Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = nanohydrogel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1812 KiB  
Review
Nanocarriers for Medical Ozone Delivery: A New Therapeutic Strategy
by Manuela Malatesta and Flavia Carton
Nanomaterials 2025, 15(15), 1188; https://doi.org/10.3390/nano15151188 - 3 Aug 2025
Viewed by 59
Abstract
Ozone (O3) occurs in nature as a chemical compound made of three oxygen atoms. It is an unstable, highly oxidative gas that rapidly decomposes into oxygen. The therapeutic use of O3 dates back to the beginning of the 20th century [...] Read more.
Ozone (O3) occurs in nature as a chemical compound made of three oxygen atoms. It is an unstable, highly oxidative gas that rapidly decomposes into oxygen. The therapeutic use of O3 dates back to the beginning of the 20th century and is currently based on the application of low doses, inducing a moderate oxidative stress that stimulates the antioxidant cellular defenses without causing cell damage. Low O3 doses also induce anti-inflammatory and regenerative effects, and their anticancer potential is under investigation. In addition, the oxidative properties of O3 make it an excellent antibacterial, antimycotic, and antiviral agent. Thanks to these properties, O3 is currently widely used in several medical fields. However, its chemical instability represents an application limit, and ozonated oil is the only stabilized form of medical O3. In recent years, novel O3 formulations have been proposed for their sustained and more efficient administration, based on nanotechnology. This review offers an overview of the nanocarriers designed for the delivery of medical O3, and of their therapeutic applications. The reviewed articles demonstrate that research is active and productive, though it is a rather new entry in the nanotechnological field. Liposomes, nanobubbles, nanoconstructed hydrogels, polymeric nanoparticles, and niosomes were designed to deliver O3 and have been proven to exert antiseptic, anticancer, and pro-regenerative effects when administered in vitro and in vivo. Improving the therapeutic administration of O3 through nanocarriers is a just-started challenge, and multiple prospects may be foreseen. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

21 pages, 4644 KiB  
Article
Synthesis of Gadolinium-Loaded Poly(N-vinyl-2-pyrrolidone) Nanogels Using Pulsed Electron Beam Ionizing Irradiation
by Nouria Bouchikhi, Aiysha Ashfaq and Mohamad Al-Sheikhly
Polymers 2025, 17(15), 2100; https://doi.org/10.3390/polym17152100 - 30 Jul 2025
Viewed by 191
Abstract
Poly(N-vinyl-2-pyrrolidone), or PVP, nanogels loaded with gadolinium nitrate (Gd(NO3)3·6H2O) were synthesized by ionizing irradiation, aiming for potential applications in magnetic resonance imaging (MRI). A comprehensive characterization of PVP and Gd aqueous solutions with different VP-monomer-to-Gd ratios was [...] Read more.
Poly(N-vinyl-2-pyrrolidone), or PVP, nanogels loaded with gadolinium nitrate (Gd(NO3)3·6H2O) were synthesized by ionizing irradiation, aiming for potential applications in magnetic resonance imaging (MRI). A comprehensive characterization of PVP and Gd aqueous solutions with different VP-monomer-to-Gd ratios was conducted before and after irradiation. The results indicate a complexation between PVP and Gd ions before irradiation. The size of the nanogels exhibited a strong dependence on several factors, including PVP molecular weight, concentration, temperature, and the precise timing of Gd introduction relative to the irradiation process. A quantification study was conducted to investigate the impact of molecular weight, the VP/Gd ratio, and Gd addition before or after the irradiation process on the concentration of free Gd ions. These findings offer valuable insights into optimizing the synthesis of Gd-loaded PVP nanogels for potential applications, highlighting the critical factors that influence their size and stability. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

