Dual-Emission Au-Ag Nanoclusters with Enhanced Photoluminescence and Thermal Sensitivity for Intracellular Ratiometric Nanothermometry
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Au-AgNCs@BSA
2.3. Optical Characterization
2.4. Temperature-Dependent Fluorescence Measurements
2.5. Cytotoxicity Assay
2.6. Cellular Uptake and Intracellular Localization of Au-AgNCs@BSA
3. Results and Discussion
3.1. Synthesis and Characterization of Au-AgNCs@BSA
3.2. Temperature-Dependent Emission Behavior of Au-AgNCs@BSA
3.3. Biochemical and Photostability Effects on PL of Au-AgNCs@BSA
3.4. Biocompatibility Evaluation for Biomedical Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BSA | Bovine serum albumin |
QYs | Quantum yields |
AuNCs | Gold nanoclusters |
LMCT | Ligand-to-metal charge transfer |
QDs | Quantum dots |
References
- Ma, J.; Sun, R.; Xia, K.; Xia, Q.; Liu, Y.; Zhang, X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem. Rev. 2024, 124, 1738–1861. [Google Scholar] [CrossRef]
- Xing, Z.; Suo, H.; Chun, F.; Wei, X.; Wang, F. Sensitive Luminescence Thermometry through Excitation Intensity Ratio in Eu-Doped BaTiO3. ACS Appl. Mater. Interfaces 2024, 16, 13972–13979. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, H.; Zhang, Y.; Brodský, J.; Gablech, I.; Korabečná, M.; Neuzil, P. Exploring the Frontiers of Cell Temperature Measurement and Thermogenesis. Adv. Sci. 2024, 12, e2402135. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; del Rosal, B.; Jaque, D.; Uchiyama, S.; Jin, D. Advances and challenges for fluorescence nanothermometry. Nat. Methods 2020, 17, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-D.; Wolfbeis, O.S.; Meier, R.J. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 2013, 42, 7834–7869. [Google Scholar] [CrossRef]
- Peng, H.; Stich, M.I.J.; Yu, J.; Sun, L.; Fischer, L.H.; Wolfbeis, O.S. Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range. Adv. Mater. 2010, 22, 716–719. [Google Scholar] [CrossRef]
- Borisov, S.M.; Klimant, I. Blue LED Excitable Temperature Sensors Based on a New Europium(III) Chelate. J. Fluoresc. 2008, 18, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.-S.; Huang, S.-H.; Wolfbeis, O.S. Ratiometric fluorescent nanoparticles for sensing temperature. J. Nanopart. Res. 2010, 12, 2729–2733. [Google Scholar] [CrossRef]
- Yu, J.; Sun, L.; Peng, H.; Stich, M.I.J. Luminescent terbium and europium probes for lifetime based sensing of temperature between 0 and 70 °C. J. Mater. Chem. 2010, 20, 6975–6981. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, Z.Y.; Grattan, K.T.V.; Palmer, A.W.; Collins, S.F. Temperature dependence of the fluorescence lifetime in Pr3+:ZBLAN glass for fiber optic thermometry. Rev. Sci. Instruments. 1997, 68, 3447–3451. [Google Scholar] [CrossRef]
- Maurice, E.; Monnom, G.; Ostrowsky, D.; Baxter, G. 1.2-Mu-M Transitions in Erbium-Doped Fibers: The Possibility of Quasi-Distributed Temperature Sensors. Appl. Opt. 1995, 21, 4196–4199. [Google Scholar] [CrossRef]
- Berthou, H.; Jörgensen, C.K. Optical-fiber temperature sensor based on upconversion-excited fluorescence. Opt. Lett. 1990, 15, 1100–1102. [Google Scholar] [CrossRef]
- Carlos, D.S.; Patricia, P.; Nuno, J.O.; Angel, M.; Vitor, S.; Fernando, P.; Luís, D. A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale. Adv. Mater. 2010, 40, 4499–4504. [Google Scholar]
- Brites, C.D.S.; Lima, P.P.; Silva, N.J.O.; Millán, A.; Amaral, V.S.; Palacio, F.; Carlos, L.D. Lanthanide-based luminescent molecular thermometers. New J. Chem. 2011, 35, 1177–1183. [Google Scholar] [CrossRef]
