Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = nanothermometers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2022 KiB  
Article
Dual-Emission Au-Ag Nanoclusters with Enhanced Photoluminescence and Thermal Sensitivity for Intracellular Ratiometric Nanothermometry
by Helin Liu, Zhongliang Zhou, Zhiwei Wang, Jianhai Wang, Yu Wang, Lu Huang, Tianhuan Guo, Rongcheng Han and Yuqiang Jiang
Biosensors 2025, 15(8), 510; https://doi.org/10.3390/bios15080510 - 6 Aug 2025
Abstract
We report the development of highly luminescent, bovine serum albumin (BSA)-stabilized gold–silver bimetallic nanoclusters (Au-AgNCs@BSA) as a novel platform for high-sensitivity, ratiometric intracellular temperature sensing. Precise and non-invasive temperature sensing at the nanoscale is crucial for applications ranging from intracellular thermogenesis monitoring to [...] Read more.
We report the development of highly luminescent, bovine serum albumin (BSA)-stabilized gold–silver bimetallic nanoclusters (Au-AgNCs@BSA) as a novel platform for high-sensitivity, ratiometric intracellular temperature sensing. Precise and non-invasive temperature sensing at the nanoscale is crucial for applications ranging from intracellular thermogenesis monitoring to localized hyperthermia therapies. Traditional luminescent thermometric platforms often suffer from limitations such as high cytotoxicity and low photostability. Here, we synthesized Au-AgNCs@BSA via a one-pot aqueous reaction, achieving significantly enhanced photoluminescence quantum yields (PL QYs, up to 18%) and superior thermal responsiveness compared to monometallic counterparts. The dual-emissive Au-AgNCs@BSA exhibit a linear ratiometric fluorescence response to temperature fluctuations within the physiological range (20–50 °C), enabling accurate and concentration-independent thermometry in live cells. Time-resolved PL and Arrhenius analyses reveal two distinct emissive states and a high thermal activation energy (Ea = 199 meV), indicating strong temperature dependence. Silver doping increases radiative decay rates while maintaining low non-radiative losses, thus amplifying fluorescence intensity and thermal sensitivity. Owing to their small size, excellent photostability, and low cytotoxicity, these nanoclusters were applied to non-invasive intracellular temperature mapping, presenting a promising luminescent nanothermometer for real-time cellular thermogenesis monitoring and advanced bioimaging applications. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Figure 1

6 pages, 1494 KiB  
Proceeding Paper
Ag/TiO2 Nanocomposites for Nanothermometry in the Biological Environment
by Roberto Zambon, Marina Franca, Veronica Zani, Roberto Pilot, Silvia Gross, Danilo Pedron and Raffaella Signorini
Eng. Proc. 2023, 35(1), 16; https://doi.org/10.3390/IECB2023-14585 - 8 May 2023
Cited by 2 | Viewed by 1006
Abstract
Local temperature determination is essential to understand heat transport phenomena at the nanoscale and to design nanodevices for biomedical, photonic, and optoelectronic applications. In particular, the detection of the local temperature of the intracellular environment is interesting for photothermal therapy. In the present [...] Read more.
Local temperature determination is essential to understand heat transport phenomena at the nanoscale and to design nanodevices for biomedical, photonic, and optoelectronic applications. In particular, the detection of the local temperature of the intracellular environment is interesting for photothermal therapy. In the present work, nanoparticles consisting of an Ag core, covered by a TiO2 shell and Ag@TiO2 core–shell, were suitably synthesized through a one-pot method. Silver nanoparticles synthesized in DMF were coated by controlled hydrolysis of titanium tetrabutoxide in the same reaction environment. The synthesis led to nanocomposites where AgNPs were covered by a diffuse layer of anatase. The nanocomposites were characterized using UV/Vis spectroscopy and Raman spectroscopy. The samples obtained proved to be good Raman nanothermometers with a sensitivity comparable to that of simple anatase nanoparticles. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biosensors)
Show Figures

