Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = nanometer pore

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4032 KiB  
Review
Insights to Resistive Pulse Sensing of Microparticle and Biological Cells on Microfluidic Chip
by Yiming Yao, Kai Zhao, Haoxin Jia, Zhengxing Wei, Yiyang Huo, Yi Zhang and Kaihuan Zhang
Biosensors 2025, 15(8), 496; https://doi.org/10.3390/bios15080496 - 1 Aug 2025
Viewed by 99
Abstract
Since the initial use of biological ion channels to detect single-stranded genomic base pair differences, label-free and highly sensitive resistive pulse sensing (RPS) with nanopores has made remarkable progress in single-molecule analysis. By monitoring transient ionic current disruptions caused by molecules translocating through [...] Read more.
Since the initial use of biological ion channels to detect single-stranded genomic base pair differences, label-free and highly sensitive resistive pulse sensing (RPS) with nanopores has made remarkable progress in single-molecule analysis. By monitoring transient ionic current disruptions caused by molecules translocating through a nanopore, this technology offers detailed insights into the structure, charge, and dynamics of the analytes. In this work, the RPS platforms based on biological, solid-state, and other sensing pores, detailing their latest research progress and applications, are reviewed. Their core capability is the high-precision characterization of tiny particles, ions, and nucleotides, which are widely used in biomedicine, clinical diagnosis, and environmental monitoring. However, current RPS methods involve bottlenecks, including limited sensitivity (weak signals from sub-nanometer targets with low SNR), complex sample interference (high false positives from ionic strength, etc.), and field consistency (solid-state channel drift, short-lived bio-pores failing POCT needs). To overcome this, bio-solid-state fusion channels, in-well reactors, deep learning models, and transfer learning provide various options. Evolving into an intelligent sensing ecosystem, RPS is expected to become a universal platform linking basic research, precision medicine, and on-site rapid detection. Full article
(This article belongs to the Special Issue Advanced Microfluidic Devices and Lab-on-Chip (Bio)sensors)
Show Figures

Figure 1

11 pages, 1936 KiB  
Communication
Diffusion of C-O-H Fluids in a Sub-Nanometer Pore Network: Role of Pore Surface Area and Its Ratio with Pore Volume
by Siddharth Gautam and David Cole
C 2025, 11(3), 57; https://doi.org/10.3390/c11030057 - 1 Aug 2025
Viewed by 154
Abstract
Porous materials are characterized by the pore surface area (S) and volume (V) accessible to a confined fluid. For mesoporous materials NMR measurements of diffusion are used to assess the S/V ratio, because at short times, only [...] Read more.
Porous materials are characterized by the pore surface area (S) and volume (V) accessible to a confined fluid. For mesoporous materials NMR measurements of diffusion are used to assess the S/V ratio, because at short times, only the diffusivity of molecules in the adsorbed layer is affected by confinement and the fractional population of these molecules is proportional to the S/V ratio. For materials with sub-nanometer pores, this might not be true, as the adsorbed layer can encompass the entire pore volume. Here, using molecular simulations, we explore the role played by S and S/V in determining the dynamical behavior of two carbon-bearing fluids—CO2 and ethane—confined in sub-nanometer pores of silica. S and V in a silicalite model representing a sub-nanometer porous material are varied by selectively blocking a part of the pore network by immobile methane molecules. Three classes of adsorbents were thus obtained with either all of the straight (labeled ‘S-major’) or zigzag channels (‘Z-major’) remaining open or a mix of a fraction of both types of channel blocked, resulting in half of the total pore volume being blocked (‘Half’). While the adsorption layers from opposite surfaces overlap, encompassing the entire pore volume for all pores except the intersections, the diffusion coefficient is still found to be reduced at high S/V, especially for CO2, albeit not so strongly as would be expected in the case of wider pores. This is because of the presence of channel intersections that provide a wider pore space with non-overlapping adsorption layers. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Figure 1