- Sun, L.-N.; Yu, J.; Peng, H.; Zhang, J.Z.; Shi, L.-Y.; Wolfbeis, O.S. Temperature-Sensitive Luminescent Nanoparticles and Films Based on a Terbium(III) Complex Probe. J. Phys. Chem. C 2010, 114, 12642–12648. [Google Scholar] [CrossRef]
- Wang, S.; Westcott, S.; Chen, W. Nanoparticle luminescence thermometry. J. Phys. Chem. B 2002, 43, 11203–11209. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.Z.; Joly, A.G. Optical Properties and Potential Applications of Doped Semiconductor Nanoparticles. J. Nanosci. Nanotechnol. 2004, 4, 919–947. [Google Scholar] [CrossRef]
- Biju, V.; Makita, Y.; Sonoda, A.; Yokoyama, H.; Baba, Y.; Ishikawa, M. Temperature-Sensitive Photoluminescence of CdSe Quantum Dot Clusters. J. Phys. Chem. B 2005, 109, 13899–13905. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Hanson, W.L.; Bensalah, K.; Tuncel, A.; Stern, J.M.; Cadeddu, J.A. Development of Quantum Dot-Mediated Fluorescence Thermometry for Thermal Therapies. Ann. Biomed. Eng. 2009, 37, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Govorov, A.O.; Kotov, N.A. Nanoparticle Assemblies with Molecular Springs: A Nanoscale Thermometer. Angew. Chem. Int. Ed. Engl. 2005, 44, 7439–7442. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Y.; Yan, C.; Wang, C.; Xu, R.; Gu, N. Synthesis of Magnetic/Luminescent Alginate-Templated Composite Microparticles with Temperature-Dependent Photoluminescence under High-Frequency Magnetic Field. Langmuir 2010, 26, 19066–19072. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Wood, A.W. Application of a temperature-dependent fluorescent dye (Rhodamine B) to the measurement of radiofrequency radiation-induced temperature changes in biological samples. Bioelectromagnetics 2009, 30, 583–590. [Google Scholar] [CrossRef]
- Chapman, C.F.; Liu, Y.; Sonek, G.J.; Tromberg, B.J. The Use of Exogenous Fluorescent Probes for Temperature Measurements in Single Living Cells. Photochem. Photobiol. 1995, 62, 416–425. [Google Scholar] [CrossRef]
- Wang, X.D.; Song, X.H.; He, C.Y.; Yang, C.J.; Chen, G.; Chen, X. Preparation of Reversible Colorimetric Temperature Nanosensors and Their Application in Quantitative Two-Dimensional Thermo-Imaging. Anal. Chem. 2011, 83, 2434–2437. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Chen, C.T. A PNIPAM-based fluorescent nanothermometer with ratiometric readout. Chem. Commun. 2011, 47, 3994–3996. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wu, Z.; Yan, J.; Pang, W.; Liang, D.; Xu, X. A promising approach for understanding the mechanism of Traditional Chinese Medicine by the aggregation morphology. J. Ethnopharmacol. 2009, 123, 267–274. [Google Scholar] [CrossRef]
- Gota, C.; Okabe, K.; Funatsu, T.; Harada, Y.; Uchiyama, S. Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry. J. Am. Chem. Soc. 2009, 131, 2766–2767. [Google Scholar] [CrossRef] [PubMed]
- Vetrone, F.; Naccache, R.; Zamarrón, A.; de la Fuente, A.J.; Sanz-Rodríguez, F.; Maestro, L.M.; Rodriguez, E.M.; Jaque, D.; Solé, J.G.; Capobianco, J.A. Temperature Sensing Using Fluorescent Nanothermometers. ACS Nano 2010, 4, 3254–3258. [Google Scholar] [CrossRef]
- Maestro, L.M.; Rodríguez, E.M.; Rodríguez, F.S.; la Cruz, M.C.I.-D.; Juarranz, A.; Naccache, R.; Vetrone, F.; Jaque, D.; Capobianco, J.A.; Solé, J.G. CdSe Quantum Dots for Two-Photon Fluorescence Thermal Imaging. Nano Lett. 2010, 10, 5109–5115. [Google Scholar] [CrossRef]
