Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = nanolayer deposition(s)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1408 KiB  
Article
Combinatorial Deposition and Wear Testing of HiPIMS W-C Films
by Joern Kohlscheen and Christian Bareiss
Coatings 2025, 15(1), 115; https://doi.org/10.3390/coatings15010115 - 20 Jan 2025
Cited by 1 | Viewed by 1246
Abstract
We used high-power impulse magnetron sputtering (HiPIMS) to deposit tungsten carbide films for superior wear protection in abrasive environments. In order to sample different W-to-C ratios more efficiently, a combinatorial approach was chosen. A single sputter target with two equal segments was used, [...] Read more.
We used high-power impulse magnetron sputtering (HiPIMS) to deposit tungsten carbide films for superior wear protection in abrasive environments. In order to sample different W-to-C ratios more efficiently, a combinatorial approach was chosen. A single sputter target with two equal segments was used, consisting of an upper tungsten and lower graphite segment. This allowed us to vertically sample various elemental compositions in just one deposition run without creating graphitic nano-layers by rotating the substrate holder. The substrate bias voltage, being one of the most effective process parameters in physical vapor deposition (PVD), was applied in both constant and pulsed modes (the latter synchronized to the target pulse). A direct comparison of the different modes has not been performed so far for HiPIMS W-C (separated W and C targets). The resulting coating properties were mainly analyzed by nano-hardness testing and X-ray diffraction. In general, the W2C phase prevailed in tungsten-rich coatings with pulsed bias, leading to slightly higher tungsten contents. Hardness reached maximum values of up to 35 GPa in the center region between the two segments, where a mix of W2C and WC1-x phases occurs. With pulsed bias, voltage hardnesses are slightly higher, especially for tungsten-rich films. In those cases, compressive stress was also found to be higher when compared to constant bias. Erosive wear testing by blasting with alumina grit showed that the material removal rate followed basically the coating’s hardness but surprisingly reached minimum wear loss for W2C single-phase films just before maximum hardness. In contrast to previous findings, low friction that requires higher carbon contents of at least 50 at. % is not favorable for this type of wear. Full article
Show Figures

Figure 1

14 pages, 5086 KiB  
Article
Investigation of High-Sensitivity pH Sensor Based on Au-Gated AlGaN/GaN Heterostructure
by Minjie Ye, Jianwen Sun, Teng Zhan, Robert Sokolovskij, Yulong Zhang, Jiangtao Wei, Shaomin Chen and Zewen Liu
Appl. Sci. 2024, 14(14), 6131; https://doi.org/10.3390/app14146131 - 14 Jul 2024
Viewed by 2457
Abstract
A high-sensitivity pH sensor based on an AlGaN/GaN high-electron mobility transistor (HEMT) with a 10 nm thick Au-gated sensing membrane was investigated. The Au nanolayer as a sensing membrane was deposited by electron-beam evaporation and patterned onto the GaN cap layer, which provides [...] Read more.
A high-sensitivity pH sensor based on an AlGaN/GaN high-electron mobility transistor (HEMT) with a 10 nm thick Au-gated sensing membrane was investigated. The Au nanolayer as a sensing membrane was deposited by electron-beam evaporation and patterned onto the GaN cap layer, which provides more surface-active sites and a more robust adsorption capacity for hydrogen ions (H+) and hydroxide ions (OH) and thus the sensitivity of the sensor can be significantly enhanced. A quasi-reference electrode was used to minimize the sensing system for the measurement of the microliter solution. The measurement and analysis results demonstrate that the fabricated sensor exhibits a high potential sensitivity of 58.59 mV/pH, which is very close to the Nernstian limit. The current sensitivity is as high as 372.37 μA/pH in the pH range from 4.0 to 9.18, under a 3.5 V drain-source voltage and a 0 V reference-source voltage. Comparison experiments show that the current sensitivity of the Au-gated sensor can reach 3.9 times that of the SiO2-gated sensor. Dynamic titration experiments reveal the pH sensor’s ability to promptly respond to immediate pH variations. These findings indicate that this pH sensor can meet most application requirements for advanced medical and chemical analysis. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