16 pages, 3000 KiB  
Article
A Simple Vortex-Based Method for the Generation of High-Throughput Spherical Micro- and Nanohydrogels
by Moussa Boujemaa, Remi Peters, Jiabin Luan, Yieuw Hin Mok, Shauni Keller and Daniela A. Wilson
Int. J. Mol. Sci. 2025, 26(13), 6300; https://doi.org/10.3390/ijms26136300 - 30 Jun 2025
Viewed by 399
Abstract
Hydrogel particles, renowned for their high water content and biocompatibility in drug delivery and tissue engineering, typically rely on complex, costly microfluidic systems to reach sub 5 µm dimensions. We present a vortex-based inverse-emulsion polymerization strategy in which UV crosslinking of polyethylene glycol [...] Read more.
Hydrogel particles, renowned for their high water content and biocompatibility in drug delivery and tissue engineering, typically rely on complex, costly microfluidic systems to reach sub 5 µm dimensions. We present a vortex-based inverse-emulsion polymerization strategy in which UV crosslinking of polyethylene glycol diacrylate (PEGDA) dispersed in n-hexadecane and squalene yields tunable micro- and nanogels while delineating the parameters that govern particle size and uniformity. Systematic variation in surfactant concentration, vessel volume, continuous phase viscosity, vortex speed and duration, oil-to-polymer ratio, polymer molecular weight, and pulsed vortexing revealed that increases in surfactant level, vortex intensity/duration, vessel volume, and oil-to-polymer ratio each reduced mean diameter and PDI, whereas higher polymer molecular weight and continuous phase viscosity broadened the size distribution. We further investigated how these same parameters can be tuned to shift particle populations between nano- and microscale regimes. Under optimized conditions, microhydrogels achieved a coefficient of variation of 0.26 and a PDI of 0.07, with excellent reproducibility, and nanogels measured 161 nm (PDI = 0.05). This rapid, cost-effective method enables precise and scalable control over hydrogel dimensions using only standard laboratory equipment, without specialized training. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

18 pages, 4037 KiB  
Article
Voriconazole-Loaded Nanohydrogels Towards Optimized Antifungal Therapy for Cystic Fibrosis Patients
by Shaul D. Cemal, María F. Ladetto, Katherine Hermida Alava, Gila Kazimirsky, Marcela Cucher, Romina J. Glisoni, María L. Cuestas and Gerardo Byk
Pharmaceutics 2025, 17(6), 725; https://doi.org/10.3390/pharmaceutics17060725 - 30 May 2025
Viewed by 584
Abstract
Background/Objectives: Filamentous fungi, in particular the species Aspergillus, Scedosporium, and Exophiala, frequently colonize the lungs of cystic fibrosis (CF) patients. Chronic colonization is linked to hypersensitivity reactions and persistent infections leading to a significant long-term decline in lung function. [...] Read more.
Background/Objectives: Filamentous fungi, in particular the species Aspergillus, Scedosporium, and Exophiala, frequently colonize the lungs of cystic fibrosis (CF) patients. Chronic colonization is linked to hypersensitivity reactions and persistent infections leading to a significant long-term decline in lung function. Azole antifungal therapy such as voriconazole (VRC) slows disease progression, particularly in patients with advanced CF; however, excessive mucus production in CF lungs poses a diffusional barrier to effective treatment. Methods: Here, biodegradable nanohydrogels (NHGs) recently developed as nanocarriers were evaluated for formulating VRC as a platform for treating fungal infections in CF lungs. The NHGs entrapped up to about 30 μg/mg of VRC, and physicochemical properties were investigated via dynamic laser light scattering and nanoparticle tracking analysis. Diameters were 100–400 nm, and excellent colloidal stability was demonstrated in interstitial fluids, indicating potential for pulmonary delivery. Nano-formulations exhibited high in vitro cytocompatibility in A549 and HEK293T cells and were tested for the release of VRC under two different sink conditions. Results: Notably, the antifungal activity of VRC-loaded nanohydrogels was up to eight-fold greater than an aqueous suspension drug against different fungal species isolated from CF sputum, regardless of the presence of a CF artificial mucus layer. Conclusions: These findings support the development of potent VRC nano-formulations for treating fungal disorders in CF lungs. Full article
(This article belongs to the Special Issue Nanoparticle-Mediated Targeted Drug Delivery Systems)
Show Figures