28 pages, 6803 KiB  
Article
Structural Heterogeneity of Biochar Modulates’ Soil Hydraulic Properties and Nutrient Migration
by Guohui Li, Yayong Chen, Xiaopeng Chen, Beibei Zhou, Manli Duan, Hongyan Zhu and Guomin Shao
Agronomy 2025, 15(8), 1830; https://doi.org/10.3390/agronomy15081830 - 28 Jul 2025
Viewed by 270
Abstract
Biochar application is a well-recognized strategy to enhance agricultural soil fertility, but its structural heterogeneity leads to inconsistent outcomes in soil improvement, particularly in water and nutrient transport dynamics. In order to ensure the beneficial effects of biochar-amended agricultural soils in terms of [...] Read more.
Biochar application is a well-recognized strategy to enhance agricultural soil fertility, but its structural heterogeneity leads to inconsistent outcomes in soil improvement, particularly in water and nutrient transport dynamics. In order to ensure the beneficial effects of biochar-amended agricultural soils in terms of water retention and fertilizer fixation, in this paper, we aim to elucidate the effect of the structural heterogeneity of biochar on the hydraulic properties and nutrient transport of agricultural soils. This study compares biochars at millimeter (BMP), micrometer (BUP), and nanometer (BNP) scales using CT scanning, and investigates the effects of different application rates (0.0–2.0%) on soil’s hydraulic properties and nutrient transport using soil column experiments and CDE analyses. The results show that biochar generally decreased soil saturated hydraulic conductivity (SSHC), except for the application of 2.0% BMP, which increased it. Biochar enhanced soil saturated water content (SSWC) and water holding capacity (WHC), with the 2.0% BMP treatment achieving the highest values (SSHC: 49.34 cm/d; SSWC: 0.40 g/g; WHC: 0.25 g/g). BUPs and BNPs inhibited water infiltration due to pore-blocking, while 2.0% BMP promoted infiltration. Convective dispersion equation analysis (CDE) indicated that BUPs and BNPs reduced water and nutrient transport, with 2.0% BMP showing optimal performance. Statistical analyses revealed that biochar’s structural heterogeneity significantly affected soil water repellency, its hydraulic properties, and solute transport (p < 0.05). Smaller particles enhanced water retention and nutrient fixation, while larger particles improved WHC at appropriate rates. These findings provide valuable insights for optimizing biochar application to improve soil functions and support sustainable agriculture. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

20 pages, 11478 KiB  
Article
Pore Evolution and Fractal Characteristics of Marine Shale: A Case Study of the Silurian Longmaxi Formation Shale in the Sichuan Basin
by Hongzhan Zhuang, Yuqiang Jiang, Quanzhong Guan, Xingping Yin and Yifan Gu
Fractal Fract. 2025, 9(8), 492; https://doi.org/10.3390/fractalfract9080492 - 28 Jul 2025
Viewed by 274
Abstract
The Silurian marine shale in the Sichuan Basin is currently the main reservoir for shale gas reserves and production in China. This study investigates the reservoir evolution of the Silurian marine shale based on fractal dimension, quantifying the complexity and heterogeneity of the [...] Read more.
The Silurian marine shale in the Sichuan Basin is currently the main reservoir for shale gas reserves and production in China. This study investigates the reservoir evolution of the Silurian marine shale based on fractal dimension, quantifying the complexity and heterogeneity of the shale’s pore structure. Physical simulation experiments were conducted on field-collected shale samples, revealing the evolution of total organic carbon, mineral composition, porosity, and micro-fractures. The fractal dimension of shale pore was characterized using the Frenkel–Halsey–Hill and capillary bundle models. The relationships among shale components, porosity, and fractal dimensions were investigated through a correlation analysis and a principal component analysis. A comprehensive evolution model for porosity and micro-fractures was established. The evolution of mineral composition indicates a gradual increase in quartz content, accompanied by a decline in clay, feldspar, and carbonate minerals. The thermal evolution of organic matter is characterized by the formation of organic pores and shrinkage fractures on the surface of kerogen. Retained hydrocarbons undergo cracking in the late stages of thermal evolution, resulting in the formation of numerous nanometer-scale organic pores. The evolution of inorganic minerals is represented by compaction, dissolution, and the transformation of clay minerals. Throughout the simulation, porosity evolution exhibited distinct stages of rapid decline, notable increase, and relative stabilization. Both pore volume and specific surface area exhibit a trend of decreasing initially and then increasing during thermal evolution. However, pore volume slowly decreases after reaching its peak in the late overmature stage. Fractal dimensions derived from the Frenkel–Halsey–Hill model indicate that the surface roughness of pores (D1) in organic-rich shale is generally lower than the complexity of their internal structures (D2) across different maturity levels. Additionally, the average fractal dimension calculated based on the capillary bundle model is higher, suggesting that larger pores exhibit more complex structures. The correlation matrix indicates a co-evolution relationship between shale components and pore structure. Principal component analysis results show a close relationship between the porosity of inorganic pores, microfractures, and fractal dimension D2. The porosity of organic pores, the pore volume and specific surface area of the main pore size are closely related to fractal dimension D1. D1 serves as an indicator of pore development extent and characterizes the changes in components that are “consumed” or “generated” during the evolution process. Based on mineral composition, fractal dimensions, and pore structure evolution, a comprehensive model describing the evolution of pores and fractal dimensions in organic-rich shale was established. Full article
Show Figures