24 pages, 16048 KiB  
Article
Oxidation Performance of Nano-Layered (AlTiZrHfTa)Nx/SiNx Coatings Deposited by Reactive Magnetron Sputtering
by Djallel Eddine Touaibia, Sofiane Achache, Abdelhakim Bouissil, Fabrice Parent, Jaafar Ghanbaja, Alina Gorbunova, Pavel S. Postnikov, Mohamed Mehdi Chehimi, Frederic Schuster, Frederic Sanchette and Mohamed El Garah
Materials 2024, 17(12), 2799; https://doi.org/10.3390/ma17122799 - 7 Jun 2024
Cited by 2 | Viewed by 1424
Abstract
This work uses the direct current magnetron sputtering (DCMS) of equi-atomic (AlTiZrHfTa) and Si targets in dynamic sweep mode to deposit nano-layered (AlTiZrHfTa)Nx/SiNx refractory high-entropy coatings (RHECs). Transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), [...] Read more.
This work uses the direct current magnetron sputtering (DCMS) of equi-atomic (AlTiZrHfTa) and Si targets in dynamic sweep mode to deposit nano-layered (AlTiZrHfTa)Nx/SiNx refractory high-entropy coatings (RHECs). Transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are used to investigate the effect of Si addition on the oxidation behavior of the nano-layered coatings. The Si-free nitride coating exhibits FCC structure and columnar morphology, while the Si-doped nitride coatings present a FCC (AlTiZrHfTa)N/amorphous-SiNx nano-layered architecture. The hardness decreases from 24.3 ± 1.0 GPa to 17.5 ± 1.0 GPa because of the nano-layered architecture, whilst Young’s modulus reduces from 188.0 ± 1.0 GPa to roughly 162.4 ± 1.0 GPa. By increasing the thickness of the SiNx nano-layer, kp values decrease significantly from 3.36 × 10−8 g2 cm−4 h−1 to 6.06 × 10−9 g2 cm−4 h−1. The activation energy increases from 90.8 kJ·mol−1 for (AlTiZrHfTa)Nx nitride coating to 126.52 kJ·mol−1 for the (AlTiZrHfTa)Nx/SiNx nano-layered coating. The formation of a FCC (AlTiZrHfTa)-Nx/a-SiNx nano-layered architecture results in the improvement of the resistance to oxidation at high temperature. Full article
(This article belongs to the Special Issue Preparation of Thin Films by PVD/CVD Deposition Techniques)
Show Figures