Figure 1

18 pages, 15173 KiB  
Article
A Sol-Gel/Solvothermal Synthetic Approach to Titania Nanoparticles for Raman Thermometry
by Thomas Pretto, Marina Franca, Veronica Zani, Silvia Gross, Danilo Pedron, Roberto Pilot and Raffaella Signorini
Sensors 2023, 23(5), 2596; https://doi.org/10.3390/s23052596 - 26 Feb 2023
Cited by 7 | Viewed by 3148
Abstract
The accurate determination of the local temperature is one of the most important challenges in the field of nanotechnology and nanomedicine. For this purpose, different techniques and materials have been extensively studied in order to identify both the best-performing materials and the techniques [...] Read more.
The accurate determination of the local temperature is one of the most important challenges in the field of nanotechnology and nanomedicine. For this purpose, different techniques and materials have been extensively studied in order to identify both the best-performing materials and the techniques with greatest sensitivity. In this study, the Raman technique was exploited for the determination of the local temperature as a non-contact technique and titania nanoparticles (NPs) were tested as nanothermometer Raman active material. Biocompatible titania NPs were synthesized following a combination of sol-gel and solvothermal green synthesis approaches, with the aim of obtaining pure anatase samples. In particular, the optimization of three different synthesis protocols allowed materials to be obtained with well-defined crystallite dimensions and good control over the final morphology and dispersibility. TiO2 powders were characterized by X-ray diffraction (XRD) analyses and room-temperature Raman measurements, to confirm that the synthesized samples were single-phase anatase titania, and using SEM measurements, which clearly showed the nanometric dimension of the NPs. Stokes and anti-Stokes Raman measurements were collected, with the excitation laser at 514.5 nm (CW Ar/Kr ion laser), in the temperature range of 293–323 K, a range of interest for biological applications. The power of the laser was carefully chosen in order to avoid possible heating due to the laser irradiation. The data support the possibility of evaluating the local temperature and show that TiO2 NPs possess high sensitivity and low uncertainty in the range of a few degrees as a Raman nanothermometer material. Full article
Show Figures

Figure 1

11 pages, 2919 KiB  
Article
Multi-Mode Lanthanide-Doped Ratiometric Luminescent Nanothermometer for Near-Infrared Imaging within Biological Windows
by Hao Li, Esmaeil Heydari, Yinyan Li, Hui Xu, Shiqing Xu, Liang Chen and Gongxun Bai
Nanomaterials 2023, 13(1), 219; https://doi.org/10.3390/nano13010219 - 3 Jan 2023
Cited by 14 | Viewed by 3352
Abstract
Owing to its high reliability and accuracy, the ratiometric luminescent thermometer can provide non-contact and fast temperature measurements. In particular, the nanomaterials doped with lanthanide ions can achieve multi-mode luminescence and temperature measurement by modifying the type of doped ions and excitation light [...] Read more.
Owing to its high reliability and accuracy, the ratiometric luminescent thermometer can provide non-contact and fast temperature measurements. In particular, the nanomaterials doped with lanthanide ions can achieve multi-mode luminescence and temperature measurement by modifying the type of doped ions and excitation light source. The better penetration of the near-infrared (NIR) photons can assist bio-imaging and replace thermal vision cameras for photothermal imaging. In this work, we prepared core–shell cubic phase nanomaterials doped with lanthanide ions, with Ba2LuF7 doped with Er3+/Yb3+/Nd3+ as the core and Ba2LaF7 as the coating shell. The nanoparticles were designed according to the passivation layer to reduce the surface energy loss and enhance the emission intensity. Green upconversion luminescence can be observed under both 980 nm and 808 nm excitation. A single and strong emission band can be obtained under 980 nm excitation, while abundant and weak emission bands appear under 808 nm excitation. Meanwhile, multi-mode ratiometric optical thermometers were achieved by selecting different emission peaks in the NIR window under 808 nm excitation for non-contact temperature measurement at different tissue depths. The results suggest that our core–shell NIR nanoparticles can be used to assist bio-imaging and record temperature for biomedicine. Full article
Show Figures