Figure 1

14 pages, 4444 KiB  
Communication
A pH-Responsive Dendritic-DNA-Based Nanohydrogel for Dual Drug Delivery
by Jing Zhao, Jingyuan Wu, Yiqi Fan, Chao Yu, Le Yu and Fangwei Shao
Biomolecules 2025, 15(4), 537; https://doi.org/10.3390/biom15040537 - 6 Apr 2025
Cited by 4 | Viewed by 803
Abstract
The rational design of multifunctional drug delivery systems capable of achieving precise drug release remains a huge challenge. Herein, we designed a stimuli-responsive dendritic-DNA-based nanohydrogel as a nanocarrier to achieve the co-delivery of doxorubicin and HMGN5 mRNA-targeting antisense oligonucleotides, thus achieving dual therapeutic [...] Read more.
The rational design of multifunctional drug delivery systems capable of achieving precise drug release remains a huge challenge. Herein, we designed a stimuli-responsive dendritic-DNA-based nanohydrogel as a nanocarrier to achieve the co-delivery of doxorubicin and HMGN5 mRNA-targeting antisense oligonucleotides, thus achieving dual therapeutic effects. The nanocarrier, constructed from dendritic DNA with three crosslinking branches and one loading branch, formed biocompatible and programmable DNA nanohydrogels. The C-rich sequences in the crosslinking branches conferred pH sensitivity, while the loading strand enabled efficient incorporation of a shielding DNA/ASO complex. DOX encapsulation yielded a chemo–gene co-delivery platform. Upon cellular uptake by cancer cells, the nanocarrier disassembled in the acidic tumor microenvironment, releasing DOX for chemotherapy and ASOs via toehold-mediated strand displacement (TMSD) for targeted gene silencing. Cellular studies demonstrated significantly enhanced cancer cell inhibition compared to single-agent treatments, highlighting strong combined effects. This study provides a novel strategy for tumor-microenvironment-responsive co-delivery, enabling precise, on-demand release of therapeutic agents to enhance combined chemo–gene therapy. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Graphical abstract

24 pages, 6252 KiB  
Review
Flavonoid-Based Nanogels: A Comprehensive Overview
by Sergio Liga and Cristina Paul
Gels 2025, 11(4), 267; https://doi.org/10.3390/gels11040267 - 4 Apr 2025
Cited by 1 | Viewed by 1092
Abstract
The growing field of nanotechnology has recently given much attention to nanogels, which are versatile formulas and have promising biomedical applications. Nanogels or nanohydrogels have undergone significant development in various fields of biomedical and industrial research to meet increasing demands, such as in [...] Read more.
The growing field of nanotechnology has recently given much attention to nanogels, which are versatile formulas and have promising biomedical applications. Nanogels or nanohydrogels have undergone significant development in various fields of biomedical and industrial research to meet increasing demands, such as in pharmaceuticals, cosmetics, food, and genetic engineering. Nanogels that contain flavonoids, which are secondary metabolites found in plants, are starting to become distinctive and reveal their unique characteristics. The objective of the article is to provide a comprehensive overview of recent research articles on flavonoid-based nanogels, emphasizing the general aspects regarding nanogel formulation and structural characterization, as well as the advancements made in the biomedical field. In conclusion, this article outlines up-to-date developments in the synthesis, formulation, structural characterization, and therapeutic applications of flavonoid-based nanogels, emphasizing their important role in the field of nanotechnology. Full article
(This article belongs to the Special Issue Functional Gels Loaded with Natural Products)
Show Figures

