Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = nanoscale superconducting states

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6294 KiB  
Article
Transition to Metallic and Superconducting States Induced by Thermal or Electrical Deoxidation of the Dislocation Network in the Surface Region of SrTiO3
by Krzysztof Szot, Christian Rodenbücher, Krzysztof Rogacki, Gustav Bihlmayer, Wolfgang Speier, Krystian Roleder, Franciszek Krok, Hugo Keller, Arndt Simon and Annette Bussmann-Holder
Nanomaterials 2024, 14(23), 1944; https://doi.org/10.3390/nano14231944 - 4 Dec 2024
Viewed by 1229
Abstract
The question as to why deoxidized SrTiO3−δ becomes metallic and superconducting at extremely low levels of oxygen vacancy concentration has been a mystery for many decades. Here, we show that the real amount of effused oxygen during thermal reduction, which is needed [...] Read more.
The question as to why deoxidized SrTiO3−δ becomes metallic and superconducting at extremely low levels of oxygen vacancy concentration has been a mystery for many decades. Here, we show that the real amount of effused oxygen during thermal reduction, which is needed to induce superconducting properties, is in the range of only 1014/cm3 and thus even lower than the critical carrier concentrations assumed previously (1017–1019/cm3). By performing detailed investigations of the optical and electrical properties down to the nanoscale, we reveal that filaments are forming during reduction along a network of dislocations in the surface layer. Hence, a reduced epi-polished SrTiO3−δ crystal has to be regarded as a nano-composite consisting of a perfect dielectric matrix with negligible carrier density, which is short-circuited by metallic filaments with a local carrier density in the range of 1020/cm3. We present that electro-degradation leads to a more pronounced evolution of filamentary bundles and thus can generate a superconducting state with higher TC than thermal reduction. These findings indicate that traditional homogeneous models of superconductivity in self-doped SrTiO3−δ need to be revised, and we propose an alternative explanation taking into account the coexistence of metallic dislocation cores with polar insulating regions allowing for polaronic coupling. Full article
(This article belongs to the Special Issue Recent Advances in Nanowires and Superconductors (Second Edition))
Show Figures

Figure 1

10 pages, 2113 KiB  
Article
Kondo Versus Fano in Superconducting Artificial High-Tc Heterostructures
by Gaetano Campi, Gennady Logvenov, Sergio Caprara, Antonio Valletta and Antonio Bianconi
Condens. Matter 2024, 9(4), 43; https://doi.org/10.3390/condmat9040043 - 31 Oct 2024
Cited by 3 | Viewed by 1495
Abstract
Recently, the quest for high-Tc superconductors has evolved from the trial-and-error methodology to the growth of nanostructured artificial high-Tc superlattices (AHTSs) with tailor-made superconducting functional properties by quantum design. Here, we report the growth by molecular beam epitaxy (MBE) of a superlattice of [...] Read more.
Recently, the quest for high-Tc superconductors has evolved from the trial-and-error methodology to the growth of nanostructured artificial high-Tc superlattices (AHTSs) with tailor-made superconducting functional properties by quantum design. Here, we report the growth by molecular beam epitaxy (MBE) of a superlattice of Mott insulator metal interfaces (MIMIs) made of nanoscale superconducting layers of quantum confined-space charge in the Mott insulator La2CuO4 (LCO), with thickness L intercalated by normal metal La1.55Sr0.45CuO4 (LSCO) with period d. The critical temperature shows the superconducting dome with Tc as a function of the geometrical parameter L/d showing the maximum at the magic ratio L/d = 2/3 where the Fano–Feshbach resonance enhances the superconducting critical temperature. The normal state transport data of the samples at the top of the superconducting dome exhibit Planckian T-linear resistivity. For L/d > 2/3 and L/d < 2/3, the heterostructures show a resistance following Kondo universal scaling predicted by the numerical renormalization group theory for MIMI nanoscale heterostructures. We show that the Kondo temperature, TK, and the Kondo scattering amplitude, R0K, vanish at L/d = 2/3, while TK and R0K increase at both sides of the superconducting dome, indicating that the T-linear resistance regime competes with the Kondo proximity effect in the normal phase of MIMIs. Full article
(This article belongs to the Special Issue Superstripes Physics, 3rd Edition)
Show Figures