Figure 1

20 pages, 2734 KiB  
Article
Magneto-Induced Hyperthermia and Temperature Detection in Single Iron Oxide Core-Silica/Tb3+/Eu3+(Acac) Shell Nano-Objects
by Karina Nigoghossian, Basile Bouvet, Gautier Félix, Saad Sene, Luca Costa, Pierre-Emmanuel Milhet, Albano N. Carneiro Neto, Luis D. Carlos, Erwan Oliviero, Yannick Guari and Joulia Larionova
Nanomaterials 2022, 12(18), 3109; https://doi.org/10.3390/nano12183109 - 7 Sep 2022
Cited by 7 | Viewed by 2745
Abstract
Multifunctional nano-objects containing a magnetic heater and a temperature emissive sensor in the same nanoparticle have recently emerged as promising tools towards personalized nanomedicine permitting hyperthermia-assisted treatment under local temperature control. However, a fine control of nano-systems’ morphology permitting the synthesis of a [...] Read more.
Multifunctional nano-objects containing a magnetic heater and a temperature emissive sensor in the same nanoparticle have recently emerged as promising tools towards personalized nanomedicine permitting hyperthermia-assisted treatment under local temperature control. However, a fine control of nano-systems’ morphology permitting the synthesis of a single magnetic core with controlled position of the sensor presents a main challenge. We report here the design of new iron oxide core–silica shell nano-objects containing luminescent Tb3+/Eu3+-(acetylacetonate) moieties covalently anchored to the silica surface, which act as a promising heater/thermometer system. They present a single magnetic core and a controlled thickness of the silica shell, permitting a uniform spatial distribution of the emissive nanothermometer relative to the heat source. These nanoparticles exhibit the Tb3+ and Eu3+ characteristic emissions and suitable magnetic properties that make them efficient as a nanoheater with a Ln3+-based emissive self-referencing temperature sensor covalently coupled to it. Heating capacity under an alternating current magnetic field was demonstrated by thermal imaging. This system offers a new strategy permitting a rapid heating of a solution under an applied magnetic field and a local self-referencing temperature sensing with excellent thermal sensitivity (1.64%·K−1 (at 40 °C)) in the range 25–70 °C, good photostability, and reproducibility after several heating cycles. Full article
(This article belongs to the Special Issue Luminescent Colloidal Nanocrystals)
Show Figures

Figure 1

12 pages, 4409 KiB  
Article
A Ratiometric Organic Fluorescent Nanogel Thermometer for Highly Sensitive Temperature Sensing
by Chao Wang, Xianhao Zhao, Kaiyu Wu, Shuyi Lv and Chunlei Zhu
Biosensors 2022, 12(9), 702; https://doi.org/10.3390/bios12090702 - 1 Sep 2022
Cited by 7 | Viewed by 2861
Abstract
Sensing temperature in biological systems is of great importance, as it is constructive to understanding various physiological and pathological processes. However, the realization of highly sensitive temperature sensing with organic fluorescent nanothermometers remains challenging. In this study, we report a ratiometric fluorescent nanogel [...] Read more.
Sensing temperature in biological systems is of great importance, as it is constructive to understanding various physiological and pathological processes. However, the realization of highly sensitive temperature sensing with organic fluorescent nanothermometers remains challenging. In this study, we report a ratiometric fluorescent nanogel thermometer and study its application in the determination of bactericidal temperature. The nanogel is composed of a polarity-sensitive aggregation-induced emission luminogen with dual emissions, a thermoresponsive polymer with a phase transition function, and an ionic surface with net positive charges. During temperature-induced phase transition, the nanogel exhibits a reversible and sensitive spectral change between a red-emissive state and a blue-emissive state by responding to the hydrophilic-to-hydrophobic change in the local environment. The correlation between the emission intensity ratio of the two states and the external temperature is delicately established, and the maximum relative thermal sensitivities of the optimal nanogel are determined to be 128.42 and 68.39% °C−1 in water and a simulated physiological environment, respectively. The nanogel is further applied to indicate the bactericidal temperature in both visual and ratiometric ways, holding great promise in the rapid prediction of photothermal antibacterial effects and other temperature-related biological events. Full article
Show Figures