- Le Guével, X.; Trouillet, V.; Spies, C.; Li, K.; Laaksonen, T.; Auerbach, D.; Jung, G.; Schneider, M. High photostability and enhanced fluorescence of gold nanoclusters by silver doping. Nanoscale 2012, 4, 7624–7631. [Google Scholar] [CrossRef]
- Liu, H.; Fan, Y.; Wang, J.; Song, Z.; Shi, H.; Han, R.; Sha, Y.; Jiang, Y. Intracellular Temperature Sensing: An Ultra-bright Luminescent Nanothermometer with Non-sensitivity to pH and Ionic Strength. Sci. Rep. 2015, 5, 14879. [Google Scholar] [CrossRef]
- Shang, L.; Stockmar, F.; Azadfar, N.; Nienhaus, G.U. Intracellular Thermometry by Using Fluorescent Gold Nanoclusters. Angew. Chem. Int. Ed. Engl. 2013, 52, 11154–11157. [Google Scholar] [CrossRef]
- Sun, J.; Jin, Y.D. Fluorescent Au nanoclusters: Recent progress and sensing applications. J. Mater. Chem. C 2014, 38, 8000–8011. [Google Scholar] [CrossRef]
- Huang, H.; Li, H.; Feng, J.-J.; Wang, A.-J. One-step green synthesis of fluorescent bimetallic Au/Ag nanoclusters for temperature sensing and in vitro detection of Fe3+. Sens. Actuators B Chem. 2016, 223, 550–556. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, S.; Mei, M.; Zhao, Q.; She, G.; Shi, W.; Mu, L. Sensitive and Stable Thermometer Based on the Long Fluorescence Lifetime of Au Nanoclusters for Mitochondria. Anal. Chem. 2021, 93, 15072–15079. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, S.; Mukherjee, M.; Purkayastha, P. Fluorescent metal nanoclusters: Prospects for photoinduced electron transfer and energy harvesting. Chem. Commun. 2024, 60, 3370–3378. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Babaee, E.; Gholivand, M.-B.; Molaabasi, F.; Hajipour-Verdom, B.; Sedghi, M. Intrinsic dual emissive insulin capped Au/Ag nanoclusters as single ratiometric nanoprobe for reversible detection of pH and temperature and cell imaging. Biosens. Bioelectron. 2024, 250, 116064. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Zhu, M.; Wu, Z.; Jin, R. Quantum Sized Gold Nanoclusters with Atomic Precision. Acc. Chem. Res. 2012, 45, 1470–1479. [Google Scholar] [CrossRef]
- Farkhani, S.M.; Dehghankelishadi, P.; Refaat, A.; Gopal, D.V.; Cifuentes-Rius, A.; Voelcker, N.H. Tailoring gold nanocluster properties for biomedical applications: From sensing to bioimaging and theranostics. Prog. Mater. Sci. 2023, 142. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, J.; Cao, Y.; Chai, O.J.H.; Xie, J. Ligand Design in Ligand-Protected Gold Nanoclusters. Small 2021, 17, 2004381. [Google Scholar] [CrossRef]
- Akyüz, Ö.; Mißun, M.; Rosenberg, R.; Scheffner, M.; Marx, A.; Cölfen, H. Thermostable protein-stabilized gold nanoclusters as a peroxidase mimic. Nanoscale Adv. 2023, 5, 6061–6068. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z.; Sun, D.; Li, S.; Deng, Q.; Xin, X. Supramolecular Self-Assembly of Atomically Precise Silver Nanoclusters with Chiral Peptide for Temperature Sensing and Detection of Arginine. Nanomaterials 2022, 12, 424. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Chen, J.; Li, M.-B.; Liu, L.; Yang, J.; Wu, Z. Adding Two Active Silver Atoms on Au25 Nanoparticle. Nano Lett. 2015, 15, 1281–1287. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Song, W.; Lian, C.; Chen, W.; Mei, J.; Su, J.; Liu, H.; Tian, H. Dual-Emitting Dihydrophenazines for Highly Sensitive and Ratiometric Thermometry over a Wide Temperature Range. Adv. Opt. Mater. 2018, 6, 1800190. [Google Scholar] [CrossRef]
- Li, H.-W.; Yue, Y.; Liu, T.-Y.; Li, D.; Wu, Y. Fluorescence-Enhanced Sensing Mechanism of BSA-Protected Small Gold-Nanoclusters to Silver(I) Ions in Aqueous Solutions. J. Phys. Chem. C 2013, 117, 16159–16165. [Google Scholar] [CrossRef]