Figure 1

12 pages, 9613 KiB  
Article
Mn2Ga2S5 and Mn2Al2Se5 van der Waals Chalcogenides: A Source of Atomically Thin Nanomaterials
by Ivan V. Chernoukhov, Alexey V. Bogach, Kirill A. Cherednichenko, Ruslan A. Gashigullin, Andrei V. Shevelkov and Valeriy Yu. Verchenko
Molecules 2024, 29(9), 2026; https://doi.org/10.3390/molecules29092026 - 28 Apr 2024
Cited by 3 | Viewed by 1833
Abstract
Layered chalcogenides containing 3d transition metals are promising for the development of two-dimensional nanomaterials with interesting magnetic properties. Both mechanical and solution-based exfoliation of atomically thin layers is possible due to the low-energy van der Waals bonds. In this paper, we present the [...] Read more.
Layered chalcogenides containing 3d transition metals are promising for the development of two-dimensional nanomaterials with interesting magnetic properties. Both mechanical and solution-based exfoliation of atomically thin layers is possible due to the low-energy van der Waals bonds. In this paper, we present the synthesis and crystal structures of the Mn2Ga2S5 and Mn2Al2Se5 layered chalcogenides. For Mn2Ga2S5, we report magnetic properties, as well as the exfoliation of nanofilms and nanoscrolls. The synthesis of both polycrystalline phases and single crystals is described, and their chemical stability in air is studied. Crystal structures are probed via powder X-ray diffraction and high-resolution transmission electron microscopy. The new compound Mn2Al2Se5 is isomorphous with Mn2Ga2S5 crystallizing in the Mg2Al2Se5 structure type. The crystal structure is built by the ABCBCA sequence of hexagonal close-packing layers of chalcogen atoms, where Mn2+ and Al3+/Ga3+ species preferentially occupy octahedral and tetrahedral voids, respectively. Mn2Ga2S5 exhibits an antiferromagnetic-like transition at 13 K accompanied by the ferromagnetic hysteresis of magnetization. Significant frustration of the magnetic system may yield spin-glass behavior at low temperatures. The exfoliation of Mn2Ga2S5 layers was performed in a non-polar solvent. Nanolayers and nanoscrolls were observed using high-resolution transmission electron microscopy. Fragments of micron-sized crystallites with a thickness of 70–100 nanometers were deposited on a glass surface, as evidenced by atomic force microscopy. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

13 pages, 6079 KiB  
Article
Fabrication of MoS2/C60 Nanolayer Field-Effect Transistor for Ultrasensitive Detection of miRNA-155
by Youqiang Xing, Yun Wang, Lei Liu and Ze Wu
Micromachines 2023, 14(3), 660; https://doi.org/10.3390/mi14030660 - 15 Mar 2023
Cited by 6 | Viewed by 2420
Abstract
As a major public health issue, early cancer detection is of great significance. A field-effect transistor (FET) based on an MoS2/C60 composite nanolayer as the channel material enhances device performance by adding a light source, allowing the ultrasensitive detection of [...] Read more.
As a major public health issue, early cancer detection is of great significance. A field-effect transistor (FET) based on an MoS2/C60 composite nanolayer as the channel material enhances device performance by adding a light source, allowing the ultrasensitive detection of cancer-related miRNA. In this work, atomic layer deposition (ALD) was used to deposit MoS2 layer by layer, and C60 was deposited by an evaporation coater to obtain a composite nanolayer with good surface morphology as the channel material of the FET. Based on the good absorption of C60 by blue-violet light, a 405 nm laser was selected to irradiate the channel material, improving the function of FET biosensors. A linear detection window from 10 pM to 1 fM with an ultralow detection limit of 5.16 aM for miRNA-155 was achieved. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 2nd Edition)
Show Figures

Figure 1

21 pages, 6963 KiB  
Article
Smart Portable Device Based on the Utilization of a 2D Disposable Paper Stochastic Sensor for Fast Ultrasensitive Screening of Food Samples for Bisphenols
by Raluca-Ioana Stefan-van Staden, Irina-Alina Chera-Anghel, Damaris-Cristina Gheorghe, Jacobus (Koos) Frederick van  Staden and Marius Badulescu
Sensors 2023, 23(1), 314; https://doi.org/10.3390/s23010314 - 28 Dec 2022
Cited by 4 | Viewed by 1849
Abstract
Since the determination of the high toxicity of bisphenol A, alternative structures for bisphenols have been synthesized, resulting in bisphenols C, E, F, S, and Z. These bisphenols have replaced bisphenol A in plastic bottles, toys, and cans used for preserving food. Later, [...] Read more.
Since the determination of the high toxicity of bisphenol A, alternative structures for bisphenols have been synthesized, resulting in bisphenols C, E, F, S, and Z. These bisphenols have replaced bisphenol A in plastic bottles, toys, and cans used for preserving food. Later, the toxicity and negative effects of all of these bisphenols on people’s health were proven. Therefore, there is a need for a fast ultrasensitive screening method that is able to detect the presence of these bisphenols in any condition directly from food samples. This paper presented a disposable device based on the utilization of a 2D disposable paper stochastic sensor for the fast ultrasensitive screening of food samples for bisphenols A, C, E, F, S, and Z. The 2D disposable sensor was obtained by the deposition of graphene and silver nanolayers on paper using cold plasma. Furthermore, the active side of the sensor was modified using 2,3,7,8,12,13,17,18-octaethyl-21H,23H Mn porphyrin. The limits of quantification of these bisphenols were 1 fmol L−1 for bisphenols C and E, 10 fmol L−1 for bisphenols A and F, 10 pmol L−1 for bisphenol S, and 1 pmol L−1 for bisphenol Z. The recoveries of these bisphenols in milk, canned fruits, vegetables, and fish were higher than 99.00% with RSD (%) values lower than 1.50%. Full article
(This article belongs to the Special Issue Electrochemical Sensors in the Food Industry)
Show Figures