Figure 1

16 pages, 56487 KiB  
Article
Single Excited Dual Band Luminescent Hybrid Carbon Dots-Terbium Chelate Nanothermometer
by Rustem R. Zairov, Alexey P. Dovzhenko, Kirill A. Sarkanich, Irek R. Nizameev, Andrey V. Luzhetskiy, Svetlana N. Sudakova, Sergey N. Podyachev, Vladimir A. Burilov, Ivan M. Vatsouro, Alberto Vomiero and Asiya R. Mustafina
Nanomaterials 2021, 11(11), 3080; https://doi.org/10.3390/nano11113080 - 15 Nov 2021
Cited by 20 | Viewed by 3020
Abstract
The report introduces hybrid polyelectrolyte-stabilized colloids combining blue and green-emitting building blocks, which are citrate carbon dots (CDs) and [TbL]+ chelate complexes with 1,3-diketonate derivatives of calix[4]arene. The joint incorporation of green and blue-emitting blocks into the polysodium polystyrenesulfonate (PSS) aggregates is [...] Read more.
The report introduces hybrid polyelectrolyte-stabilized colloids combining blue and green-emitting building blocks, which are citrate carbon dots (CDs) and [TbL]+ chelate complexes with 1,3-diketonate derivatives of calix[4]arene. The joint incorporation of green and blue-emitting blocks into the polysodium polystyrenesulfonate (PSS) aggregates is carried out through the solvent-exchange synthetic technique. The coordinative binding between Tb3+ centers and CD surface groups in initial DMF solutions both facilitates joint incorporation of [TbL]+ complexes and the CDs into the PSS-based nanobeads and affects fluorescence properties of [TbL]+ complexes and CDs, as well as their ability for temperature sensing. The variation of the synthetic conditions is represented herein as a tool for tuning the fluorescent response of the blue and green-emitting blocks upon heating and cooling. The revealed regularities enable developing either dual-band luminescent colloids for monitoring temperature changes within 25–50 °C through double color emission or transforming the colloids into ratiometric temperature sensors via simple concentration variation of [TbL]+ and CDs in the initial DMF solution. Novel hybrid carbon dots-terbium chelate PSS-based nanoplatform opens an avenue for a new generation of sensitive and customizable single excited dual-band nanothermometers. Full article
Show Figures

Graphical abstract

16 pages, 5734 KiB  
Article
Nd3+-Doped TiO2 Nanoparticles as Nanothermometer: High Sensitivity in Temperature Evaluation inside Biological Windows
by Selene Acosta, Luis J. Borrero-González, Polona Umek, Luiz A. O. Nunes, Peter Guttmann and Carla Bittencourt
Sensors 2021, 21(16), 5306; https://doi.org/10.3390/s21165306 - 6 Aug 2021
Cited by 7 | Viewed by 3717
Abstract
TiO2 nanoparticles doped with different amounts of Nd3+ (0.5, 1, and 3 wt.%) were synthetized by the sol–gel method, and evaluated as potential temperature nanoprobes using the fluorescence intensity ratio between thermal-sensitive radiative transitions of the Nd3+. XRD characterization [...] Read more.
TiO2 nanoparticles doped with different amounts of Nd3+ (0.5, 1, and 3 wt.%) were synthetized by the sol–gel method, and evaluated as potential temperature nanoprobes using the fluorescence intensity ratio between thermal-sensitive radiative transitions of the Nd3+. XRD characterization identified the anatase phase in all the doped samples. The morphology of the nanoparticles was observed with SEM, TEM and HRTEM microscopies. The relative amount of Nd3+ in TiO2 was obtained by EDXS, and the oxidation state of titanium and neodymium was investigated via XPS and NEXAFS, respectively. Nd3+ was present in all the samples, unlike titanium, where besides Ti4+, a significantly amount of Ti3+ was observed; the relative concentration of Ti3+ increased as the amount of Nd3+ in the TiO2 nanoparticles increased. The photoluminescence of the synthetized nanoparticles was investigated, with excitation wavelengths of 350, 514 and 600 nm. The emission intensity of the broad band that was associated with the presence of defects in the TiO2, increased when the concentration of Nd3+ was increased. Using 600 nm for excitation, the 4F7/24I9/2, 4F5/24I9/2 and 4F3/24I9/2 transitions of Nd3+ ions, centered at 760 nm, 821 nm, and 880 nm, respectively, were observed. Finally, the effect of temperature in the photoluminescence intensity of the synthetized nanoparticles was investigated, with an excitation wavelength of 600 nm. The spectra were collected in the 288–348 K range. For increasing temperatures, the emission intensity of the 4F7/24I9/2 and 4F5/24I9/2 transitions increased significantly, in contrast to the 4F3/24I9/2 transition, in which the intensity emission decreased. The fluorescence intensity ratio between the transitions I821I880=F5/24I49/2F43/2I49/2 and I760I880=F47/2I49/2F43/2I49/2 were used to calculate the relative sensitivity of the sensors. The relative sensitivity was near 3% K−1 for I760I880 and near 1% K−1 for I821I880. Full article
(This article belongs to the Special Issue Nanotechnology for On-Chip Sensing)
Show Figures