Figure 1

26 pages, 22388 KiB  
Article
Reservoir Characterization and Genetic Analysis Based on Shale Lithofacies Classification: A Case Study of the Paleogene Shahejie Formation, East China
by Yanli Fu, Zhuang Ruan, Bingsong Yu, Gaofeng Hou, Chenyang Bai and Qiuhong Chang
Minerals 2025, 15(4), 406; https://doi.org/10.3390/min15040406 - 12 Apr 2025
Viewed by 363
Abstract
The quality of shale oil reservoirs is a major factor determining shale oil production capacity. Research on shale oil reservoirs has primarily focused on lithology. However, there has been little research on lithofacies classification. Moreover, there is still a lack of research on [...] Read more.
The quality of shale oil reservoirs is a major factor determining shale oil production capacity. Research on shale oil reservoirs has primarily focused on lithology. However, there has been little research on lithofacies classification. Moreover, there is still a lack of research on potential reservoir differences between different lithofacies and their controlling factors. In this context, the present study aims to classify the lithofacies of shale oil reservoirs in the Paleogene Shahejie Formation of the Jiyang Depression using different methods, including rock core and thin section observations, scanning electron microscopy (SEM) analysis, and X-ray diffraction (XRD). In addition, the characteristics and genesis of the high-quality shale oil reservoirs were studied using three-dimensional micro-CT scanning, low-pressure nitrogen adsorption, high-pressure mercury injection, and core physical property testing. The results showed better physical properties of combined shale and lenticular crystal limestone (C1), continuous parallel planar calcareous mudstone and uncontinuous laminate mudstone (C2), and continuous parallel planar calcareous mudstone and laminate mudstone (C3) compared with those of the other lithofacies; C1 exhibited the best physical properties. These three combined lithofacies consisted mainly of interconnected pores with medium and large pore throats, as well as fractures; the pore size mainly ranged from nanometers to micrometers. The high-quality reservoir conditions in combined lithofacies are the result of both basic sedimentary lithofacies and diagenetic history. The results of the current study provide new ideas and a useful reference for future related studies on mud shale reservoirs. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

25 pages, 18430 KiB  
Article
Pore Structure and Heterogeneity Characteristics of Deep Coal Reservoirs: A Case Study of the Daning–Jixian Block on the Southeastern Margin of the Ordos Basin
by Bo Li, Yanqin Guo, Xiao Hu, Tao Wang, Rong Wang, Xiaoming Chen, Wentian Fan and Ze Deng
Minerals 2025, 15(2), 116; https://doi.org/10.3390/min15020116 - 24 Jan 2025
Cited by 2 | Viewed by 817
Abstract
To clarify the micropore structure and fractal characteristics of the Danning–Jixian block on the eastern margin of the Ordos Basin, this study focuses on the deep coal rock of the Benxi Formation in that area. On the basis of an analysis of coal [...] Read more.
To clarify the micropore structure and fractal characteristics of the Danning–Jixian block on the eastern margin of the Ordos Basin, this study focuses on the deep coal rock of the Benxi Formation in that area. On the basis of an analysis of coal quality and physical properties, qualitative and quantitative studies of pore structures with different pore diameters were conducted via techniques such as field emission scanning electron microscopy (FE-SEM), low-pressure CO2 adsorption (LP-CO2A), low-temperature N2 adsorption (LT-N2A), and high-pressure mercury intrusion (HPMI). By applying fractal theory and integrating the results from the LP-CO2A, LT-N2A, and HPMI experiments, the fractal dimensions of pores with different diameters were obtained to characterize the complexity and heterogeneity of the pore structures of the coal samples. The results indicate that the deep coal reservoirs in the Danning–Jixian block have abundant nanometer-scale organic matter gas pores, tissue pores, and a small number of intergranular pores, showing strong heterogeneity influenced by the microscopic components and forms of distribution of organic matter. The pore structure of the Benxi Formation exhibits significant cross-scale effects and strong heterogeneity and is predominantly composed of micropores that account for more than 90% of the total pore volume; the pore structure is affected mainly by the degree of coalification, the vitrinite group, and the ash yield. Fractal analysis reveals that the heterogeneity of macropores is greater than that of mesopores and micropores. This may be attributed to the smaller pore sizes and concentrated distributions of micropores, which are less influenced by diagenesis, resulting in simpler pore structures with lower fractal dimensions. In contrast, mesopores and macropores, with larger diameters and broader distributions, exhibit diverse origins and are more affected by diagenesis, reflecting strong heterogeneity. The abundant storage space and strong self-similarity of micropores in deep coal facilitate the occurrence, flow, and extraction of deep coalbed methane. Full article
(This article belongs to the Special Issue Characterization of Geological Material at Nano- and Micro-scales)
Show Figures

