Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,058)

Search Parameters:
Keywords = nanostructured polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 781 KB  
Review
Recent Advances in Electrochemical Sensors for the Detection of Anti-Inflammatory and Antibiotic Drugs: A Comprehensive Review
by Gisele Afonso Bento Mello, Stephen Rathinaraj Benjamin, Fábio de Lima and Rosa F. Dutra
Biosensors 2025, 15(10), 676; https://doi.org/10.3390/bios15100676 - 8 Oct 2025
Abstract
Electrochemical sensors have emerged as powerful analytical tools for the detection of anti-inflammatory and antibiotic drugs due to their high sensitivity, rapid response, and cost-effectiveness compared to conventional chromatographic and spectrophotometric methods. This review highlights recent advances in electrode materials, surface modification strategies, [...] Read more.
Electrochemical sensors have emerged as powerful analytical tools for the detection of anti-inflammatory and antibiotic drugs due to their high sensitivity, rapid response, and cost-effectiveness compared to conventional chromatographic and spectrophotometric methods. This review highlights recent advances in electrode materials, surface modification strategies, and signal amplification approaches for quantifying nonsteroidal anti-inflammatory drugs (NSAIDs) and various antibiotic classes, including sulfonamides, tetracyclines, macrolides, and quinolones. Particular attention is given to nanostructured carbon-based materials, metal nanoparticles, and polymer composites that enhance electron transfer, improve selectivity, and lower limits of detection (LODs). The analytical performance of different electrochemical techniques such as cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry is critically compared across various drug targets. Trends indicate that hybrid nanomaterial-modified electrodes consistently achieve sub-micromolar detection limits in biological and environmental samples, offering potential for point-of-care diagnostics and environmental monitoring. Current challenges include improving sensor stability, mitigating fouling effects, and ensuring reproducibility in complex matrices. Future research should focus on integrated, miniaturized sensing platforms capable of multiplex detection, paving the way for rapid, portable, and sustainable analytical solutions in pharmaceutical and biomedical applications. Full article
Show Figures

Graphical abstract

27 pages, 4295 KB  
Review
Polymer Template Selection for 1D Metal Oxide Gas Sensors: A Review
by Khanyisile Sheryl Nkuna, Teboho Clement Mokhena, Rudolph Erasmus and Katekani Shingange
Processes 2025, 13(10), 3180; https://doi.org/10.3390/pr13103180 - 7 Oct 2025
Abstract
The increasing demand for reliable, sensitive, and cost-effective gas sensors drives ongoing research in this field. Ideal gas sensors must demonstrate high sensitivity and selectivity, stability, rapid response and recovery times, energy efficiency, and affordability. One-dimensional (1D) metal oxide semiconductors (MOSs) are prominent [...] Read more.
The increasing demand for reliable, sensitive, and cost-effective gas sensors drives ongoing research in this field. Ideal gas sensors must demonstrate high sensitivity and selectivity, stability, rapid response and recovery times, energy efficiency, and affordability. One-dimensional (1D) metal oxide semiconductors (MOSs) are prominent candidates due to their excellent sensing properties and straightforward fabrication processes. The sensing efficacy of 1D MOSs is heavily dependent on their surface area and porosity, which influence gas interaction and detection efficiency. Polymeric templates serve as effective tools for enhancing these properties by enabling the creation of uniform, porous nanostructures with high surface area, thereby improving gas adsorption, sensitivity, and dynamic response characteristics. This review systematically examines the role of polymeric templates in the construction of 1D MOSs for gas sensing applications. It discusses critical factors influencing polymer template selection and how this choice affects key microstructural parameters, such as grain size, pore distribution, and defect density, essential to sensor performance. The recent literature highlights the mechanisms through which polymer templates facilitate the fine-tuning of nanostructures. Future research directions include exploring novel polymer architectures, developing scalable synthesis methods, and integrating these sensors with emerging technologies. Full article
(This article belongs to the Special Issue Processing and Applications of Polymer Composite Materials)
Show Figures

