O-rutinoside content was observed in HPP juice. Both treatments caused a decrease (26% and 13%, respectively) of antioxidant activity. Most of the kinetic profiles followed zero-order patterns, with HPP juices showing a considerably higher half-life than TP ones. These results clearly demonstrate the advantages of HPP for orange juice preservation allowing, also, their nutritional benefits to be enhanced by increasing the content of some bioactive components. Full article
(This article belongs to the Special Issue The Antioxidant Capacities of Natural Products)
Show Figures

Figure 1

15 pages, 395 KB  
Article
Antioxidant and Photoprotective Effects of Blanch Water, a Byproduct of the Almond Processing Industry
by Giuseppina Mandalari, Teresita Arcoraci, Maria Martorana, Carlo Bisignano, Luisa Rizza, Francesco Paolo Bonina, Domenico Trombetta and Antonio Tomaino
Molecules 2013, 18(10), 12426-12440; https://doi.org/10.3390/molecules181012426 - 9 Oct 2013
Cited by 21 | Viewed by 7151
Abstract
The aim of the present work was to evaluate the antioxidant and photoprotective effect of blanch water (BW), a byproduct of the almond processing industry. The polyphenolic content of a BW extract, the level of proanthocyanidins and the vanillin index determination were determined. [...] Read more.
The aim of the present work was to evaluate the antioxidant and photoprotective effect of blanch water (BW), a byproduct of the almond processing industry. The polyphenolic content of a BW extract, the level of proanthocyanidins and the vanillin index determination were determined. The antioxidant activity and the radical scavenging activity of the BW were evaluated by a range of in vitro tests. The in vivo photoprotective effect was investigated using a formulation containing 2% of the BW extract on skin erythema induced by acute UV-B exposure in twelve volunteers. Results confirmed the presence of added-value antioxidant compounds in the industrial BW extract, and the most representative compounds were naringenin-7-O-glucoside and kaempferol-7-O-rutinoside. The proanthocyanidin content was 71.84 ± 5.21 cyanidin equivalents/g of BW extract. The good antiradical activity of the BW extract was demonstrated in both the DPPH test and in the Reducing Power test. The percentage inhibition of erythema obtained using a formulation of BW was 50.48, value clearly demonstrating an effect against photooxidative damage in vivo. Full article
Show Figures

Figure 1

Back to TopTop