Graphical abstract

31 pages, 4769 KiB  
Article
Formulation Development of Natural Polymeric Nanoparticles, In Vitro Antiaging Evaluation, and Metabolite Profiling of Toona sinensis Leaf Extracts
by Uce Lestari, Muhaimin Muhaimin, Anis Yohana Chaerunisaa and Wawan Sujarwo
Pharmaceuticals 2025, 18(3), 288; https://doi.org/10.3390/ph18030288 - 20 Feb 2025
Cited by 1 | Viewed by 1092
Abstract
Background/Objectives: Natural polymer nanoparticles have potential as delivery systems, can enhance pharmacological activity, and can improve stability in the cosmetic field. In this research, we implemented a development approach for chitosan–alginate and chitosan–pectin nanoparticles. This study aimed to investigate effect of formulation, process [...] Read more.
Background/Objectives: Natural polymer nanoparticles have potential as delivery systems, can enhance pharmacological activity, and can improve stability in the cosmetic field. In this research, we implemented a development approach for chitosan–alginate and chitosan–pectin nanoparticles. This study aimed to investigate effect of formulation, process variables, in vitro antiaging evaluation, and metabolite profiling of Toona sinensis leaf extracts. Methods: Polymeric nanoparticles have been prepared using the ionic gelation method (Temperature = 40 °C, time = 1 h and speed = 1000 rpm), in vitro antiaging evaluation using the Neutrophil Elastase Inhibitor Screening Kit method, and analysis of metabolite profiling with UHPLC–HRMS. Results: Research results found that the SLE and EAFSL nanoparticles that have good and stable characteristics before and after storage in a climatic chamber after 3 months are FIIA-NPSLE (0.75% chitosan and 1.25% Alginate), FIP-NPSLE (1% chitosan and 0.5% Pectin), FIIA-NPEAFSL (0.75% chitosan and 1.25% Alginate), and FIIIP-NPEAFSL (0.125% chitosan and 0.375% Alginate). Chitosan–alginate polymers, such as FIIA-NPEAFSL, have higher inhibition of the elastase enzyme than FIIA-NPSLE, with a % inhibition (IC50) of FIIA-NPEAFSL being 87.30%, while the IC50 of FIIA-NPSLE is 39.40%. Meanwhile, using chitosan–pectin polymers, such as FIP-NPSLE, results in lower inhibition of the elastase enzyme compared to the chitosan–alginate polymer, with an IC50 of 27.28% while IC50 FIIIP-NPEAFSL is 39.53%. SLE and EAFSL nanoparticles with chitosan–alginate and chitosan–pectin polymers resulted in a significant PDI during storage from 1.3 to 1.9, and zeta potential values were very low, ranging from −11 mV to −27 mV. Metabolite profiling using UHPLC–HRMS on T. sinensis leaf extracts revealed that the main compounds contained were glycitein, quercetin, quercetin-3β-D-glucoside, kaempferol, and ellagic acid, which has potential as an antiaging agent. Conclusions: It can be concluded that using chitosan, alginate, and pectin in the process of encapsulating extracts into nanoparticles with the same process variables affect evaluation of antiaging activity in elastase enzymes. Further research will develop these nanoparticles into nanohydrogels with antiaging activity. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

36 pages, 13838 KiB  
Article
Obtaining and Characterizing Poly(Acid Acrylic–co-Acrylamide) Hydrogels Reinforced with Cellulose Nanocrystals from Acacia farnesiana L. Willd (Huizache)
by Alejandra B. Navarro-Hermosillo, Gabriel Landázuri-Gómez, J. Félix Armando Soltero-Martínez, Manuel Alberto Gallardo-Sánchez, Jorge Alberto Cortes-Ortega, Carmen López-López, J. Jesus Vargas-Radillo, José Guillermo Torres-Rendón, Gonzalo Canché-Escamilla, Salvador García-Enriquez and Emma Rebeca Macias-Balleza
Gels 2025, 11(2), 144; https://doi.org/10.3390/gels11020144 - 18 Feb 2025
Viewed by 1416
Abstract
In this work, cellulose nanocrystals (CNCs) were obtained from the wood of Acacia farnesiana L. Willd (Huizache) via acid hydrolysis; then, they were used to reinforce polyacrylic acid–co-acrylamide (AAc/AAm) hydrogels synthesized in a solution process via in situ free radical photopolymerization. The nanomaterials [...] Read more.
In this work, cellulose nanocrystals (CNCs) were obtained from the wood of Acacia farnesiana L. Willd (Huizache) via acid hydrolysis; then, they were used to reinforce polyacrylic acid–co-acrylamide (AAc/AAm) hydrogels synthesized in a solution process via in situ free radical photopolymerization. The nanomaterials were characterized using atomic force microscopy, dynamic light scattering (DLS), and the residual charge on the CNCs; the nanohydrogels were characterized using infrared spectroscopy, scanning electron microscopy, swelling kinetics, and Young’s modulus. Soluble-grade cellulose presented 94.6% α-cellulose, 0.5% β-cellulose, and 2.7% γ-cellulose, as well as a viscosity of 8.25 cp and a degree of polymerization (DP) of 706. The CNCs averaged 180 nm in length and 20 nm in width. In the nanohydrogels, it was observed that the swelling kinetic behavior followed the Schott kinetic model, at times lower than 500 h; after that, it became linear. The results show that the hydrogel swelling capacity depended on the crosslinking agent and CNC concentration, as well as the CNC chemical and morphological properties, rather than the CNC source. The hydrogels with CNCs exhibited a decreased swelling degree compared to the hydrogels without CNCs. Young’s modulus increased with CNC presence and depended on the concentration and characteristics of the CNC as a crosslinking agent. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (3rd Edition))
Show Figures