Figure 1

30 pages, 2876 KB  
Review
Exhaled Aldehydes and Ketones as Biomarkers of Lung Cancer and Diabetes: Review of Sensor Technologies for Early Disease Diagnosis
by Rafał Kiejzik, Tomasz Wasilewski and Wojciech Kamysz
Biosensors 2025, 15(10), 668; https://doi.org/10.3390/bios15100668 - 3 Oct 2025
Viewed by 164
Abstract
Exhaled breath (EB) contains numerous volatile organic compounds (VOCs) that can reflect pathological metabolic processes, making breath analysis a promising non-invasive diagnostic approach. In particular, volatile aldehydes and ketones have been identified as disease biomarkers in EB. Gas sensors are expected to play [...] Read more.
Exhaled breath (EB) contains numerous volatile organic compounds (VOCs) that can reflect pathological metabolic processes, making breath analysis a promising non-invasive diagnostic approach. In particular, volatile aldehydes and ketones have been identified as disease biomarkers in EB. Gas sensors are expected to play a crucial role in the diagnosis of numerous diseases at an early stage. Among the various available approaches, sensors stand out as especially attractive tools for diagnosing diseases such as lung cancer (LC) and diabetes, due to their affordability and operational simplicity. There is an urgent need in the field of disease detection for the development of affordable, non-invasive, and user-friendly sensors capable of detecting various biomarkers. Devices of the new generation should also demonstrate high repeatability of measurements and extended operational stability of the employed sensors. Due to these demands, the past few years have seen significant advancements in the development and implementation of electronic noses (ENs), which are composed of an array of sensors for the determination of VOCs present in EB. To meet these requirements, the development and integration of advanced receptor coatings on sensor transducers is essential. These coatings include nanostructured materials, molecularly imprinted polymers, and bioreceptors, which collectively enhance selectivity, sensitivity, and operational stability. However, reliable biomarker detection in point-of-care (PoC) mode remains a significant challenge, constrained by several factors. This review provides a comprehensive and critical evaluation of recent studies demonstrating that the detection of VOCs using gas sensor platforms enables disease detection and can be implemented in PoC mode. Full article
(This article belongs to the Special Issue Functional Materials for Biosensing Applications)
Show Figures

Figure 1

52 pages, 9282 KB  
Review
Carrier Mobility, Electrical Conductivity, and Photovoltaic Properties of Ordered Nanostructures Assembled from Semiconducting Polymers
by Maria Pop and Ioan Botiz
Materials 2025, 18(19), 4580; https://doi.org/10.3390/ma18194580 - 2 Oct 2025
Viewed by 407
Abstract
Nanostructures composed of semiconducting polymers that adopt highly ordered molecular arrangements at the nano- and microscale typically exhibit enhanced optoelectronic properties. In this study, we aim to establish a comprehensive correlation between nanostructures with varying degrees of molecular order—fabricated using diverse processing methods—and [...] Read more.
Nanostructures composed of semiconducting polymers that adopt highly ordered molecular arrangements at the nano- and microscale typically exhibit enhanced optoelectronic properties. In this study, we aim to establish a comprehensive correlation between nanostructures with varying degrees of molecular order—fabricated using diverse processing methods—and their tailored optoelectronic properties, as demonstrated by various energy devices. These properties include carrier mobility, electrical conductivity, and photovoltaic capabilities measured predominantly in films tens to hundreds of nanometers thick based on semiconducting polymers. Full article
(This article belongs to the Special Issue Advances in Opto-Electronic Functional Materials and Devices)
Show Figures