Figure 1

18 pages, 12509 KiB  
Article
Tribological Properties of WS2 Thin Films Containing Graphite-like Carbon and Ni Interlayers
by Roman I. Romanov, Dmitry V. Fominski, Maxim V. Demin, Mariya D. Gritskevich, Natalia V. Doroshina, Valentyn S. Volkov and Vyacheslav Yu. Fominski
Materials 2023, 16(1), 282; https://doi.org/10.3390/ma16010282 - 28 Dec 2022
Cited by 5 | Viewed by 2533
Abstract
The development and production of thin-film coatings having very low friction is an urgent problem of materials science. One of the most promising solutions is the fabrication of special nanocomposites containing transition-metal dichalcogenides and various carbon-based nanophases. This study aims to explore the [...] Read more.
The development and production of thin-film coatings having very low friction is an urgent problem of materials science. One of the most promising solutions is the fabrication of special nanocomposites containing transition-metal dichalcogenides and various carbon-based nanophases. This study aims to explore the influence of graphite-like carbon (g-C) and Ni interface layers on the tribological properties of thin WS2 films. Nanocrystalline WS2 films were created by reactive pulsed laser deposition (PLD) in H2S at 500 °C. Between the two WS2 nanolayers, g-C and Ni nanofilms were fabricated by PLD at 700 and 22 °C, respectively. Tribotesting was carried out in a nitrogen-enriched atmosphere by the reciprocal sliding of a steel counterbody under a relatively low load of 1 N. For single-layer WS2 films, the friction coefficient was ~0.04. The application of g-C films did not noticeably improve the tribological properties of WS2-based films. However, the application of thin films of g-C and Ni reduced the friction coefficient to 0.013, thus, approaching superlubricity. The island morphology of the Ni nanofilm ensured WS2 retention and altered the contact area between the counterbody and the film surface. The catalytic properties of nickel facilitated the introduction of S and H atoms into g-C. The sliding of WS2 nanoplates against an amorphous g-C(S, H) nanolayer caused a lower coefficient of friction than the relative sliding of WS2 nanoplates. The detected behavior of the prepared thin films suggests a new strategy of designing antifriction coatings for practical applications and highlights the ample opportunities of laser techniques in the formation of promising thin-film coatings. Full article
(This article belongs to the Special Issue Optical, Electrical and Mechanical Properties of Thin Films)
Show Figures