Figure 1

9 pages, 929 KiB  
Article
Influence of Pumping Regime on Temperature Resolution in Nanothermometry
by Jonas Thiem, Axel Ruehl and Detlev Ristau
Nanomaterials 2021, 11(7), 1782; https://doi.org/10.3390/nano11071782 - 9 Jul 2021
Cited by 1 | Viewed by 2467
Abstract
In recent years, optical nanothermometers have seen huge improvements in terms of precision as well as versatility, and several research efforts have been directed at adapting novel active materials or further optimizing the temperature sensitivity. The signal-to-noise ratio of the emission lines is [...] Read more.
In recent years, optical nanothermometers have seen huge improvements in terms of precision as well as versatility, and several research efforts have been directed at adapting novel active materials or further optimizing the temperature sensitivity. The signal-to-noise ratio of the emission lines is commonly seen as the only limitation regarding high precision measurements. The role of re-absorption caused by a population of lower energy levels, however, has so far been neglected as a potential bottleneck for both high resolution and material selection. In this work, we conduct a study of the time dependent evolution of population densities in different luminescence nanothermometer classes under the commonly used pulsed excitation scheme. It is shown that the population of lower energy levels varies when the pump source fluctuates in terms of power and pulse duration. This leads to a significant degradation in temperature resolution, with limiting values of 0.5 K for common systems. Our study on the error margin indicates that either short pulsed or continuous excitation should be preferred for high precision measurements. Additionally, we derive conversion factors, enabling the re-calibration of currently available intensity ratio measurements to the steady state regime, thus facilitating the transition from pulse regimes to continuous excitation. Full article
(This article belongs to the Special Issue Advance in Nanothermometry)
Show Figures