Figure 1

16 pages, 1714 KB  
Article
Studies of Intra-Chain and Inter-Chain Charge Carrier Conduction in Acid Doped Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Thin Films
by Ayman A. A. Ismail, Henryk Bednarski and Andrzej Marcinkowski
Materials 2025, 18(19), 4569; https://doi.org/10.3390/ma18194569 - 1 Oct 2025
Viewed by 269
Abstract
Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is a conductive water-processable polymer with many important applications in organic electronics. The electrical conductivity of PEDOT:PSS layers is very diverse and can be changed by changing the processing and post-deposition conditions, e.g., by using different solvent additives, doping [...] Read more.
Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is a conductive water-processable polymer with many important applications in organic electronics. The electrical conductivity of PEDOT:PSS layers is very diverse and can be changed by changing the processing and post-deposition conditions, e.g., by using different solvent additives, doping or modifying the physical conditions of the layer deposition. Despite many years of intensive research on the relationship between the microstructure and properties of these layers, there are still gaps in our knowledge, especially with respect to the detailed understanding of the charge carrier transport mechanism in organic semiconductor thin films. In this work, we investigate the effect of acid doping of PEDOT:PSS thin films on the intra-chain and inter-chain conductivity by developing a model that treats PEDOT:PSS as a nanocomposite material. This model is based on the effective medium theory and uses the percolation theory equation for the electrical conductivity of a mixture of two materials. Here its implementation assumes that the role of the highly conductive material is attributed to the intra-chain conductivity of PEDOT and its quantitative contribution is determined based on the optical Drude–Lorentz model. While the weaker inter-chain conductivity is assumed to originate from the weakly conductive material and is determined based on electrical measurements using the van der Pauw method and coherent nanostructure-dependent analysis. Our studies show that doping with methanesulfonic acid significantly affects both types of conductivity. The intra-chain conductivity of PEDOT increases from 260 to almost 400 Scm−1. Meanwhile, the inter-chain conductivity increases by almost three orders of magnitude, reaching a critical state, i.e., exceeding the percolation threshold. The observed changes in electrical conductivity due to acid doping are attributed to the flattening of the PEDOT/PSS gel nanoparticles. In the model developed here, this flattening is accounted for by the inclusion shape factor. Full article
(This article belongs to the Special Issue Advances in Electronic and Photonic Materials)
Show Figures

Graphical abstract

27 pages, 1325 KB  
Systematic Review
Sustained-Release Oral Delivery of NSAIDs and Acetaminophen: Advances and Recent Formulation Strategies—A Systematic Review
by Paulina Drapińska, Katarzyna Skulmowska-Polok, Joanna Chałupka and Adam Sikora
Pharmaceutics 2025, 17(10), 1264; https://doi.org/10.3390/pharmaceutics17101264 - 26 Sep 2025
Viewed by 551
Abstract
Background: Sustained-release (SR) formulations of non-steroidal anti-inflammatory drugs (NSAIDs) aim to prolong therapeutic activity, reduce dosing frequency, and improve patient adherence. However, currently marketed SR NSAIDs exhibit persistent limitations, including incomplete control over release kinetics, high interpatient variability in bioavailability, limited reduction [...] Read more.
Background: Sustained-release (SR) formulations of non-steroidal anti-inflammatory drugs (NSAIDs) aim to prolong therapeutic activity, reduce dosing frequency, and improve patient adherence. However, currently marketed SR NSAIDs exhibit persistent limitations, including incomplete control over release kinetics, high interpatient variability in bioavailability, limited reduction in gastrointestinal adverse effects, and insufficient dose flexibility for individualized therapy. In many cases, conventional excipients and release mechanisms remain predominant, leaving drug-specific physicochemical and pharmacokinetic constraints only partially addressed. These gaps highlight the need for a comprehensive synthesis of recent technological advances to guide the development of more effective, patient-centered delivery systems. Methods: A narrative literature review was conducted using Web of Science and PubMed databases to identify original research articles and comprehensive technological studies on oral SR formulations of NSAIDs and paracetamol published between January 2020 and March 2025. Inclusion criteria focused on preclinical and technological research addressing formulation design, excipient innovations, and manufacturing approaches. Results: Sixty-four studies met the inclusion criteria, encompassing polymeric matrices (31%), lipid-based carriers (18%), microspheres/hydrogel beads/interpenetrating polymer networks (30%), nanostructured systems (11%), and hybrid platforms (10%). The most common strategies involved pH-dependent release, mucoadhesive systems, and floating drug delivery, aiming to optimize release kinetics, minimize mucosal irritation, and sustain therapeutic plasma levels. Advances in manufacturing—such as hot-melt extrusion, 3D printing, electrospinning, and spray drying—enabled enhanced control of drug release profiles, improved stability, and in some cases up to 30–50% prolongation of release time or reduction in Cmax fluctuations compared with conventional formulations. Conclusions: Recent formulation strategies show substantial potential to overcome long-standing limitations of SR NSAID delivery, with expected benefits for patient compliance and quality of life through reduced dosing frequency, better tolerability, and more predictable therapeutic effects. Nevertheless, integration of in vitro performance with pharmacokinetic and clinical safety outcomes remains limited, and the translation to clinical practice is still in its early stages. This review provides a comprehensive overview of current technological trends, identifies persisting gaps, and proposes future research directions to advance SR NSAID systems toward safer, more effective, and patient-focused therapy. Full article
Show Figures