Graphical abstract

13 pages, 2965 KiB  
Article
Photon Drag Currents and Terahertz Generation in α-Sn/Ge Quantum Wells
by Binglei Zhang, Yi Luo, Yang Liu, Valerii N. Trukhin, Ilia A. Mustafin, Prokhor A. Alekseev, Bogdan R. Borodin, Ilya A. Eliseev, Fatemah H. Alkallas, Amira Ben Gouider Trabelsi, Anna Kusmartseva and Fedor V. Kusmartsev
Nanomaterials 2022, 12(17), 2892; https://doi.org/10.3390/nano12172892 - 23 Aug 2022
Cited by 1 | Viewed by 2085
Abstract
We have fabricated α-Sn/Ge quantum well heterostructures by sandwiching nano-films of α-Sn between Ge nanolayers. The samples were grown via e-beam deposition and characterized by Raman spectroscopy, atomic force microscopy, temperature dependence of electrical resistivity and THz time-resolved spectroscopy. We have established the [...] Read more.
We have fabricated α-Sn/Ge quantum well heterostructures by sandwiching nano-films of α-Sn between Ge nanolayers. The samples were grown via e-beam deposition and characterized by Raman spectroscopy, atomic force microscopy, temperature dependence of electrical resistivity and THz time-resolved spectroscopy. We have established the presence of α-Sn phase in the polycrystalline layers together with a high electron mobility μ = 2500 ± 100 cm2 V−1 s−1. Here, the temperature behavior of the resistivity in a magnetic field is distinct from the semiconducting films and three-dimensional Dirac semimetals, which is consistent with the presence of linear two-dimensional electronic dispersion arising from the mutually inverted band structure at the α-Sn/Ge interface. As a result, the α-Sn/Ge interfaces of the quantum wells have topologically non-trivial electronic states. From THz time-resolved spectroscopy, we have discovered unusual photocurrent and THz radiation generation. The mechanisms for this process are significantly different from ambipolar diffusion currents that are responsible for THz generation in semiconducting thin films, e.g., Ge. Moreover, the THz generation in α-Sn/Ge quantum wells is almost an order of magnitude greater than that found in Ge. The substantial strength of the THz radiation emission and its polarization dependence may be explained by the photon drag current. The large amplitude of this current is a clear signature of the formation of conducting channels with high electron mobility, which are topologically protected. Full article
Show Figures

Figure 1

20 pages, 7486 KiB  
Article
Pulsed Laser Phosphorus Doping and Nanocomposite Catalysts Deposition in Forming a-MoSx/NP-Mo//n+p-Si Photocathodes for Efficient Solar Hydrogen Production
by Vyacheslav Fominski, Maxim Demin, Dmitry Fominski, Roman Romanov, Oxana Rubinkovskaya, Petr Shvets and Aleksandr Goikhman
Nanomaterials 2022, 12(12), 2080; https://doi.org/10.3390/nano12122080 - 16 Jun 2022
Cited by 9 | Viewed by 2780
Abstract
Pulsed laser deposition of nanostructured molybdenum sulfide films creates specific nonequilibrium growth conditions, which improve the electrocatalytic properties of the films in a hydrogen evolution reaction (HER). The enhanced catalytic performance of the amorphous a-MoSx (2 ≤ x ≤ 3) matrix is [...] Read more.
Pulsed laser deposition of nanostructured molybdenum sulfide films creates specific nonequilibrium growth conditions, which improve the electrocatalytic properties of the films in a hydrogen evolution reaction (HER). The enhanced catalytic performance of the amorphous a-MoSx (2 ≤ x ≤ 3) matrix is due to the synergistic effect of the Mo nanoparticles (Mo-NP) formed during the laser ablation of a MoS2 target. This work looks at the possibility of employing a-MoSx/NP-Mo films (4 and 20 nm thickness) to produce hydrogen by photo-stimulated HER using a p-Si cathode. A simple technique of pulsed laser p-Si doping with phosphorus was used to form an n+p-junction. Investigations of the energy band arrangement at the interface between a-MoSx/NP-Mo and n+-Si showed that the photo-HER on an a-MoSx/NP-Mo//n+p-Si photocathode with a 20 nm thick catalytic film proceeded according to a Z-scheme. The thickness of interfacial SiOy(P) nanolayer varied little in photo-HER without interfering with the effective electric current across the interface. The a-MoSx/NP-Mo//n+p-Si photocathode showed good long-term durability; its onset potential was 390 mV and photocurrent density was at 0 V was 28.7 mA/cm2. The a-MoSx/NP-Mo//n+p-Si photocathodes and their laser-based production technique offer a promising pathway toward sustainable solar hydrogen production. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