Figure 1

13 pages, 896 KiB  
Article
Characteristic Times for Gap Relaxation and Heat Escape in Nanothin NbTi Superconducting Filaments: Thickness Dependence and Effect of Substrate
by Khalil Harrabi, Abdelkrim Mekki and Milorad V. Milošević
Nanomaterials 2024, 14(19), 1585; https://doi.org/10.3390/nano14191585 - 30 Sep 2024
Viewed by 1105
Abstract
We measured the temporal voltage response of NbTi superconducting filaments with varied nanoscale thicknesses to step current pulses that induce non-equilibrium superconducting states governed by a hot spot mechanism. Such detected voltage emerges after a delay time td, which is intimately [...] Read more.
We measured the temporal voltage response of NbTi superconducting filaments with varied nanoscale thicknesses to step current pulses that induce non-equilibrium superconducting states governed by a hot spot mechanism. Such detected voltage emerges after a delay time td, which is intimately connected to the gap relaxation and heat escape times. By employing time-dependent Ginzburg–Landau theory to link the delay time to the applied current, we determined that the gap relaxation time depends linearly on film thickness, aligning with the acoustic mismatch theory for phonon transmission at the superconductor–substrate interface. We thereby find a gap relaxation time of 104 ps per nm of thickness for NbTi films on polished sapphire. We further show that interfacial interaction with the substrate significantly impacts the gap relaxation time, with observed values of 9 ns on SiOx, 6.8 ns on fused silica, and 5.2 ns on sapphire for a 50 nm thick NbTi strip at T=5.75 K. These insights are valuable for optimizing superconducting sensing technologies, particularly the single-photon detectors that operate in the transient regime of nanothin superconducting bridges and filaments. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

17 pages, 9035 KiB  
Article
Nanoscale Three-Dimensional Imaging of Integrated Circuits Using a Scanning Electron Microscope and Transition-Edge Sensor Spectrometer
by Nathan Nakamura, Paul Szypryt, Amber L. Dagel, Bradley K. Alpert, Douglas A. Bennett, William Bertrand Doriese, Malcolm Durkin, Joseph W. Fowler, Dylan T. Fox, Johnathon D. Gard, Ryan N. Goodner, James Zachariah Harris, Gene C. Hilton, Edward S. Jimenez, Burke L. Kernen, Kurt W. Larson, Zachary H. Levine, Daniel McArthur, Kelsey M. Morgan, Galen C. O’Neil, Nathan J. Ortiz, Christine G. Pappas, Carl D. Reintsema, Daniel R. Schmidt, Peter A. Schultz, Kyle R. Thompson, Joel N. Ullom, Leila Vale, Courtenay T. Vaughan, Christopher Walker, Joel C. Weber, Jason W. Wheeler and Daniel S. Swetzadd Show full author list remove Hide full author list
Sensors 2024, 24(9), 2890; https://doi.org/10.3390/s24092890 - 30 Apr 2024
Cited by 1 | Viewed by 2218
Abstract
X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing requirements of X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography is predominantly performed at large synchrotron [...] Read more.
X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing requirements of X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography is predominantly performed at large synchrotron facilities. We present a laboratory-scale nanotomography instrument that achieves nanoscale spatial resolution while addressing the limitations of conventional tomography tools. The instrument combines the electron beam of a scanning electron microscope (SEM) with the precise, broadband X-ray detection of a superconducting transition-edge sensor (TES) microcalorimeter. The electron beam generates a highly focused X-ray spot on a metal target held micrometers away from the sample of interest, while the TES spectrometer isolates target photons with a high signal-to-noise ratio. This combination of a focused X-ray spot, energy-resolved X-ray detection, and unique system geometry enables nanoscale, element-specific X-ray imaging in a compact footprint. The proof of concept for this approach to X-ray nanotomography is demonstrated by imaging 160 nm features in three dimensions in six layers of a Cu-SiO2 integrated circuit, and a path toward finer resolution and enhanced imaging capabilities is discussed. Full article
(This article belongs to the Special Issue Recent Advances in X-Ray Sensing and Imaging)
Show Figures