Graphical abstract

43 pages, 1450 KB  
Review
Bio-Based and Nanostructured Polymers for Sustainable Protection of Cultural Heritage and Medicinal Crops: Convergence of Heritage Science, Circular Bioeconomy, and Environmental Protection
by Irina Fierascu, Anda Maria Baroi, Roxana Ioana Matei, Toma Fistos, Irina Elena Chican, Cristina Emanuela Enascuta, Sorin Marius Avramescu and Radu Claudiu Fierascu
Polymers 2025, 17(19), 2582; https://doi.org/10.3390/polym17192582 - 24 Sep 2025
Viewed by 441
Abstract
Polymers have long been central to modern materials science, but their durability has also made them major contributors to environmental pollution. A new generation of bio-based and nanostructured polymers is now reshaping this field, offering materials that are functional, reversible, and sustainable. This [...] Read more.
Polymers have long been central to modern materials science, but their durability has also made them major contributors to environmental pollution. A new generation of bio-based and nanostructured polymers is now reshaping this field, offering materials that are functional, reversible, and sustainable. This review examines their role across three interconnected domains: cultural heritage conservation, the protection of medicinal and aromatic plants (MAPs), and environmental sustainability. In heritage science, polymers are moving away from synthetic resins toward renewable systems such as chitosan, nanocellulose, and PLA, which provide stability while remaining reversible and compatible with delicate substrates. In agriculture, biodegradable coatings, controlled-release carriers, and edible films are improving MAP protection, extending shelf life, and reducing reliance on synthetic pesticides. In environmental applications, polymers are being reinvented as solutions rather than problems—through degradable mulches, functional hydrogels, and nanocomposites that clean soils and waters within a circular economy framework. Looking across these domains reveals strong synergies. The same principles—biodegradability, multifunctionality, and responsiveness—apply in each context, turning polymers from passive barriers into intelligent, adaptive systems. Their future success will depend not only on chemistry but also on life-cycle design, policy alignment, and public trust, making polymers key enablers of sustainability. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