23 pages, 23901 KiB  
Article
Simulation of a New CZTS Solar Cell Model with ZnO/CdS Core-Shell Nanowires for High Efficiency
by Chonge Wang, Boubacar Drame, Lucien Niare and Fu Yuegang
Crystals 2022, 12(6), 772; https://doi.org/10.3390/cryst12060772 - 26 May 2022
Cited by 2 | Viewed by 2828
Abstract
The numerical modeling of Cu2ZnSnS4 solar cells with ZnO/CdS core-shell nanowires of optimal dimensions with and without graphene is described in detail in this study. The COMSOL Simulation was used to determine the optimal values of core diameter and shell [...] Read more.
The numerical modeling of Cu2ZnSnS4 solar cells with ZnO/CdS core-shell nanowires of optimal dimensions with and without graphene is described in detail in this study. The COMSOL Simulation was used to determine the optimal values of core diameter and shell thickness by comparing their optical performance and to evaluate the optical and electrical properties of the different models. The deposition of a nanolayer of graphene on the layer of MoS2 made it possible to obtain a maximum absorption of 97.8% against 96.5% without the deposition of graphene.The difference between generation rates and between recombination rates of electron–hole pairs of models with and without graphene is explored.The electrical parameters obtained, such as the filling factor (FF), the short-circuit current density (Jsc), the open-circuit voltage (Voc), and the efficiency (EFF) are, respectively, 81.7%, 6.2 mA/cm2, 0.63 V, and 16.6% in the presence of graphene against 79.2%, 6.1 mA/cm2, 0.6 V, and 15.07% in the absence of graphene. The suggested results will be useful for future research work in the field of CZTS-based solar cells with ZnO/CdS core-shell nanowires with broadband light absorption rates. Full article
Show Figures

Figure 1

15 pages, 7420 KiB  
Article
Joining of Ti6Al4V to Al2O3 Using Nanomultilayers
by Marcionilo Silva, Ana Sofia Ramos, Maria Teresa Vieira and Sónia Simões
Nanomaterials 2022, 12(4), 706; https://doi.org/10.3390/nano12040706 - 21 Feb 2022
Cited by 4 | Viewed by 2444
Abstract
Diffusion bonding of Ti6Al4V to Al2O3 using Ni/Ti reactive nanomultilayers as interlayer material was investigated. For this purpose, Ni/Ti multilayer thin films with 12, 25, and 60 nm modulation periods (bilayer thickness) were deposited by d.c. magnetron sputtering onto the [...] Read more.
Diffusion bonding of Ti6Al4V to Al2O3 using Ni/Ti reactive nanomultilayers as interlayer material was investigated. For this purpose, Ni/Ti multilayer thin films with 12, 25, and 60 nm modulation periods (bilayer thickness) were deposited by d.c. magnetron sputtering onto the base materials’ surface. The joints were processed at 750 and 800 °C with a dwell time of 60 min and under a pressure of 5 MPa. Microstructural characterization of the interfaces was conducted by scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). The mechanical characterization of the joints was performed by nanoindentation, and hardness and reduced Young’s modulus distribution maps were obtained across the interfaces. The joints processed at 800 °C using the three modulation periods were successful, showing the feasibility of using these nanolayered films to improve the diffusion bonding of dissimilar materials. Using modulation periods of 25 and 60 nm, it was also possible to reduce the bonding temperature to 750 °C and obtain a sound interface. The interfaces are mainly composed of NiTi and NiTi2 phases. The nanoindentation experiments revealed that the hardness and reduced Young’s modulus at the interfaces reflect the observed microstructure. Full article
Show Figures