Figure 1

12 pages, 2741 KiB  
Article
Preparation and Peculiar Magnetic Properties at Low Temperatures of La1.85Sr0.15CuO4 Nanofibers
by Shi-Long Gao, Ting-Ting Zhang, Li-Peng Qiu, Yu-Rui Zhang, Guo-Ting Cheng, Qi Liu, Wen-Peng Han, Seeram Ramakrishna and Yun-Ze Long
Nanomaterials 2024, 14(4), 361; https://doi.org/10.3390/nano14040361 - 15 Feb 2024
Viewed by 1423
Abstract
Herein, the preparation process, morphology, structure, and magnetic properties of La1.85Sr0.15CuO4 (LSCO) cobweb-like nanofibers are reported. LSCO nanofibers with a regular grain size distribution are successfully prepared via electrospinning, followed by calcination. We conducted morphology analysis and elemental [...] Read more.
Herein, the preparation process, morphology, structure, and magnetic properties of La1.85Sr0.15CuO4 (LSCO) cobweb-like nanofibers are reported. LSCO nanofibers with a regular grain size distribution are successfully prepared via electrospinning, followed by calcination. We conducted morphology analysis and elemental distribution using electron microscopy and energy-dispersive X-ray spectroscopy (EDS), respectively. Additionally, magnetic property testing was performed using a vibrating sample magnetometer (VSM) to confirm the superconducting properties of the samples. Interestingly, our samples exhibited a superconducting transition temperature, Tc, of 25.21 K, which showed some disparity compared to similar works. Furthermore, we observed a ferromagnetic response at low temperatures in the superconducting nanofibers. We attribute these phenomena to the effects generated by surface states of nanoscale superconducting materials. Full article
Show Figures

Figure 1

10 pages, 1777 KiB  
Article
Q-Balls in the Pseudogap Phase of Superconducting HgBa2CuO4+y
by Gaetano Campi, Luisa Barba, Nikolai D. Zhigadlo, Andrey A. Ivanov, Alexey P. Menushenkov and Antonio Bianconi
Condens. Matter 2023, 8(1), 15; https://doi.org/10.3390/condmat8010015 - 28 Jan 2023
Cited by 5 | Viewed by 2626
Abstract
Fast and local probes, such as X-ray spectroscopy, X-ray diffraction (XRD), and X-ray microscopy, have provided direct evidence for nanoscale phase separation in high temperature perovskite superconductors composed of (i) free particles coexisting with (ii) Jahn Teller polarons (i.e., charges associated with local [...] Read more.
Fast and local probes, such as X-ray spectroscopy, X-ray diffraction (XRD), and X-ray microscopy, have provided direct evidence for nanoscale phase separation in high temperature perovskite superconductors composed of (i) free particles coexisting with (ii) Jahn Teller polarons (i.e., charges associated with local lattice distortions) not detected by slow experimental methods probing only delocalized states. Moreover, these experimental probes have shown the formation of a superstripes phase in the pseudogap regime below T* in cuprates. Here, we focus on the anomalous temperature dependence of short range X-ray diffraction CDW reflection satellites with high momentum transfer, probing both charge and lattice fluctuations in superconducting HgBa2CuO4+y (Hg1201) in the pseudogap regime below T* and above Tc. We report compelling evidence of the anomalous anticorrelation of the coherence volume with the peak maximum amplitude of the CDW XRD satellite by cooling below T*. This anomalous temperature trend of the short-range striped Jahn Teller polaronic CDW puddles is in agreement with predictions of the Q-ball theory of the quark gluon plasma extended to cuprates, providing compelling evidence for non topological soliton puddles of striped condensate of pairs in the pseudogap phase. Full article
(This article belongs to the Special Issue Superstripes Physics)
Show Figures