Graphical abstract

29 pages, 9386 KiB  
Review
Nanostructured Formulations for a Local Treatment of Cancer: A Mini Review About Challenges and Possibilities
by Tatiane Roquete Amparo, Tamires Cunha Almeida, Lucas Resende Dutra Sousa, Viviane Flores Xavier, Glenda Nicioli da Silva, Geraldo Célio Brandão and Orlando David Henrique dos Santos
Pharmaceutics 2025, 17(2), 205; https://doi.org/10.3390/pharmaceutics17020205 - 6 Feb 2025
Cited by 2 | Viewed by 1460
Abstract
Cancer represents a significant societal, public health, and economic challenge. Conventional chemotherapy is based on systemic administration; however, it has current limitations, including poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, and the development of multiple drug resistance. These factors underscore [...] Read more.
Cancer represents a significant societal, public health, and economic challenge. Conventional chemotherapy is based on systemic administration; however, it has current limitations, including poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, and the development of multiple drug resistance. These factors underscore the need for innovative strategies to enhance drug delivery directly to tumours. However, local treatment also presents significant challenges, including the penetration of the drug through endothelial layers, tissue density in the tumour microenvironment, tumour interstitial fluid pressure, physiological conditions within the tumour, and permanence at the site of action. Nanotechnology represents a promising alternative for addressing these challenges. This narrative review elucidates the potential of nanostructured formulations for local cancer treatment, providing illustrative examples and an analysis of the advantages and challenges associated with this approach. Among the nanoformulations developed for the local treatment of breast, bladder, colorectal, oral, and melanoma cancer, polymeric nanoparticles, liposomes, lipid nanoparticles, and nanohydrogels have demonstrated particular efficacy. These systems permit mucoadhesion and enhanced tissue penetration, thereby increasing the drug concentration at the tumour site (bioavailability) and consequently improving anti-tumour efficacy and potentially reducing adverse effects. In addition to studies indicating chemotherapy, nanocarriers can be used as a theranostic approach and in combination with irradiation methods. Full article
(This article belongs to the Special Issue Nanoformulations for Local Treatment of Cancer, Infections and Wounds)
Show Figures