Figure 1

17 pages, 12219 KiB  
Article
Multi-Scale Characterization of Reservoir Space Features in Yueman Area of Fuman Oilfield in Tarim Basin
by Yintao Zhang, Chengyan Lin, Lihua Ren, Chong Sun, Jing Li, Xingyu Zhao and Mingyang Wu
Processes 2025, 13(2), 310; https://doi.org/10.3390/pr13020310 - 23 Jan 2025
Viewed by 717
Abstract
Reservoir space characteristics are the key to reservoir evaluation and the evaluation of reservoir capacity. The reservoir space of fracture-vuggy carbonate reservoirs is complex and diverse, and it develops from micro to macro. There is a lack of systematic study on the reservoir [...] Read more.
Reservoir space characteristics are the key to reservoir evaluation and the evaluation of reservoir capacity. The reservoir space of fracture-vuggy carbonate reservoirs is complex and diverse, and it develops from micro to macro. There is a lack of systematic study on the reservoir space of the Ordovician fracture-vuggy carbonate reservoir. Therefore, taking the Ordovician Yijianfang Formation in Yueman Block of Fuman Oilfield in Tarim Basin as an example, the microscopic reservoir space characteristics of the study area were characterized by rock thin section identification, X-ray diffraction, scanning electron microscopy, high-pressure mercury injection, and low-temperature nitrogen adsorption experiments, and the macroscopic reservoir space characteristics of the study area were characterized by core observation, drilling and logging data, and imaging logging data. The results showed that (1) the lithology of the Ordovician Yijianfang Formation in the Yueman area of Fuman Oilfield is mainly micrite and sparry grain limestone. The mineral composition is mainly calcite, accounting for 97.35%, containing a small amount of quartz and dolomite, accounting for 1.1% and 1.55%, respectively. (2) At the micro level, the reservoir space of Yijianfang Formation in Yueman Block is not developed in primary pores, mainly having developed dissolution pores, structural fractures, and pressure solution fractures, and the pore size is distributed from the nanometer to micron scale. (3) The dissolution caves in the study area are developed at the macro level, mainly including pore-type, cave-type, fracture-pore-type, and fracture-type reservoirs. The research results provide technical support for the accurate evaluation of fractured-vuggy carbonate reservoirs and the improvement of exploration and development effects. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