Figure 1

11 pages, 1856 KiB  
Article
Epitaxial Growth and Structural Characterizations of MnBi2Te4 Thin Films in Nanoscale
by Shu-Hsuan Su, Jen-Te Chang, Pei-Yu Chuang, Ming-Chieh Tsai, Yu-Wei Peng, Min Kai Lee, Cheng-Maw Cheng and Jung-Chung Andrew Huang
Nanomaterials 2021, 11(12), 3322; https://doi.org/10.3390/nano11123322 - 7 Dec 2021
Cited by 14 | Viewed by 5640
Abstract
The intrinsic magnetic topological insulator MnBi2Te4 has attracted much attention due to its special magnetic and topological properties. To date, most reports have focused on bulk or flake samples. For material integration and device applications, the epitaxial growth of MnBi [...] Read more.
The intrinsic magnetic topological insulator MnBi2Te4 has attracted much attention due to its special magnetic and topological properties. To date, most reports have focused on bulk or flake samples. For material integration and device applications, the epitaxial growth of MnBi2Te4 film in nanoscale is more important but challenging. Here, we report the growth of self-regulated MnBi2Te4 films by the molecular beam epitaxy. By tuning the substrate temperature to the optimal temperature for the growth surface, the stoichiometry of MnBi2Te4 becomes sensitive to the Mn/Bi flux ratio. Excessive and deficient Mn resulted in the formation of a MnTe and Bi2Te3 phase, respectively. The magnetic measurement of the 7 SL MnBi2Te4 film probed by the superconducting quantum interference device (SQUID) shows that the antiferromagnetic order occurring at the Néel temperature 22 K is accompanied by an anomalous magnetic hysteresis loop along the c-axis. The band structure measured by angle-resolved photoemission spectroscopy (ARPES) at 80 K reveals a Dirac-like surface state, which indicates that MnBi2Te4 has topological insulator properties in the paramagnetic phase. Our work demonstrates the key growth parameters for the design and optimization of the synthesis of nanoscale MnBi2Te4 films, which are of great significance for fundamental research and device applications involving antiferromagnetic topological insulators. Full article
Show Figures

Figure 1

13 pages, 4322 KiB  
Article
Imaging of Strong Nanoscale Vortex Pinning in GdBaCuO High-Temperature Superconducting Tapes
by David Collomb, Min Zhang, Weijia Yuan and Simon J. Bending
Nanomaterials 2021, 11(5), 1082; https://doi.org/10.3390/nano11051082 - 22 Apr 2021
Cited by 6 | Viewed by 3660
Abstract
The high critical current density of second-generation high-temperature superconducting (2G-HTS) tapes is the result of the systematic optimisation of the pinning landscape for superconducting vortices through careful engineering of the size and density of defects and non-superconducting second phases. Here, we use scanning [...] Read more.
The high critical current density of second-generation high-temperature superconducting (2G-HTS) tapes is the result of the systematic optimisation of the pinning landscape for superconducting vortices through careful engineering of the size and density of defects and non-superconducting second phases. Here, we use scanning Hall probe microscopy to conduct a vortex-resolved study of commercial GdBaCuO tapes in low fields for the first time and complement this work with “local” magnetisation and transport measurements. Magnetic imaging reveals highly disordered vortex patterns reflecting the presence of strong pinning from a dense distribution of nanoscale Gd2O3 second-phase inclusions in the superconducting film. However, we find that the measured vortex profiles are unexpectedly broad, with full-width-half-maxima typically of 6 μm, and exhibit almost no temperature dependence in the range 10–85 K. Since the lateral displacements of pinned vortex cores are not expected to exceed the superconducting layer thickness, this suggests that the observed broadening is caused by the disruption of the circulating supercurrents due to the high density of nanoscale pinning sites. Deviations of our local magnetisation data from an accepted 2D Bean critical state model also indicate that critical state profiles relax quite rapidly by flux creep. Our measurements provide important information about the role second-phase defects play in enhancing the critical current in these tapes and demonstrate the power of magnetic imaging as a complementary tool in the optimisation of vortex pinning phenomena in 2G-HTS tapes. Full article
(This article belongs to the Special Issue Applications of Nanoparticles in Superconducting Materials)
Show Figures