28 pages, 2114 KB  
Review
Recent Advances in Flexible Materials for Wearable Optical Biosensors
by Linyan Xie, Kai Yang, Mengfei Wang, Wenli Hou and Qiongqiong Ren
Biosensors 2025, 15(9), 611; https://doi.org/10.3390/bios15090611 - 16 Sep 2025
Viewed by 1080
Abstract
The integration of flexible materials with optical sensing technologies has advanced wearable optical biosensors, offering significant potential in personalized medicine, health monitoring, and disease prevention. This review summarizes the recent advancements in flexible materials for wearable optical biosensors, with a focus on materials [...] Read more.
The integration of flexible materials with optical sensing technologies has advanced wearable optical biosensors, offering significant potential in personalized medicine, health monitoring, and disease prevention. This review summarizes the recent advancements in flexible materials for wearable optical biosensors, with a focus on materials such as polymer substrates, nanostructured materials, MXenes, hydrogels, and textile-based integrated platforms. These materials enhance the functionality, sensitivity, and adaptability of sensors, particularly in wearable applications. The review also explores various optical sensing mechanisms, including surface plasmon resonance (SPR), optical fiber sensing, fluorescence sensing, chemiluminescence, and surface-enhanced Raman spectroscopy (SERS), emphasizing their role in improving the detection capabilities for biomarkers, physiological parameters, and environmental pollutants. Despite significant advancements, critical challenges remain in the fabrication and practical deployment of flexible optical biosensors, particularly regarding the long-term stability of materials under dynamic environments, maintaining reliable biocompatibility during prolonged skin contact, and minimizing signal interference caused by motion artifacts and environmental fluctuations. Addressing these issues is vital to ensure robustness and accuracy in real-world applications. Looking forward, future research should emphasize the development of multifunctional and miniaturized devices, the integration of wireless communication and intelligent data analytics, and the improvement of environmental resilience. Such innovations are expected to accelerate the transition of flexible optical biosensors from laboratory research to practical clinical and consumer healthcare applications, paving the way for intelligent health management and early disease diagnostics. Overall, flexible optical biosensors hold great promise in personalized health management, early disease diagnosis, and continuous physiological monitoring, with the potential to revolutionize the healthcare sector. Full article
(This article belongs to the Special Issue Flexible Electronics for Biosensing)
Show Figures

Figure 1

16 pages, 4426 KB  
Article
Scalable Fabrication of Biomimetic Antibacterial Nanospikes on PMMA Films Using Atmospheric-Pressure Low-Temperature Plasma
by Masashi Yamamoto, Kentaro Tada, Ayumu Takada and Atsushi Sekiguchi
Biomimetics 2025, 10(9), 601; https://doi.org/10.3390/biomimetics10090601 - 8 Sep 2025
Viewed by 514
Abstract
Antibacterial surfaces inspired by biological micro- and nanostructures, such as those found on the wings of cicadas and dragonflies, have attracted interest due to their ability to inhibit bacterial adhesion and damage microbial membranes without relying on chemical agents. However, conventional fabrication techniques [...] Read more.
Antibacterial surfaces inspired by biological micro- and nanostructures, such as those found on the wings of cicadas and dragonflies, have attracted interest due to their ability to inhibit bacterial adhesion and damage microbial membranes without relying on chemical agents. However, conventional fabrication techniques like photolithography or nanoimprinting are limited by substrate shape, size, and high operational costs. In this study, we developed a scalable method using atmospheric-pressure low-temperature plasma (APLTP) to fabricate sharp-edged nanospikes on solvent-cast polymethyl methacrylate (PMMA) films. The nanospikes were formed through plasma-induced modification of pores in the film, followed by annealing to control surface wettability while maintaining structural sharpness. Atomic force microscopy confirmed the formation of micro/nanostructures, and contact angle measurements revealed reversible hydrophilicity. Antibacterial performance was evaluated against Escherichia coli using ISO 22196 standards. While the film with only plasma treatment reduced bacterial colonies by 30%, the film annealed after plasma treatment achieved an antibacterial activity value greater than 5, with bacterial counts below the detection limit (<10 CFU). These findings demonstrate that APLTP offers a practical route for large-area fabrication of biomimetic antibacterial coatings on flexible polymer substrates, holding promise for future applications in healthcare, packaging, and public hygiene. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