Figure 1

10 pages, 24486 KiB  
Article
Thermometric Characterization of Fluorescent Nanodiamonds Suitable for Biomedical Applications
by Francisco Pedroza-Montero, Karla Santacruz-Gómez, Mónica Acosta-Elías, Erika Silva-Campa, Diana Meza-Figueroa, Diego Soto-Puebla, Beatriz Castaneda, Efraín Urrutia-Bañuelos, Osiris Álvarez-Bajo, Sofía Navarro-Espinoza, Raúl Riera and Martín Pedroza-Montero
Appl. Sci. 2021, 11(9), 4065; https://doi.org/10.3390/app11094065 - 29 Apr 2021
Cited by 12 | Viewed by 3984
Abstract
Nanodiamonds have been studied for several biomedical applications due to their inherent biocompatibility and low cytotoxicity. Recent investigations have shown perspectives in using fluorescent nanodiamonds as nanothermometers because of their optical properties’ dependence on temperature. Easy and accurate localized temperature sensing is essential [...] Read more.
Nanodiamonds have been studied for several biomedical applications due to their inherent biocompatibility and low cytotoxicity. Recent investigations have shown perspectives in using fluorescent nanodiamonds as nanothermometers because of their optical properties’ dependence on temperature. Easy and accurate localized temperature sensing is essential in a wide variety of scientific fields. Our work demonstrated how the fluorescence spectrum of high-pressure high-temperature fluorescent nanodiamonds of three different sizes: 35 nm, 70 nm and 100 nm, changes with temperature within an important biological temperature range (25 °C to 60 °C). Taking advantage of this phenomenon, we obtained nanothermic scales (NS) from the zero phonon lines (ZPL) of the NV0 and NV colour centres. In particular, the 100 nm-sized features the more intense fluorescence spectra whose linear dependence with temperature achieved 0.98 R2 data representation values for both NV0 and NV. This model predicts temperature for all used nanodiamonds with sensitivities ranging from 5.73% °C−1 to 6.994% °C−1 (NV0) and from 4.14% °C−1 to 6.475% °C−1 (NV). Furthermore, the non-cytotoxic interaction with HeLa cells tested in our study enables the potential use of fluorescence nanodiamonds to measure temperatures in similar nano and microcellular aqueous environments with a simple spectroscopic setup. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Graphical abstract

29 pages, 4191 KiB  
Article
Effect of the Size and Shape of Ho, Tm:KLu(WO4)2 Nanoparticles on Their Self-Assessed Photothermal Properties
by Albenc Nexha, Maria Cinta Pujol, Joan Josep Carvajal, Francesc Díaz and Magdalena Aguiló
Nanomaterials 2021, 11(2), 485; https://doi.org/10.3390/nano11020485 - 14 Feb 2021
Cited by 5 | Viewed by 3086
Abstract
The incorporation of oleic acid and oleylamine, acting as organic surfactant coatings for a novel solvothermal synthesis procedure, resulted in the formation of monoclinic KLu(WO4)2 nanocrystals. The formation of this crystalline phase was confirmed structurally from X-ray powder diffraction patterns [...] Read more.
The incorporation of oleic acid and oleylamine, acting as organic surfactant coatings for a novel solvothermal synthesis procedure, resulted in the formation of monoclinic KLu(WO4)2 nanocrystals. The formation of this crystalline phase was confirmed structurally from X-ray powder diffraction patterns and Raman vibrational modes, and thermally by differential thermal analysis. The transmission electron microscopy images confirm the nanodimensional size (~12 nm and ~16 nm for microwave-assisted and conventional autoclave solvothermal synthesis) of the particles and no agglomeration, contrary to the traditional modified sol-gel Pechini methodology. Upon doping with holmium (III) and thulium (III) lanthanide ions, these nanocrystals can generate simultaneously photoluminescence and heat, acting as nanothermometers and as photothermal agents in the third biological window, i.e., self-assessed photothermal agents, upon excitation with 808 nm near infrared, lying in the first biological window. The emissions of these nanocrystals, regardless of the solvothermal synthetic methodology applied to synthesize them, are located at 1.45 μm, 1.8 μm and 1.96 μm, attributed to the 3H43F4 and 3F43H6 electronic transition of Tm3+ and 5I75I8 electronic transition of Ho3+, respectively. The self-assessing properties of these nanocrystals are studied as a function of their size and shape and compared to the ones prepared by the modified sol-gel Pechini methodology, revealing that the small nanocrystals obtained by the hydrothermal methods have the ability to generate heat more efficiently, but their capacity to sense temperature is not as good as that of the nanoparticles prepared by the modified sol-gel Pechnini method, revealing that the synthesis method influences the performance of these self-assessed photothermal agents. The self-assessing ability of these nanocrystals in the third biological window is proven via an ex-vivo experiment, achieving thermal knowledge and heat generation at a maximum penetration depth of 2 mm. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