Figure 1

7 pages, 2810 KiB  
Article
Nanoscale Superconducting States in the Fe-Based Filamentary Superconductor of Pr-Doped CaFe2As2
by Giang D. Nguyen, Mingming Fu, Qiang Zou, Liurukara D. Sanjeewa, An-Ping Li, Athena S. Sefat and Zheng Gai
Nanomaterials 2021, 11(4), 1019; https://doi.org/10.3390/nano11041019 - 16 Apr 2021
Cited by 3 | Viewed by 2746
Abstract
The low-temperature scanning tunneling microscope and spectroscopy (STM/STS) are used to visualize superconducting states in the cleaved single crystal of 9% praseodymium-doped CaFe2As2 (Pr-Ca122) with Tc ≈ 30 K. The spectroscopy shows strong spatial variations in the density of [...] Read more.
The low-temperature scanning tunneling microscope and spectroscopy (STM/STS) are used to visualize superconducting states in the cleaved single crystal of 9% praseodymium-doped CaFe2As2 (Pr-Ca122) with Tc ≈ 30 K. The spectroscopy shows strong spatial variations in the density of states (DOS), and the superconducting map constructed from spectroscopy discloses a localized superconducting phase, as small as a single unit cell. The comparison of the spectra taken at 4.2 K and 22 K (below vs. close to the bulk superconducting transition temperature) from the exact same area confirms the superconducting behavior. Nanoscale superconducting states have been found near Pr dopants, which can be identified using dI/dV conductance maps at +300 mV. There is no correlation of the local superconductivity to the surface reconstruction domain and surface defects, which reflects its intrinsic bulk behavior. We, therefore, suggest that the local strain of Pr dopants is competing with defects induced local magnetic moments; this competition is responsible for the local superconducting states observed in this Fe-based filamentary superconductor. Full article
(This article belongs to the Special Issue Superconductivity in Nanoscaled Systems)
Show Figures

Figure 1

17 pages, 1317 KiB  
Review
Fully Superconducting Josephson Bolometers for Gigahertz Astronomy
by Federico Paolucci, Nadia Ligato, Gaia Germanese, Vittorio Buccheri and Francesco Giazotto
Appl. Sci. 2021, 11(2), 746; https://doi.org/10.3390/app11020746 - 14 Jan 2021
Cited by 4 | Viewed by 4011
Abstract
The origin and the evolution of the universe are concealed in the evanescent diffuse extragalactic background radiation (DEBRA). To reveal these signals, the development of innovative ultra-sensitive bolometers operating in the gigahertz band is required. Here, we review the design and experimental realization [...] Read more.
The origin and the evolution of the universe are concealed in the evanescent diffuse extragalactic background radiation (DEBRA). To reveal these signals, the development of innovative ultra-sensitive bolometers operating in the gigahertz band is required. Here, we review the design and experimental realization of two bias-current-tunable sensors based on one dimensional fully superconducting Josephson junctions: the nanoscale transition edge sensor (nano-TES) and the Josephson escape sensor (JES). In particular, we cover the theoretical basis of the sensors operation, the device fabrication, their experimental electronic and thermal characterization and the deduced detection performance. Indeed, the nano-TES promises a state-of-the-art noise equivalent power (NEP) of about 5×1020 W/Hz, while the JES active region is expected to show an unprecedented NEP of the order of 1025 W/Hz. Therefore, the nano-TES and JES are strong candidates to push radio astronomy to the next level. Full article
Show Figures