- Wen, X.; Yu, P.; Toh, Y.-R.; Tang, J. Structure-Correlated Dual Fluorescent Bands in BSA-Protected Au25 Nanoclusters. J. Phys. Chem. C 2012, 116, 11830–11836. [Google Scholar] [CrossRef]
- Wu, Z. Anti-Galvanic Reduction of Thiolate-Protected Gold and Silver Nanoparticles. Angew. Chem. Int. Ed. Engl. 2012, 51, 2934–2938. [Google Scholar] [CrossRef]
- Chen, X.; Essner, J.B.; Baker, G.A. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters. Nanoscale 2014, 6, 9594–9598. [Google Scholar] [CrossRef]
- Uchiyama, S.; Che, G. Luminescent molecular thermometers for the ratiometric sensing of intracellular temperature. Rev. Anal. Chem. 2016, 36, 20160021. [Google Scholar] [CrossRef]
- Uchiyama, S.; Gota, C.; Tsuji, T.; Inada, N. Intracellular temperature measurements with fluorescent polymeric thermometers. Chem. Commun. 2017, 53, 10976–10992. [Google Scholar] [CrossRef]
- Yu, P.; Wen, X.; Toh, Y.; Tang, J. Temperature-Dependent Fluorescence in Au-10 Nanoclusters. J. Phys. Chem. C 2012, 11, 6567–6571. [Google Scholar] [CrossRef]
- Chen, P.-C.; Chen, Y.-N.; Hsu, P.-C.; Shih, C.-C.; Chang, H.-T. Photoluminescent organosilane-functionalized carbon dots as temperature probes. Chem. Commun. 2013, 49, 1639–1641. [Google Scholar] [CrossRef]
- Yu, P.; Wen, X.; Toh, Y.; Tang, J. Temperature-Dependent Fluorescence in Carbon Dots. J. Phys. Chem. C 2012, 116, 25552–25557. [Google Scholar] [CrossRef]
- Lin, H.; Song, X.; Chai, O.J.H.; Yao, Q.; Yang, H.; Xie, J. Photoluminescent Characterization of Metal Nanoclusters: Basic Parameters, Methods, and Applications. Adv. Mater. 2024, 36, e2401002. [Google Scholar] [CrossRef] [PubMed]
- Cantelli, A.; Guidetti, G.; Manzi, J.; Caponetti, V.; Montalti, M. Towards Ultra-Bright Gold Nanoclusters. Eur. J. Inorg. Chem. 2017, 2017, 5068–5084. [Google Scholar] [CrossRef]
- Kus-Liśkiewicz, M.; Fickers, P.; Tahar, I.B. Biocompatibility and Cytotoxicity of Gold Nanoparticles: Recent Advances in Methodologies and Regulations. Int. J. Mol. Sci. 2021, 22, 10952. [Google Scholar] [CrossRef] [PubMed]
The Ratio of Au:Ag | QY | τmean 1 | Kr (×105 s−1) | Knr (×106 s−1) |
---|---|---|---|---|
1:0 | 5.70% | 956.3 | 0.596 | 0.986 |
9:1 | 18.0% | 701.8 | 2.564 | 1.169 |
4:1 | 10.0% | 778.3 | 1.284 | 1.156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhou, Z.; Wang, Z.; Wang, J.; Wang, Y.; Huang, L.; Guo, T.; Han, R.; Jiang, Y. Dual-Emission Au-Ag Nanoclusters with Enhanced Photoluminescence and Thermal Sensitivity for Intracellular Ratiometric Nanothermometry. Biosensors 2025, 15, 510. https://doi.org/10.3390/bios15080510
Liu H, Zhou Z, Wang Z, Wang J, Wang Y, Huang L, Guo T, Han R, Jiang Y. Dual-Emission Au-Ag Nanoclusters with Enhanced Photoluminescence and Thermal Sensitivity for Intracellular Ratiometric Nanothermometry. Biosensors. 2025; 15(8):510. https://doi.org/10.3390/bios15080510
Chicago/Turabian StyleLiu, Helin, Zhongliang Zhou, Zhiwei Wang, Jianhai Wang, Yu Wang, Lu Huang, Tianhuan Guo, Rongcheng Han, and Yuqiang Jiang. 2025. "Dual-Emission Au-Ag Nanoclusters with Enhanced Photoluminescence and Thermal Sensitivity for Intracellular Ratiometric Nanothermometry" Biosensors 15, no. 8: 510. https://doi.org/10.3390/bios15080510
APA StyleLiu, H., Zhou, Z., Wang, Z., Wang, J., Wang, Y., Huang, L., Guo, T., Han, R., & Jiang, Y. (2025). Dual-Emission Au-Ag Nanoclusters with Enhanced Photoluminescence and Thermal Sensitivity for Intracellular Ratiometric Nanothermometry. Biosensors, 15(8), 510. https://doi.org/10.3390/bios15080510