12 pages, 2023 KiB  
Article
Graphene Quantum Dots as Intracellular Imaging-Based Temperature Sensors
by Bong Han Lee, Ryan Lee McKinney, Md. Tanvir Hasan and Anton V. Naumov
Materials 2021, 14(3), 616; https://doi.org/10.3390/ma14030616 - 29 Jan 2021
Cited by 27 | Viewed by 4126
Abstract
Non-invasive temperature sensing is necessary to analyze biological processes occurring in the human body, including cellular enzyme activity, protein expression, and ion regulation. To probe temperature-sensitive processes at the nanoscale, novel luminescence nanothermometers are developed based on graphene quantum dots (GQDs) synthesized via [...] Read more.
Non-invasive temperature sensing is necessary to analyze biological processes occurring in the human body, including cellular enzyme activity, protein expression, and ion regulation. To probe temperature-sensitive processes at the nanoscale, novel luminescence nanothermometers are developed based on graphene quantum dots (GQDs) synthesized via top-down (RGQDs) and bottom-up (N-GQDs) approaches from reduced graphene oxide and glucosamine precursors, respectively. Because of their small 3–6 nm size, non-invasive optical sensitivity to temperature change, and high biocompatibility, GQDs enable biologically safe sub-cellular resolution sensing. Both GQD types exhibit temperature-sensitive yet photostable fluorescence in the visible and near-infrared for RGQDs, utilized as a sensing mechanism in this work. Distinctive linear and reversible fluorescence quenching by up to 19.3% is observed for the visible and near-infrared GQD emission in aqueous suspension from 25 °C to 49 °C. A more pronounced trend is observed with GQD nanothermometers internalized into the cytoplasm of HeLa cells as they are tested in vitro from 25 °C to 45 °C with over 40% quenching response. Our findings suggest that the temperature-dependent fluorescence quenching of bottom-up and top-down-synthesized GQDs studied in this work can serve as non-invasive reversible/photostable deterministic mechanisms for temperature sensing in microscopic sub-cellular biological environments. Full article
(This article belongs to the Special Issue Bio-Nanomaterials)
Show Figures

Graphical abstract

14 pages, 7986 KiB  
Article
Pitfalls in Monitoring Mitochondrial Temperature Using Charged Thermosensitive Fluorophores
by Dominique Chrétien, Paule Bénit, Christine Leroy, Riyad El-Khoury, Sunyou Park, Jung Yeol Lee, Young-Tae Chang, Guy Lenaers, Pierre Rustin and Malgorzata Rak
Chemosensors 2020, 8(4), 124; https://doi.org/10.3390/chemosensors8040124 - 2 Dec 2020
Cited by 24 | Viewed by 4617
Abstract
Mitochondria are the source of internal heat which influences all cellular processes. Hence, monitoring mitochondrial temperature provides a unique insight into cell physiology. Using a thermosensitive fluorescent probe MitoThermo Yellow (MTY), we have shown recently that mitochondria within human cells are maintained at [...] Read more.
Mitochondria are the source of internal heat which influences all cellular processes. Hence, monitoring mitochondrial temperature provides a unique insight into cell physiology. Using a thermosensitive fluorescent probe MitoThermo Yellow (MTY), we have shown recently that mitochondria within human cells are maintained at close to 50 °C when active, increasing their temperature locally by about 10 °C. Initially reported in the HEK293 cell line, we confirmed this finding in the HeLa cell line. Delving deeper, using MTY and MTX (MitoThermo X), a modified version of MTY, we unraveled some caveats related to the nature of these charged fluorophores. While enabling the assessment of mitochondrial temperature in HEK and HeLa cell lines, the reactivity of MTY to membrane potential variations in human primary skin fibroblasts precluded local temperature monitoring in these cells. Chemical modification of MTY into MTX did not result in a temperature probe unresponsive to membrane potential variations that could be universally used in any cell type to determine mitochondrial temperature. Thus, the cell-type dependence of MTY in measuring mitochondrial temperature, which is likely due to the variable binding of this dye to specific internal mitochondrial components, should imply cautiousness while using these nanothermometers for mitochondrial temperature analysis. Full article
Show Figures