Figure 1

10 pages, 1463 KiB  
Article
Structural Phase Diagram of LaO1−xFxBiSSe: Suppression of the Structural Phase Transition by Partial F Substitutions
by Kazuhisa Hoshi, Shunsuke Sakuragi, Takeshi Yajima, Yosuke Goto, Akira Miura, Chikako Moriyoshi, Yoshihiro Kuroiwa and Yoshikazu Mizuguchi
Condens. Matter 2020, 5(4), 81; https://doi.org/10.3390/condmat5040081 - 11 Dec 2020
Cited by 9 | Viewed by 4541
Abstract
Recently, the anomalous two-fold-symmetric in-plane anisotropy of superconducting states has been observed in a layered superconductor system, LaO1−xFxBiSSe (x = 0.1 and 0.5), with a tetragonal (four-fold symmetric) in-plane structure. To understand the origin of the phenomena [...] Read more.
Recently, the anomalous two-fold-symmetric in-plane anisotropy of superconducting states has been observed in a layered superconductor system, LaO1−xFxBiSSe (x = 0.1 and 0.5), with a tetragonal (four-fold symmetric) in-plane structure. To understand the origin of the phenomena observed in LaO1−xFxBiSSe, clarification of the low-temperature structural phase diagram is needed. In this study, we have investigated the low-temperature crystal structure of LaO1−xFxBiSSe (x = 0, 0.01, 0.02, 0.03, and 0.5). From synchrotron X-ray diffraction experiments, a structural transition from tetragonal to monoclinic was observed for x = 0 and 0.01 at 340 and 240 K, respectively. For x = 0.03, a structural transition and broadening of the diffraction peak were not observed down to 100 K. These facts suggest that the structural transition could be suppressed by 3% F substitution in LaO1−xFxBiSSe. Furthermore, the crystal structure for x = 0.5 at 4 K was examined by low-temperature laboratory X-ray diffraction, which confirmed that the tetragonal structure is maintained at 4 K for x = 0.5. Our structural investigation suggests that the two-fold-symmetric in-plane anisotropy of superconducting states observed in LaO1−xFxBiSSe was not originated from structural symmetry lowering in its average structure. To evaluate the possibility of the local structural modification like nanoscale puddles in the average tetragonal structure, further experiments are desired. Full article
(This article belongs to the Section Superconductivity)
Show Figures

Figure 1

12 pages, 471 KiB  
Article
Superfluid Properties of Superconductors with Disorder at the Nanoscale: A Random Impedance Model
by Giulia Venditti, Ilaria Maccari, Marco Grilli and Sergio Caprara
Condens. Matter 2020, 5(2), 36; https://doi.org/10.3390/condmat5020036 - 14 May 2020
Cited by 2 | Viewed by 3407
Abstract
Some two-dimensional superconductors like, e.g., LaAlO 3 /SrTiO 3 heterostructures or thin films of transition metal dichalcogenides, display peculiar properties that can be understood in terms of electron inhomogeneity at the nanoscale. In this framework, unusual features of the metal-superconductor transition have been [...] Read more.
Some two-dimensional superconductors like, e.g., LaAlO 3 /SrTiO 3 heterostructures or thin films of transition metal dichalcogenides, display peculiar properties that can be understood in terms of electron inhomogeneity at the nanoscale. In this framework, unusual features of the metal-superconductor transition have been interpreted as due to percolative effects within a network of superconducting regions embedded in a metallic matrix. In this work we use a mean-field-like effective medium approach to investigate the superconducting phase below the critical temperature T c at which the resistivity vanishes. Specifically, we consider the finite frequency impedance of the system to extract the dissipative part of the conductance and the superfluid stiffness in the superconducting state. Intriguing effects arise from the metallic character of the embedding matrix: upon decreasing the temperature below T c proximity effects may rapidly increase the superfluid stiffness. Then, a rather fragile superconducting state, living on a filamentary network just below T c , can be substantially consolidated by additional superconducting regions induced by proximity effect in the interstitial metallic regions. This mean-field prediction should call for further theoretical analyses and trigger experimental investigations of the superconducting properties of the above systems. Full article
Show Figures