14 pages, 3061 KB  
Article
High–Energy–Density Fiber Supercapacitor Based on Graphene-Enhanced Hierarchically Nanostructured Conductive Polymer Composite Electrodes
by Chuangen Ye, Qingfeng Yang, Mingxian Xu, Haitang Qiu, Xiaozhen Zhang, Jianping Ma, Haiyang Gao, Xuansheng Feng and Yong Li
Nanomaterials 2025, 15(17), 1350; https://doi.org/10.3390/nano15171350 - 2 Sep 2025
Viewed by 631
Abstract
The development of portable and wearable electronics has promoted the advancement of fiber supercapacitors (FSCs), but their low energy density still limits their application in flexible devices. Herein, we incorporated micron-sized graphene dispersions at varying concentrations into the polyaniline (PANI) precursor solution prepared [...] Read more.
The development of portable and wearable electronics has promoted the advancement of fiber supercapacitors (FSCs), but their low energy density still limits their application in flexible devices. Herein, we incorporated micron-sized graphene dispersions at varying concentrations into the polyaniline (PANI) precursor solution prepared via electrochemical polymerization and subsequently electrodeposited PANI/graphene composites onto the surface of carbon nanotube (CNT) fibers, ultimately obtaining fibrous PANI/graphene@CNT composite electrodes. This electrode material not only exhibits the superior electrochemical activity characteristic of conducting polymers synthesized by electrochemical polymerization but also possesses a relatively high specific surface area. Furthermore, we fabricated coaxial fiber supercapacitors using PANI/graphene@CNT composite fibers and CNT films as the positive and negative electrode materials, respectively. The maximum energy density and power density could reach 160.5 µWh cm−2 and 13 mW cm−2 respectively, proving its excellent energy storage and output capabilities. More importantly, the prepared CFASC device showed remarkable mechanical and electrochemical durability. Even after 3000 bending cycles, it retained 89.77% of its original capacitance, highlighting its promising applicability in the realm of flexible electronics. The resulting devices demonstrate excellent electrochemical performance and mechanical stability. Full article
(This article belongs to the Special Issue Application of Nanostructures in Electrochemical Energy Storage)
Show Figures

Figure 1

17 pages, 5981 KB  
Article
Nano Emulsion of Essential Oils Loaded in Chitosan Coating for Controlling Anthracnose in Tomatoes (Solanum lycopersicum) During Storage
by Sibahle Gumede, Semakaleng Mpai, Sreejarani Kesavan Pillai and Dharini Sivakumar
Foods 2025, 14(17), 3038; https://doi.org/10.3390/foods14173038 - 29 Aug 2025
Viewed by 726
Abstract
Tomato fruit is susceptible to decay caused by Colletotrichum gloeosporioides. An edible coating derived from essential oils loaded into a chitosan polysaccharide polymer is a sustainable delivery approach to improve coating versatility and stability for reduced reliance on synthetic fungicides to combat anthracnose [...] Read more.
Tomato fruit is susceptible to decay caused by Colletotrichum gloeosporioides. An edible coating derived from essential oils loaded into a chitosan polysaccharide polymer is a sustainable delivery approach to improve coating versatility and stability for reduced reliance on synthetic fungicides to combat anthracnose incidence in tomatoes. The objective of this study was to evaluate the antifungal efficacy of nanostructured thyme essential oil incorporated into chitosan coatings [Nano-(T)-EO-CS] against Colletotrichum gloeosporioides in tomato fruits, and to investigate the underlying mechanisms contributing to its inhibitory effects. Nano-(T)-EO of (1% v/v) showed the greatest antifungal activities while achieving complete inhibition of C. gloeosporioides. At (0.8% w/v) concentration, chitosan inhibited 78% of radial mycelial growth in C. gloeosporioides. Loading Nano-(T)-EO (1% v/v) into chitosan (0.8% w/v) completely inhibited spore germination (100%). The surface electron microscopy revealed that the Nano-(T)-EO-CS coating induced significant deformation and inhibited the growth of C. gloeosporioides. Compared with the control, the Nano-(T)-EO-CS coating reduced disease incidence by 50%, whereas the commercial antifungal agent Sporekill® reduced incidence by 40% in preventively inoculated tomatoes stored at 10 °C and 85% relative humidity (RH) for 14 days after harvest, and at 18 °C for 3 days at the market shelf condition. Despite chitinase activity peaking on day 14 of cold storage, it peaked significantly on day 7 in Nano-(T)-EO-CS and Sporekill®-treated tomatoes. The Nano-(T)-EO-CS coating enhanced ferric-reducing antioxidant power and total phenol content in tomatoes for 7 and 14 d of postharvest storage. The chitosan-based edible coating loaded with thyme essential oil offers a sustainable, eco-friendly alternative to chemical fungicides for improving tomato shelf life and reducing decay. Full article
Show Figures