14 pages, 7759 KiB  
Article
SLM Magnesium Alloy Micro-Arc Oxidation Coating
by Xuejie Yue, Kangning Xu, Shuyi Wang, Hengyan Liu, Shiyue Guo, Rusheng Zhao, Gaopeng Xu, Hao Wang and Xuezheng Yue
Materials 2024, 17(20), 4988; https://doi.org/10.3390/ma17204988 - 12 Oct 2024
Cited by 1 | Viewed by 1741
Abstract
In this study, we utilized Selective Laser Melting (SLM) technology to fabricate a magnesium alloy, and subsequently subject it to micro-arc oxidation treatment. We analyzed and compared the microstructure, elemental distribution, wetting angle, and corrosion resistance of the SLM magnesium alloy both before [...] Read more.
In this study, we utilized Selective Laser Melting (SLM) technology to fabricate a magnesium alloy, and subsequently subject it to micro-arc oxidation treatment. We analyzed and compared the microstructure, elemental distribution, wetting angle, and corrosion resistance of the SLM magnesium alloy both before and after the micro-arc oxidation process. The findings indicate that the SLM magnesium alloy exhibits surface porosity defects ranging from 2% to 3.2%, which significantly influence the morphology and functionality of the resulting film layer formed during the micro-arc oxidation process. These defects manifest as pores on the surface, leading to an uneven distribution of micropores with varying sizes across the layer. The surface roughness of the 3D-printed magnesium alloy exhibits a high roughness value of 180 nanometers. The phosphorus (P) content is lower within the film layer compared to the surface, suggesting that the Mg3(PO4)2 phase predominantly resides on the surface, whereas the interior is primarily composed of MgO. The micro-arc oxidation process enhances the hydrophilicity and corrosion resistance of the SLM magnesium alloy, thereby potentially endowing it with bioactivity. Additionally, the increased surface roughness post-treatment promotes cell proliferation. However, certain inherent defects present in the SLM magnesium alloy samples negatively impact the improvement of their corrosion resistance. Full article
Show Figures

Figure 1

17 pages, 2671 KiB  
Article
Experimental Study on Improving the Recovery Rate of Low-Pressure Tight Oil Reservoirs Using Molecular Deposition Film Technology
by Chun Shao and Xiaoyang Chen
Appl. Sci. 2024, 14(20), 9197; https://doi.org/10.3390/app14209197 - 10 Oct 2024
Cited by 1 | Viewed by 1354
Abstract
The intricate geological characteristics of tight oil reservoirs, characterized by extremely low porosity and permeability as well as pronounced heterogeneity, have led to a decline in reservoir pressure, substantial gas expulsion, an accelerated decrease in oil production rates, and the inadequacy of traditional [...] Read more.
The intricate geological characteristics of tight oil reservoirs, characterized by extremely low porosity and permeability as well as pronounced heterogeneity, have led to a decline in reservoir pressure, substantial gas expulsion, an accelerated decrease in oil production rates, and the inadequacy of traditional water injection methods for enhancing oil recovery. As a result, operators encounter heightened operational costs and prolonged timelines necessary to achieve optimal production levels. This situation underscores the increasing demand for advanced techniques specifically designed for tight oil reservoirs. An internal evaluation is presented, focusing on the application of molecular deposition film techniques for enhanced oil recovery from tight oil reservoirs, with the aim of elucidating the underlying mechanisms of this approach. The research addresses fluid flow resistance by employing aqueous solutions as transmission media and leverages electrostatic interactions to generate nanometer-thin films that enhance the surface properties of the reservoir while modifying the interaction dynamics between oil and rock. This facilitates the more efficient displacement of injected fluids to replace oil during pore flushing processes, thereby achieving enhanced oil recovery objectives. The experimental results indicate that an improvement in oil displacement efficiency is attained by increasing the concentration of the molecular deposition film agent, with 400 mg/L identified as the optimal concentration from an economic perspective. It is advisable to commence with a concentration of 500 mg/L before transitioning to 400 mg/L, considering the adsorption effects near the well zone and dilution phenomena within the reservoir. Molecular deposition films can effectively reduce injection pressure, enhance injection capacity, and lower initiation pressure. These improvements significantly optimize flow conditions within the reservoir and increase core permeability, resulting in a 7.82% enhancement in oil recovery. This molecular deposition film oil recovery technology presents a promising innovative approach for enhanced oil recovery, serving as a viable alternative to conventional water flooding methods. Full article
Show Figures