Figure 1

31 pages, 13954 KiB  
Article
Kombucha Versus Vegetal Cellulose for Affordable Mucoadhesive (nano)Formulations
by Ioana Popa-Tudor, Naomi Tritean, Ștefan-Ovidiu Dima, Bogdan Trică, Marius Ghiurea, Anisoara Cimpean, Florin Oancea and Diana Constantinescu-Aruxandei
Gels 2025, 11(1), 37; https://doi.org/10.3390/gels11010037 - 4 Jan 2025
Cited by 1 | Viewed by 1645
Abstract
Cellulose nanofibers gained increasing interest in the production of medical devices such as mucoadhesive nanohydrogels due to their ability to retain moisture (high hydrophilicity), flexibility, superior porosity and durability, biodegradability, non-toxicity, and biocompatibility. In this work, we aimed to compare the suitability of [...] Read more.
Cellulose nanofibers gained increasing interest in the production of medical devices such as mucoadhesive nanohydrogels due to their ability to retain moisture (high hydrophilicity), flexibility, superior porosity and durability, biodegradability, non-toxicity, and biocompatibility. In this work, we aimed to compare the suitability of selected bacterial and vegetal nanocellulose to form hydrogels for biomedical applications. The vegetal and bacterial cellulose nanofibers were synthesized from brewer’s spent grains (BSG) and kombucha membranes, respectively. Two hydrogels were prepared, one based on the vegetal and the other based on the bacterial cellulose nanofibers (VNC and BNC, respectively). VNC was less opaque and more fluid than BNC. The cytocompatibility and in vitro antioxidant activity of the nanocellulose-based hydrogels were investigated using human gingival fibroblasts (HGF-1, ATCC CRL-2014). The investigation of the hydrogel–mucin interaction revealed that the BNC hydrogel had an approx. 2× higher mucin binding efficiency than the VNC hydrogel at a hydrogel/mucin ratio (mg/mg) = 4. The BNC hydrogel exhibited the highest potential to increase the number of metabolically active viable cells (107.60 ± 0.98% of cytotoxicity negative control) among all culture conditions. VNC reduced the amount of reactive oxygen species (ROS) by about 23% (105.5 ± 2.2% of C−) in comparison with the positive control, whereas the ROS level was slightly higher (120.2 ± 3.9% of C−) following the BNC hydrogel treatment. Neither of the two hydrogels showed antibacterial activity when assessed by the diffusion method. The data suggest that the BNC hydrogel based on nanocellulose from kombucha fermentation could be a better candidate for cytocompatible and mucoadhesive nanoformulations than the VNC hydrogel based on nanocellulose from brewer’s spent grains. The antioxidant and antibacterial activity of BNC and both BNC and VNC, respectively, should be improved. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (3rd Edition))
Show Figures

Figure 1

18 pages, 6329 KiB  
Article
Enhancing Wound Healing with Nanohydrogel-Entrapped Plant Extracts and Nanosilver: An In Vitro Investigation
by Devadass Jessy Mercy, Anbazhagan Thirumalai, Saranya Udayakumar, Balasubramanian Deepika, Gopalarethinam Janani, Agnishwar Girigoswami and Koyeli Girigoswami
Molecules 2024, 29(21), 5004; https://doi.org/10.3390/molecules29215004 - 22 Oct 2024
Cited by 15 | Viewed by 3443
Abstract
Wound healing is a complex process that can be improved through advanced biomedical approaches. Incorporating nanopolymers and plant extracts into wound dressings offers a favorable strategy for promoting tissue repair. Nanopolymers provide a controlled environment for sustained drug release while also protecting the [...] Read more.
Wound healing is a complex process that can be improved through advanced biomedical approaches. Incorporating nanopolymers and plant extracts into wound dressings offers a favorable strategy for promoting tissue repair. Nanopolymers provide a controlled environment for sustained drug release while also protecting the wound from external contaminants. When combined with bioactive compounds from plant extracts, which possess antioxidant, anti-inflammatory, and antimicrobial properties, this hybrid approach can accelerate healing, reduce infection, and improve tissue regeneration. Hence, in this study, we have synthesized alginate/gelatin hydrogel blended with only nanosilver (Alg/gel-Ag) and with nanosilver and plant extracts like aloe vera, curcumin, plantain peel extract, and Calendula flower petal extract (Alg/gel-AgP). The synthesized hydrogels were characterized using different photophysical tools, and the cytotoxicity effect was studied using a fibroblast cell line (V79). The antibacterial effect of the hydrogels was also observed against E. coli and S. aureus, determining the MIC and MBC. The wound healing in vitro was also assessed using scratch assay which depicted a rapid wound closure for Alg/gel-AgP compared to the untreated control and Alg/gel-Ag. The combined effect between nanotechnology and natural extracts represents a novel and effective approach for enhancing the wound healing process. Full article
(This article belongs to the Special Issue Discovery of Bioactive Ingredients from Natural Products, 5th Edition)
Show Figures