Graphical abstract

38 pages, 14618 KB  
Review
Nanostructure-Engineered Optical and Electrochemical Biosensing Toward Food Safety Assurance
by Xinxin Wu, Zhecong Yuan, Shujie Gao, Xinai Zhang, Hany S. El-Mesery, Wenjie Lu, Xiaoli Dai and Rongjin Xu
Foods 2025, 14(17), 3021; https://doi.org/10.3390/foods14173021 - 28 Aug 2025
Viewed by 1281
Abstract
Considering the necessity of food safety testing, various biosensors have been developed based on biological elements (e.g., antibodies, aptamers), chemical elements (e.g., molecularly imprinted polymers), physical elements (e.g., nanopores) as recognition substances. According to the sensing patterns of signal transduction, the biosensors could [...] Read more.
Considering the necessity of food safety testing, various biosensors have been developed based on biological elements (e.g., antibodies, aptamers), chemical elements (e.g., molecularly imprinted polymers), physical elements (e.g., nanopores) as recognition substances. According to the sensing patterns of signal transduction, the biosensors could be classified into optical and electrochemical biosensing, including fluorescence sensing, Raman sensing, colorimetric sensing, electrochemical sensing, etc. To enhance the sensing sensitivity, kinds of nanomaterials have been applied for signal amplification. With merits of high selectivity, sensitivity, and accuracy, the sensing strategies have been widely applied for food safety testing. This review highlights their signal output behavior, (e.g., fluorescence intensity shifts, Raman peak alterations, colorimetric changes, electrochemical current/voltage/impedance variations), nanostructure-mediated amplification mechanisms, and the fundamental recognition principles. Future efforts should prioritize multiplexed assay platforms, integration with microfluidics and smart devices, novel biorecognition elements, and sustainable manufacturing. Emerging synergies between biosensors and AI-driven data analytics promise intelligent monitoring systems for predictive food safety management, addressing challenges in food matrix compatibility and real-time hazard identification. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

16 pages, 1508 KB  
Review
Bacterial Cellulose Production in Co-Culture Systems: Opportunities, Challenges, and Future Directions
by Dheanda Absharina, Filemon Jalu Nusantara Putra, Chiaki Ogino, Sándor Kocsubé, Csilla Veres and Csaba Vágvölgyi
Appl. Microbiol. 2025, 5(3), 92; https://doi.org/10.3390/applmicrobiol5030092 - 26 Aug 2025
Cited by 1 | Viewed by 2368
Abstract
Bacterial cellulose (BC), a nanostructured biopolymer produced by Komagateibacter spp., exhibits remarkable mechanical strength, purity, and biocompatibility, making it highly attractive for applications in biomedicine, food, and sustainable materials. Despite its potential, monoculture fermentation suffers from low yield and limited scalability. This review [...] Read more.
Bacterial cellulose (BC), a nanostructured biopolymer produced by Komagateibacter spp., exhibits remarkable mechanical strength, purity, and biocompatibility, making it highly attractive for applications in biomedicine, food, and sustainable materials. Despite its potential, monoculture fermentation suffers from low yield and limited scalability. This review highlights the innovative application of co-culture fermentations as a novel strategy, where Komagataeibacter is paired with complementary microorganisms such as yeasts, lactic acid bacteria, and photosynthetic microbes. This approach has emerged as a promising solution to overcome the limitations of monoculture by enhancing BC productivity, tailoring material properties, and improving sustainability. We explore the synergistic interactions within co-cultures, including metabolic cross-feeding and in situ polymer integration, while also addressing critical challenges such as microbial stability and operational complexity. Unlike previous reviews focused primarily on BC biosynthesis, applications, or genetic engineering, this article emphasizes co-culture fermentation with Komagataeibacter as a novel and underexplored strategy to improve the yield, functionality, and scalability of BC production. Full article
Show Figures