Figure 1

68 pages, 13257 KiB  
Review
Organic and Metal–Organic Polymer-Based Catalysts—Enfant Terrible Companions or Good Assistants?
by Milan Králik, Peter Koóš, Martin Markovič and Pavol Lopatka
Molecules 2024, 29(19), 4623; https://doi.org/10.3390/molecules29194623 - 29 Sep 2024
Cited by 3 | Viewed by 3439
Abstract
This overview provides insights into organic and metal–organic polymer (OMOP) catalysts aimed at processes carried out in the liquid phase. Various types of polymers are discussed, including vinyl (various functional poly(styrene-co-divinylbenzene) and perfluorinated functionalized hydrocarbons, e.g., Nafion), condensation (polyesters, -amides, -anilines, -imides), and [...] Read more.
This overview provides insights into organic and metal–organic polymer (OMOP) catalysts aimed at processes carried out in the liquid phase. Various types of polymers are discussed, including vinyl (various functional poly(styrene-co-divinylbenzene) and perfluorinated functionalized hydrocarbons, e.g., Nafion), condensation (polyesters, -amides, -anilines, -imides), and additional (polyurethanes, and polyureas, polybenzimidazoles, polyporphyrins), prepared from organometal monomers. Covalent organic frameworks (COFs), metal–organic frameworks (MOFs), and their composites represent a significant class of OMOP catalysts. Following this, the preparation, characterization, and application of dispersed metal catalysts are discussed. Key catalytic processes such as alkylation—used in large-scale applications like the production of alkyl-tert-butyl ether and bisphenol A—as well as reduction, oxidation, and other reactions, are highlighted. The versatile properties of COFs and MOFs, including well-defined nanometer-scale pores, large surface areas, and excellent chemisorption capabilities, make them highly promising for chemical, electrochemical, and photocatalytic applications. Particular emphasis is placed on their potential for CO2 treatment. However, a notable drawback of COF- and MOF-based catalysts is their relatively low stability in both alkaline and acidic environments, as well as their high cost. A special part is devoted to deactivation and the disposal of the used/deactivated catalysts, emphasizing the importance of separating heavy metals from catalysts. The conclusion provides guidance on selecting and developing OMOP-based catalysts. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

22 pages, 4964 KiB  
Article
Fluid Flow Behavior in Nanometer-Scale Pores and Its Impact on Shale Oil Recovery Efficiency
by Xiangji Dou, Menxing Qian, Xinli Zhao, An Wang, Zhengdong Lei, Erpeng Guo and Yufei Chen
Energies 2024, 17(18), 4677; https://doi.org/10.3390/en17184677 - 20 Sep 2024
Cited by 3 | Viewed by 1072
Abstract
Shale oil reservoirs, as an unconventional hydrocarbon resource, have the potential to substitute conventional hydrocarbon resources and alleviate energy shortages, making their exploration and development critically significant. However, due to the low permeability and the development of nanopores in shale reservoirs, shale oil [...] Read more.
Shale oil reservoirs, as an unconventional hydrocarbon resource, have the potential to substitute conventional hydrocarbon resources and alleviate energy shortages, making their exploration and development critically significant. However, due to the low permeability and the development of nanopores in shale reservoirs, shale oil production is challenging and recovery efficiency is low. During the imbibition stage, fracturing fluid displaces the oil in the pores primarily under capillary forces, but the complex pore structure of shale reservoirs makes the imbibition mechanism unclear. This research studies the imbibition flow mechanism in nanopores based on the capillary force model and two-phase flow theory, coupled with numerical simulation methods. The results indicated that within a nanopore diameter range of 10–20 nm, increasing the pore diameter leads to a higher imbibition displacement volume. Increased pressure can enhance the imbibition displacement, but the effect diminishes gradually. Under the water-wet conditions, the imbibition displacement volume increases as the contact angle decreases. When the oil phase viscosity decreases from 10 mPa·s to 1 mPa·s, the imbibition displacement rate can increase by 72%. Moreover, merely increasing the water phase viscosity results in only a 5% increase in the imbibition displacement rate. The results provide new insights into the imbibition flow mechanism in nanopores within shale oil reservoirs and offer a theoretical foundation and technical support for efficient shale oil development. Full article
Show Figures