Graphical abstract

12 pages, 2423 KiB  
Article
Current-Resistance Effects Inducing Nonlinear Fluctuation Mechanisms in Granular Aluminum Oxide Nanowires
by Carlo Barone, Hannes Rotzinger, Jan Nicolas Voss, Costantino Mauro, Yannick Schön, Alexey V. Ustinov and Sergio Pagano
Nanomaterials 2020, 10(3), 524; https://doi.org/10.3390/nano10030524 - 14 Mar 2020
Cited by 12 | Viewed by 3689
Abstract
The unusual superconducting properties of granular aluminum oxide have been recently investigated for application in quantum circuits. However, the intrinsic irregular structure of this material requires a good understanding of the transport mechanisms and, in particular, the effect of disorder, especially when patterned [...] Read more.
The unusual superconducting properties of granular aluminum oxide have been recently investigated for application in quantum circuits. However, the intrinsic irregular structure of this material requires a good understanding of the transport mechanisms and, in particular, the effect of disorder, especially when patterned at the nanoscale level. In view of these aspects, electric transport and voltage fluctuations have been investigated on thin-film based granular aluminum oxide nanowires, in the normal state and at temperatures between 8 and 300 K. The nonlinear resistivity and two-level tunneling fluctuators have been observed. Regarding the nature of the noise processes, the experimental findings give a clear indication in favor of a dynamic random resistor network model, rather than the possible existence of a local ordering of magnetic origin. The identification of the charge carrier fluctuations in the normal state of granular aluminum oxide nanowires is very useful for improving the fabrication process and, therefore, reducing the possible sources of decoherence in the superconducting state, where quantum technologies that are based on these nanostructures should work. Full article
(This article belongs to the Special Issue Superconducting- and Graphene-based Devices)
Show Figures

Graphical abstract

13 pages, 2650 KiB  
Review
Evolution of Complexity in Out-of-Equilibrium Systems by Time-Resolved or Space-Resolved Synchrotron Radiation Techniques
by Gaetano Campi and Antonio Bianconi
Condens. Matter 2019, 4(1), 32; https://doi.org/10.3390/condmat4010032 - 14 Mar 2019
Cited by 15 | Viewed by 3485
Abstract
Out-of-equilibrium phenomena are attracting high interest in physics, materials science, chemistry and life sciences. In this state, the study of structural fluctuations at different length scales in time and space are necessary to achieve significant advances in the understanding of the structure-functionality relationship. [...] Read more.
Out-of-equilibrium phenomena are attracting high interest in physics, materials science, chemistry and life sciences. In this state, the study of structural fluctuations at different length scales in time and space are necessary to achieve significant advances in the understanding of the structure-functionality relationship. The visualization of patterns arising from spatiotemporal fluctuations is nowadays possible thanks to new advances in X-ray instrumentation development that combine high-resolution both in space and in time. We present novel experimental approaches using high brilliance synchrotron radiation sources, fast detectors and focusing optics, joint with advanced data analysis based on automated statistical, mathematical and imaging processing tools. This approach has been used to investigate structural fluctuations in out-of-equilibrium systems in the novel field of inhomogeneous quantum complex matter at the crossing point of technology, physics and biology. In particular, we discuss how nanoscale complexity controls the emergence of high-temperature superconductivity (HTS), myelin functionality and formation of hybrid organic-inorganic supramolecular assembly. The emergent complex geometries, opening novel venues to quantum technology and to the development of quantum physics of living systems, are discussed. Full article
Show Figures

Figure 1

Back to TopTop