Graphical abstract

10 pages, 1500 KiB  
Communication
Inverse-Nanoemulsion-Derived Protein Hydrogels (NanoTrans-Gels) Can Outperform DOSPA/DOPE Lipid-Complex Transfection Agent
by Michael Kohler, Markus Krämer, Bastian Draphoen, Felicitas Schmitt, Mika Lindén, Ann-Kathrin Kissmann, Ulrich Ziener and Frank Rosenau
Appl. Sci. 2024, 14(20), 9151; https://doi.org/10.3390/app14209151 - 10 Oct 2024
Viewed by 1486
Abstract
Transfection of mammalian and human cell lines in medical research both are key technologies in molecular biology and genetic engineering. A vast variety of techniques to facilitate transfection exists including different chemical and nanoparticle-based agents as mediators of nucleic acid uptake, with nanoparticles [...] Read more.
Transfection of mammalian and human cell lines in medical research both are key technologies in molecular biology and genetic engineering. A vast variety of techniques to facilitate transfection exists including different chemical and nanoparticle-based agents as mediators of nucleic acid uptake, with nanoparticles composed of the lipids DOSPA/DOPE belonging to the established type of agents. We show that inverse-nanoemulsion-derived protein nanohydrogels (NanoTrans-gels), prepared by a simple synthesis protocol, are suited to transfect two model cancer cell lines (MCF7 and A549) with high efficiency. The transfection efficiency was analyzed in comparison to the DOSPA/DOPE-dependent protocols as a reference method. Since nanogel-based transfection outperformed the Lipofectamine-dependent technique in our experiments, we believe that the NanoTrans-gels loaded with plasmid DNA may open new avenues for simple and efficient transfection for humans and probably also other mammalian cell lines and may develop into a general tool for standard transfection procedures in cell biology laboratories. Full article
Show Figures

Figure 1

14 pages, 1601 KiB  
Article
Effective Mosquito Repellents: Myrcene- and Cymene-Loaded Nanohydrogels against Aedes aegypti
by Jonatas Lobato Duarte, Leonardo Delello Di Filippo, Tais de Cássia Ribeiro, Ana Carolina de Jesus Silva, Lorane Izabel da Silva Hage-Melim, Stéphane Duchon, David Carrasco, Mara Cristina Pinto, Vincent Corbel and Marlus Chorilli
Pharmaceutics 2024, 16(8), 1096; https://doi.org/10.3390/pharmaceutics16081096 - 21 Aug 2024
Cited by 1 | Viewed by 2181
Abstract
Aedes mosquito-borne diseases remain a significant global health threat, necessitating effective control strategies. This study introduces monoterpenes-based nanohydrogels for potential use as repellents against Aedes aegypti, the primary dengue vector worldwide. We formulated hydrogels using cymene- and myrcene-based nanoemulsions with different polymers: [...] Read more.
Aedes mosquito-borne diseases remain a significant global health threat, necessitating effective control strategies. This study introduces monoterpenes-based nanohydrogels for potential use as repellents against Aedes aegypti, the primary dengue vector worldwide. We formulated hydrogels using cymene- and myrcene-based nanoemulsions with different polymers: chitosan, carboxymethylcellulose (CMC), and carbopol®. Our evaluations of rheological, texture, and bioadhesive properties identified CMC hydrogel as the most promising gelling agent for topical application, exhibiting sustained monoterpene release over 12 h with low skin permeation and high retention in the stratum corneum. Myrcene-loaded CMC hydrogel achieved a 57% feeding deterrence compared to 47% with cymene hydrogel in the mosquito membrane-feeding model. Molecular docking studies revealed interactions between myrcene and an essential amino acid (Ile116) in the Ae. aegypti odorant-binding protein 22 (AeOBP22), corroborating its higher repellent efficacy. These findings suggest that myrcene-loaded CMC hydrogels offer a promising, minimally invasive strategy for personal protection against Ae. aegypti and warrant further investigation to optimize monoterpene concentrations for vector control. Full article
Show Figures