Figure 1

17 pages, 2293 KB  
Article
Contrast-Enhanced OCT for Damage Detection in Polymeric Resins Embedded with Metallic Nanoparticles via Surface Plasmon Resonance
by Maha Hadded, Thiago Luiz Lara Oliveira, Olivier Debono, Emilien Bourdon and Alan Jean-Marie
NDT 2025, 3(3), 20; https://doi.org/10.3390/ndt3030020 - 25 Aug 2025
Viewed by 482
Abstract
Nanoparticle-embedded polymeric materials are an important subject in advanced structural applications due to their advantageous combination of low weight and high mechanical performance. Optical coherence tomography (OCT) is a high-resolution imaging technique that enables subsurface defect visualization, which can be used as one [...] Read more.
Nanoparticle-embedded polymeric materials are an important subject in advanced structural applications due to their advantageous combination of low weight and high mechanical performance. Optical coherence tomography (OCT) is a high-resolution imaging technique that enables subsurface defect visualization, which can be used as one of the methods to reveal defects resulting from decomposition pathways or mechanisms of polymers. Nevertheless, the low contrast of polymeric materials, particularly PEEK-based polymers, does not allow for automatic geometry extraction for analytical input. To address the constraint of weak contrast, localized surface plasmon resonance (LSPR) of plasmonic nanoparticle-reinforced polymer materials has been used as an OCT contrast agent to provide the necessary contrast. The backscattering efficiency of light was also theoretically investigated, based on the Lorenz–Mie theory, with a single spherical nanoparticle embedded in a PEEK matrix as a non-absorptive, isotropic and homogeneous medium. In this study, the cases of a single homogeneous TiO2  nanoparticle and a hybrid TiO2/Au  core/shell nanoparticle configuration were considered separately. An examination of the influence of nanoparticle diameter and gold shell thickness on backscattering efficiencies of these nanostructures was performed. The results indicate that TiO2/Au nanoshells demonstrate superior near-infrared (NIR) light backscattering capabilities at typical OCT operating wavelengths (830–1310 nm). Additionally, the potential of these nanoparticles for application in non-destructive testing-based light backscattering methods was investigated. The findings suggest that TiO2/Au nanoshells have the ability to effectively backscatter near-infrared light in OCT operating central wavelengths, making them suitable to serve as effective NIR contrast-enhancing agents for OCT within the domain of NDT. Full article
Show Figures

Figure 1

14 pages, 1950 KB  
Article
Tailoring Microwave Absorption via Ferromagnetic Resonance and Quarter-Wave Effects in Carbonaceous Ternary FeCoCr Alloy/PVDF Polymer Composites
by Rajeev Kumar, Harish Kumar Choudhary, Shital P. Pawar, Manjunatha Mushtagatte and Balaram Sahoo
Microwave 2025, 1(2), 8; https://doi.org/10.3390/microwave1020008 - 25 Aug 2025
Viewed by 468
Abstract
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of [...] Read more.
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of the carbon nanotubes, while a small fraction exists as isolated core–shell, carbon-coated spherical particles. Overall, the synthesized material predominantly exhibits a nanotubular carbon morphology. High-resolution transmission electron microscopy (HRTEM) confirms that the encapsulated nanoparticles are quasi-spherical in shape, with an average size ranging from approximately 25 to 40 nm. The polymeric composite was synthesized via solution casting, ensuring homogenous dispersion of filler constituent. Electromagnetic interference (EMI) shielding performance and reflection loss characteristics were evaluated in the X-band frequency range. Experimental results reveal a significant reflection loss exceeding −20 dB at a matching thickness of 2.5 mm, with peak absorption shifting across frequencies with thickness variation. The comparative analysis, supported by quarter-wave theory and FMR resonance conditions, indicates that the absorption mechanism transitions between magnetic resonance and interference-based cancellation depending on the material configuration and thickness. This work provides experimental validation of loss mechanism dominance in magnetic alloy/polymer composites and proposes design principles for tailoring broadband microwave absorbers. Full article
Show Figures

Figure 1

Back to TopTop