Figure 1

14 pages, 9186 KiB  
Article
Enhancement of the SPR Effect in an Optical Fiber Device Utilizing a Thin Ag Layer and a 3092A Liquid Crystal Mixture
by Joanna Korec, Karol A. Stasiewicz, Katarzyna Garbat and Leszek R. Jaroszewicz
Molecules 2021, 26(24), 7553; https://doi.org/10.3390/molecules26247553 - 13 Dec 2021
Cited by 6 | Viewed by 2644
Abstract
This paper is a continuation of previous work and shows the enhancement of the surface plasmon resonance effect in a tapered optical fiber device. The study investigated liquid crystal cells containing a tapered optical fiber covered with a silver nanolayer, surrounded by a [...] Read more.
This paper is a continuation of previous work and shows the enhancement of the surface plasmon resonance effect in a tapered optical fiber device. The study investigated liquid crystal cells containing a tapered optical fiber covered with a silver nanolayer, surrounded by a low refractive index liquid crystal in terms of the properties of light propagation in the taper structure. Silver films with a thickness of d = 10 nm were deposited on the tapered waist area. Measurements were performed at room temperature; liquid crystal steering voltage U from 0 to 200 V, with and without any amplitude modulation with a frequency of f = 5 Hz, and the wavelength λ ranged from 550 to 1200 nm. A significant influence of the initial arrangement of liquid crystals molecules on light propagation was observed. Three types of liquid crystal cells—orthogonal, parallel, and twist—were considered. During the measurements, resonant peaks were obtained—the position of which can also be controlled by the type of liquid crystal cells and the steering voltage. Based on the obtained results, the best parameters, such as highest peak’s width reduction, and the highest SNR value were received for twisted cells. In addition, the present work was compared with the previous work and showed the possibility of improving properties of the manufactured probes, and consequently, the surface plasmon resonance effect. In the presented paper, the novelty is mainly focused on the used materials as well as suitable changes in applied technological parameters. In contrast to gold, silver is characterized by different optic and dielectric properties, e.g., refractive index, extension coefficient, and permittivity, which results in changes in the light propagation and the SPR wavelengths. Full article
(This article belongs to the Special Issue Advances in Photonic Materials)
Show Figures

Figure 1

14 pages, 3695 KiB  
Article
Robust LSPR Sensing Using Thermally Embedded Au Nanoparticles in Glass Substrates
by Nuno M. Figueiredo, Ricardo Serra and Albano Cavaleiro
Nanomaterials 2021, 11(6), 1592; https://doi.org/10.3390/nano11061592 - 17 Jun 2021
Cited by 11 | Viewed by 3383
Abstract
The poor adhesion and chemical and thermal stability of plasmonic nanostructures deposited on solid surfaces are a hindrance to the longevity and long-term development of robust localized surface plasmon resonance (LSPR)-based systems. In this paper, we have deposited gold (Au) nanolayers with thicknesses [...] Read more.
The poor adhesion and chemical and thermal stability of plasmonic nanostructures deposited on solid surfaces are a hindrance to the longevity and long-term development of robust localized surface plasmon resonance (LSPR)-based systems. In this paper, we have deposited gold (Au) nanolayers with thicknesses above the percolation limit over glass substrates and have used a thermal annealing treatment at a temperature above the substrate’s glass transition temperature to promote the dewetting, recrystallization, and thermal embedding of Au nanoparticles (NPs). Due to the partial embedding in glass, the NPs were strongly adherent to the surface of the substrate and were able to resist to the commonly used cleaning procedures and mechanical adhesion tests alike. The reflectivity of the embedded nanostructures was studied and shown to be strongly dependent on the NP size/shape distributions and on the degree of NP embedding. Strong optical scattering bands with increasing width and redshifted LSPR peak position were observed with the Au content. Refractive index sensitivity (RIS) values between 150 and 360 nm/RIU (concerning LSPR band edge shift) or between 32 and 72 nm/RIU (concerning LSPR peak position shift) were obtained for the samples having narrower LSPR extinction bands. These robust LSPR sensors can be used following a simple excitation/detection scheme consisting of a reflectance measurement at a fixed angle and wavelength. Full article
(This article belongs to the Special Issue Plasmonic Nanostructures and Their Applications)
Show Figures