Figure 1

13 pages, 1735 KiB  
Article
Upconversion Nanocrystal Doped Polymer Fiber Thermometer
by Jonas Thiem, Simon Spelthann, Laurie Neumann, Florian Jakobs, Hans-Hermann Johannes, Wolfgang Kowalsky, Dietmar Kracht, Joerg Neumann, Axel Ruehl and Detlev Ristau
Sensors 2020, 20(21), 6048; https://doi.org/10.3390/s20216048 - 24 Oct 2020
Cited by 9 | Viewed by 4676
Abstract
In recent years, lanthanide-doped nanothermometers have been mainly used in thin films or dispersed in organic solvents. However, both approaches have disadvantages such as the short interaction lengths of the active material with the pump beam or complicated handling, which can directly affect [...] Read more.
In recent years, lanthanide-doped nanothermometers have been mainly used in thin films or dispersed in organic solvents. However, both approaches have disadvantages such as the short interaction lengths of the active material with the pump beam or complicated handling, which can directly affect the achievable temperature resolution. We investigated the usability of a polymer fiber doped with upconversion nanocrystals as a thermometer. The fiber was excited with a wavelength stabilized diode laser at a wavelength of 976 nm. Emission spectra were recorded in a temperature range from 10 to 35 C and the thermal emission changes were measured. Additionally, the pump power was varied to study the effect of self-induced heating on the thermometer specifications. Our fiber sensor shows a maximal thermal sensitivity of 1.45%/K and the minimal thermal resolution is below 20 mK. These results demonstrate that polymer fibers doped with nanocrystals constitute an attractive alternative to conventional fluorescence thermometers, as they add a long pump interaction length while also being insensitive to strong electrical fields or inert to bio-chemical environments. Full article
(This article belongs to the Special Issue Recent Development and Applications of Plastic Optical Fiber Sensors)
Show Figures

Figure 1

12 pages, 2928 KiB  
Article
Temperature Sensing in the Short-Wave Infrared Spectral Region Using Core-Shell NaGdF4:Yb3+, Ho3+, Er3+@NaYF4 Nanothermometers
by Daria Pominova, Vera Proydakova, Igor Romanishkin, Anastasia Ryabova, Sergei Kuznetsov, Oleg Uvarov, Pavel Fedorov and Victor Loschenov
Nanomaterials 2020, 10(10), 1992; https://doi.org/10.3390/nano10101992 - 9 Oct 2020
Cited by 20 | Viewed by 3180
Abstract
The short-wave infrared region (SWIR) is promising for deep-tissue visualization and temperature sensing due to higher penetration depth and reduced scattering of radiation. However, the strong quenching of luminescence in biological media and low thermal sensitivity of nanothermometers in this region are major [...] Read more.
The short-wave infrared region (SWIR) is promising for deep-tissue visualization and temperature sensing due to higher penetration depth and reduced scattering of radiation. However, the strong quenching of luminescence in biological media and low thermal sensitivity of nanothermometers in this region are major drawbacks that limit their practical application. Nanoparticles doped with rare-earth ions are widely used as thermal sensors operating in the SWIR region through the luminescence intensity ratio (LIR) approach. In this study, the effect of the shell on the sensitivity of temperature determination using NaGdF4 nanoparticles doped with rare-earth ions (REI) Yb3+, Ho3+, and Er3+ coated with an inert NaYF4 shell was investigated. We found that coating the nanoparticles with a shell significantly increases the intensity of luminescence in the SWIR range, prevents water from quenching luminescence, and decreases the temperature of laser-induced heating. Thermometry in the SWIR spectral region was demonstrated using synthesized nanoparticles in dry powder and in water. The core-shell nanoparticles obtained had intense luminescence and made it possible to determine temperatures in the range of 20–40 °C. The relative thermal sensitivity of core-shell NPs was 0.68% °C−1 in water and 4.2% °C−1 in dry powder. Full article
Show Figures

Figure 1

Back to TopTop