Figure 1

21 pages, 11571 KiB  
Article
Characteristics of Micropore-Throat Structures in Tight Oil Reservoirs: A Case Study of the Jiufotang Formation in the Houhe Region, NE China
by Guolong Zhang and Chenglong Ma
Minerals 2024, 14(9), 918; https://doi.org/10.3390/min14090918 - 6 Sep 2024
Viewed by 1023
Abstract
In order to examine further the characteristics of micropore-throat structures of the tight oil reservoir in the Jiufotang Formation in the Houhe region, this study used whole rock X-ray diffraction, routine physical property analysis, and routine thin section observations to analyze the material [...] Read more.
In order to examine further the characteristics of micropore-throat structures of the tight oil reservoir in the Jiufotang Formation in the Houhe region, this study used whole rock X-ray diffraction, routine physical property analysis, and routine thin section observations to analyze the material composition and physical properties of the tight oil reservoir. CT scanning, high-pressure mercury infiltration, and other test methods were employed to analyze the characteristics of the pore-throat structures in the tight oil reservoir. In addition, the Pearson correlation coefficients quantified the relationships between nine parameters and pore-throat structures. The parameters with high correlations were optimized for analysis, and a comprehensive classification scheme for micropore-throat structures in the tight oil reservoir in the study area was established. The results show that the reservoir in the Jiufotang Formation in the Houhe region is composed of feldspathic and lithic arkosic sandstone, with feldspar and clast pore dissolution pores as the main type of reservoir pore space. The tight oil reservoir has small pore-throat radius, complex structures, poor connectivity, and high heterogeneity. It generally contains micron-sized pores with submicron to nanometer throat widths and small- and medium-sized pores to fine micropore-throat structures. Porosity, permeability, coefficient of variation, skewness coefficient, and average pore-throat radius, were selected for k-means cluster analysis. The micropore-throat structures of the tight oil reservoir were divided into three categories: classes I, II, and III. The study area is dominated by class II pore throats, accounting for 58%. Diagenesis mainly controls the pore-throat structure. These results provide an effective reference for the identification and evaluation of favorable sweet spots in tight oil reservoirs in similar blocks in China. Full article
(This article belongs to the Topic Petroleum Geology and Geochemistry of Sedimentary Basins)
Show Figures

Figure 1

17 pages, 6415 KiB  
Article
Impact of Pore Structure on Seepage Capacity in Tight Reservoir Intervals in Shahejie Formation, Bohai Bay Basin
by Shaogong Zhu, Yudong Cao, Qiangtai Huang, Haotong Yu, Weiyan Chen, Yujie Zhong and Wenchao Chen
J. Mar. Sci. Eng. 2024, 12(9), 1496; https://doi.org/10.3390/jmse12091496 - 29 Aug 2024
Cited by 2 | Viewed by 1113
Abstract
The exploration and development of conventional oil and gas resources are becoming more difficult, and the proportion of low-permeability reservoirs in newly discovered reservoir resources has expanded to 45%. As the main focus of the oil industry, the global average recovery rate of [...] Read more.
The exploration and development of conventional oil and gas resources are becoming more difficult, and the proportion of low-permeability reservoirs in newly discovered reservoir resources has expanded to 45%. As the main focus of the oil industry, the global average recovery rate of low-permeability reservoir resources is only 20%, and most crude oil is still unavailable, so our understanding of such reservoirs needs to be deepened. The microscopic pore structure of low-permeability reservoir rocks exhibits significant complexity and variability; reservoir evaluation is more difficult. For elucidating the internal distribution of storage space and the mechanisms influencing seepage, we focus on the low-permeability sandstone reservoir of the Shahejie Formation, located on the northern slope of the Chenjiazhuang uplift, Bohai Bay. Employing a suite of advanced analytical techniques, including helium expansion, pressure pulse, high-pressure mercury intrusion (HPMI), and micro-computed tomography (micro-CT) scanning, we examined the main pore–throat size affecting reservoir storage and seepage in the reservoir at both the micrometer and nanometer scales. The results reveal that pores with diameters exceeding 40 μm are sparsely developed within the low-permeability reservoir rocks of the study area. However, pores ranging from 0 to 20 μm predominate, exhibiting an uneven distribution and a clustered structure in the three-dimensional pore structure model. The pore volume showed a unimodal and bimodal distribution, thus significantly contributing to the storage space. The main sizes of the reservoir in this study area are 40–80 μm and 200–400 μm. Micron-sized pores, while present, are not the primary determinants of the reservoir’s seepage capacity. Instead, coarser submicron and nano-pores exert a more substantial influence on the permeability of the rock. Additionally, the presence of micro-fractures is found to enhance the reservoir’s seepage capacity markedly. The critical pore–throat size range impacting the permeability of the reservoir in the study area is identified to be between 0.025 and 0.4 μm. Full article
Show Figures