Figure 1

12 pages, 5035 KiB  
Article
Diffusion Bonding of Ti6Al4V to Al2O3 Using Ni/Ti Reactive Multilayers
by Marcionilo Silva, Ana S. Ramos, M. Teresa Vieira and Sónia Simões
Metals 2021, 11(4), 655; https://doi.org/10.3390/met11040655 - 17 Apr 2021
Cited by 11 | Viewed by 3111
Abstract
This paper aims to investigate the diffusion bonding of Ti6Al4V to Al2O3. The potential of the use of reactive nanolayered thin films will also be investigated. For this purpose, Ni/Ti multilayer thin films with a 50 nm modulation period [...] Read more.
This paper aims to investigate the diffusion bonding of Ti6Al4V to Al2O3. The potential of the use of reactive nanolayered thin films will also be investigated. For this purpose, Ni/Ti multilayer thin films with a 50 nm modulation period were deposited by magnetron sputtering onto the base materials. Diffusion bonding experiments were performed at 800 °C, under 50 MPa and a dwell time of 60 min, with and without interlayers. Microstructural characterization of the interface was conducted through scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). The joints experiments without interlayer were unsuccessful. The interface is characterized by the presence of a crack close to the Al2O3 base material. The results revealed that the Ni/Ti reactive multilayers improved the diffusion bonding process, allowing for sound joints to be obtained at 800 °C for 60 min. The interface produced is characterized by a thin thickness and is mainly composed of NiTi and NiTi2 reaction layers. Mechanical characterization of the joint was assessed by hardness and reduced Young’s modulus distribution maps that enhance the different phases composing the interface. The hardness maps showed that the interface exhibits a hardness distribution similar to the Al2O3, which can be advantageous to the mechanical behavior of the joints. Full article
(This article belongs to the Special Issue Diffusion Phenomena in the Joining of Advanced Metallic Materials)
Show Figures

Figure 1

49 pages, 17379 KiB  
Review
Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review
by Vitor F. C. Sousa, Francisco José Gomes Da Silva, Gustavo Filipe Pinto, Andresa Baptista and Ricardo Alexandre
Metals 2021, 11(2), 260; https://doi.org/10.3390/met11020260 - 4 Feb 2021
Cited by 111 | Viewed by 8531
Abstract
The machining process is still a very relevant process in today’s industry, being used to produce high quality parts for multiple industry sectors. The machining processes are heavily researched, with the focus on the improvement of these processes. One of these process improvements [...] Read more.
The machining process is still a very relevant process in today’s industry, being used to produce high quality parts for multiple industry sectors. The machining processes are heavily researched, with the focus on the improvement of these processes. One of these process improvements was the creation and implementation of tool coatings in various machining operations. These coatings improved overall process productivity and tool-life, with new coatings being developed for various machining applications. TiAlN coatings are still very present in today’s industry, being used due to its incredible wear behavior at high machining speeds, high mechanical properties, having a high-thermal stability and high corrosion resistance even at high machining temperatures. Novel TiAlN-based coatings doped with Ru, Mo and Ta are currently under investigation, as they show tremendous potential in terms of mechanical properties and wear behavior improvement. With the improvement of deposition technology, recent research seems to focus primarily on the study of nanolayered and nanocomposite TiAlN-based coatings, as the thinner layers improve drastically these coating’s beneficial properties for machining applications. In this review, the recent developments of TiAlN-based coatings are going to be presented, analyzed and their mechanical properties and cutting behavior for the turning and milling processes are compared. Full article
(This article belongs to the Special Issue Metal Machining—Recent Advances, Applications and Challenges)
Show Figures

Figure 1

Back to TopTop