Graphical abstract

22 pages, 6923 KiB  
Review
Recent Research Progress on Polyamidoamine-Engineered Hydrogels for Biomedical Applications
by Li Liu, Zhiling Li, Baiyan Yang, Xiaoqing Jia and Shige Wang
Biomolecules 2024, 14(6), 620; https://doi.org/10.3390/biom14060620 - 24 May 2024
Cited by 3 | Viewed by 2007
Abstract
Hydrogels are three-dimensional crosslinked functional materials with water-absorbing and swelling properties. Many hydrogels can store a variety of small functional molecules to structurally and functionally mimic the natural extracellular matrix; hence, they have been extensively studied for biomedical applications. Polyamidoamine (PAMAM) dendrimers have [...] Read more.
Hydrogels are three-dimensional crosslinked functional materials with water-absorbing and swelling properties. Many hydrogels can store a variety of small functional molecules to structurally and functionally mimic the natural extracellular matrix; hence, they have been extensively studied for biomedical applications. Polyamidoamine (PAMAM) dendrimers have an ethylenediamine core and a large number of peripheral amino groups, which can be used to engineer various polymer hydrogels. In this review, an update on the progress of using PAMAM dendrimers for multifunctional hydrogel design was given. The synthesis of these hydrogels, which includes click chemistry reactions, aza-Michael addition, Schiff base reactions, amidation reactions, enzymatic reactions, and radical polymerization, together with research progress in terms of their application in the fields of drug delivery, tissue engineering, drug-free tumor therapy, and other related fields, was discussed in detail. Furthermore, the biomedical applications of PAMAM-engineered nano-hydrogels, which combine the advantages of dendrimers, hydrogels, and nanoparticles, were also summarized. This review will help researchers to design and develop more functional hydrogel materials based on PAMAM dendrimers. Full article
Show Figures

Figure 1

21 pages, 7560 KiB  
Article
In Situ Preparation of Tannic Acid-Modified Poly(N-isopropylacrylamide) Hydrogel Coatings for Boosting Cell Response
by Jufei Xu, Xiangzhe Liu, Pengpeng Liang, Hailong Yuan and Tianyou Yang
Pharmaceutics 2024, 16(4), 538; https://doi.org/10.3390/pharmaceutics16040538 - 13 Apr 2024
Cited by 3 | Viewed by 1676
Abstract
The improvement of the capability of poly(N-isopropylacrylamide) (PNIPAAm) hydrogel coating in cell adhesion and detachment is critical to efficiently prepare cell sheets applied in cellular therapies and tissue engineering. To enhance cell response on the surface, the amine group-modified PNIPAAm (PNIPAAm-APTES) [...] Read more.
The improvement of the capability of poly(N-isopropylacrylamide) (PNIPAAm) hydrogel coating in cell adhesion and detachment is critical to efficiently prepare cell sheets applied in cellular therapies and tissue engineering. To enhance cell response on the surface, the amine group-modified PNIPAAm (PNIPAAm-APTES) nanohydrogels were synthesized and deposited spontaneously on tannic acid (TA)-modified polyethylene (PE) plates. Subsequently, TA was introduced onto PNIPAAm-APTES nanohydrogels to fabricate coatings composed of TA-modified PNIPAAm-APTES (PNIPAAm-APTES-TA). Characterization techniques, including TEM, SEM, XPS, and UV-Vis spectroscopy, confirmed the effective deposition of hydrogels of PNIPAAm as well as the morphologies, content of chemical bonding-TA, and stability of various coatings. Importantly, the porous hydrogel coatings exhibited superhydrophilicity at 20 °C and thermo-responsive behavior. The fluorescence measurement demonstrated that the coating’s stability effectively regulated protein behavior, influencing cell response. Notably, cell response tests revealed that even without precise control over the chain length/thickness of PNIPAAm during synthesis, the coatings enhanced cell adhesion and detachment, facilitating efficient cell culture. This work represented a novel and facile approach to preparing bioactive PNIPAAm for cell culture. Full article
(This article belongs to the Special Issue Novel Drug Delivery Systems of Phytomedicines)
Show Figures

Graphical abstract

Back to TopTop