Figure 1

15 pages, 4638 KiB  
Article
Experimental Study and Analysis of Chemical Modification of Coal Surfaces by Viscoelastic Surfactant Fracturing Fluids
by Mengmeng Yang, Shihui Gong and Yugang Cheng
Appl. Sci. 2024, 14(17), 7490; https://doi.org/10.3390/app14177490 - 24 Aug 2024
Cited by 3 | Viewed by 978
Abstract
The continuous deepening of coal-seam extraction has sharply increased both gas pressure and content. The use of viscoelastic surfactant fracturing fluids (VESFFs) has been demonstrated to effectively improve coal-seam permeability and mitigate the occurrence of gas disasters. After injection into coal, VESFFs interact [...] Read more.
The continuous deepening of coal-seam extraction has sharply increased both gas pressure and content. The use of viscoelastic surfactant fracturing fluids (VESFFs) has been demonstrated to effectively improve coal-seam permeability and mitigate the occurrence of gas disasters. After injection into coal, VESFFs interact with the coal and affect its surface characteristics. In this study, to characterize changes in zeta potential, oxygen-containing functional groups, and the microcrystalline structure of hard and soft coal surfaces under the influence of VESFFs with different formulations, zeta potential measurements and Fourier-transform infrared and Raman spectroscopies were performed. The VESFFs enhanced the electrostatic repulsion between the pore wall and coal particles, which is favorable for the removal of coal particles from hard and soft coal surfaces. The combination of cationic with zwitterionic viscoelastic surfactants (VESs) in the VESFFs exposed more hydrophilic functional groups on the surfaces of hard and soft coal, increasing wettability and affecting nanometer pores. A VESFF based on anionic and zwitterionic VESs as the primary agents could enhance the extension of the aromatic layer (La) of the aromatic crystal nuclei and reduce the interlayer spacing (d002) of hard and soft coal, thereby increasing the volume of micropores. This research offers theoretical guidance for optimizing the primary components of VESFFs and elucidates the mechanism through which VESFFs act on nanopores in coal from a microscopic perspective. Full article
Show Figures

Figure 1

16 pages, 14497 KiB  
Article
Effect of Etching Condition on Nanoporous Structure and Methyl Orange Decomposition of Fe-Si-B Metallic Glass
by Shushen Wang, Zhiwei Duan, Yongzhi Guo, Lingyu Gu and Kaiming Wu
Metals 2024, 14(8), 936; https://doi.org/10.3390/met14080936 - 16 Aug 2024
Viewed by 1208
Abstract
As an efficient advanced oxidation process, the Fenton-like reaction provides a promising way toward the degradation of organic pollutants; thus, the development of a highly efficient heterogeneous catalyst is of great significance. Herein, the chemical etching behavior of Fe-Si-B metallic glass (MG) ribbons [...] Read more.
As an efficient advanced oxidation process, the Fenton-like reaction provides a promising way toward the degradation of organic pollutants; thus, the development of a highly efficient heterogeneous catalyst is of great significance. Herein, the chemical etching behavior of Fe-Si-B metallic glass (MG) ribbons in a dilute HF solution is studied by varying the etching time. Based on this, the uniform nanoporous (NP) structures are successfully fabricated. The Fe-Si-B MG ribbons after etching for 30, 60, and 90 min still maintain an amorphous structure and possess much larger specific surface areas than untreated Fe-Si-B ribbons. The thicknesses of their nanoporous structures, with a pore size range of tens to hundreds of nanometers, are about 92.0, 180.5, and 223.4 nm, respectively. The formation of the nanoporous structure probably follows the pitting corrosion mechanism, mainly referring to the generation of corrosion pits due to the selective leaching of Si and B and pore growth and integration owing to the selective corrosion of Fe. The Fenton-like system of NPFe/H2O2 exhibits enhanced degradation performance toward methyl orange (MO), primarily due to the high intrinsic catalytic activity of the amorphous structure and the large specific surface areas of nanoporous structures, indicating the great potential application of NPFe in wastewater treatments. The mechanism analysis shows that MO degradation mainly contains two sub-processes: the heterogeneous reaction on the catalyst surface and the homogeneous reaction in MO solution, which exhibit a strong synergistic effect with excellent degradation performance. Full article
(This article belongs to the Special Issue Corrosion of Metals: Behaviors and Mechanisms)
Show Figures

Figure 1

Back to TopTop