Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = nanodentistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 359 KiB  
Review
Emerging Applications of Nanotechnology in Dentistry
by Shiza Malik and Yasir Waheed
Dent. J. 2023, 11(11), 266; https://doi.org/10.3390/dj11110266 - 15 Nov 2023
Cited by 36 | Viewed by 12471
Abstract
Dentistry is a branch of healthcare where nanobiotechnology is reverberating in multiple ways to produce beneficial outcomes. The purpose of this review is to bring into the awareness of the readers the various practical dimensions of the nano-dental complex (nanodentistry) in healthcare and [...] Read more.
Dentistry is a branch of healthcare where nanobiotechnology is reverberating in multiple ways to produce beneficial outcomes. The purpose of this review is to bring into the awareness of the readers the various practical dimensions of the nano-dental complex (nanodentistry) in healthcare and how novelties linked with the field are revolutionizing dentistry. A methodological approach was adopted to collect the latest data on nanotechnology and dentistry from sources, including PubMed, Google Scholar, Scopus, and official websites like the WHO. Nanodentistry is an emerging field in dentistry that involves the use of nanomaterials, nanorobots, and nanotechnology to diagnose, treat, and prevent dental diseases. The results summarize the descriptive analyses of the uses of nanodentistry within orthodontics, preventive dentistry, prosthodontics, restorative dentistry, periodontics, dental surgeries, dental restoration technologies, and other areas of dentistry. The future directions of nano-industries and nano-healthcare have been included to link them with the oral healthcare sector, treatment plans, and improved medical services which could be explored in the future for advanced healthcare regulation. The major limitations to the use of dental nanoproducts are their cost-effectiveness and accessibility, especially in financially constrained countries. These data will help the readers to experience a detailed analysis and comprehensive covering of the diverse achievements of nanodentistry with past analyses, present scenarios, and future implications. Full article
(This article belongs to the Special Issue Feature Review Papers in Dentistry)
Show Figures

Graphical abstract

11 pages, 2663 KiB  
Article
Antibacterial Activity of Dissolved Silver Fractions Released from Silver-Coated Titanium Dental Implant Abutments: A Study on Streptococcus mutans Biofilm Formation
by Ranj Nadhim Salaie, Pakhshan A. Hassan, Zhala Dara Meran and Shehab Ahmed Hamad
Antibiotics 2023, 12(7), 1097; https://doi.org/10.3390/antibiotics12071097 - 24 Jun 2023
Cited by 6 | Viewed by 2288
Abstract
(1) Background: The aim of this research was to investigate the antibacterial activity of dissolved silver from silver-coated titanium implants against Streptococcus mutans. (2) Methodology: Silver-coated titanium implant discs were immersed in 1.8 mL of brain heart infusion broth (BHIB) and incubated [...] Read more.
(1) Background: The aim of this research was to investigate the antibacterial activity of dissolved silver from silver-coated titanium implants against Streptococcus mutans. (2) Methodology: Silver-coated titanium implant discs were immersed in 1.8 mL of brain heart infusion broth (BHIB) and incubated for 24 h in order to release the silver ions into the broth. The coating quality was confirmed via EDS, and the dissolved silver was measured via inductively coupled plasma mass spectrometry (ICP-MS). The experimental design used unconditioned broth (control) and broth conditioned with silver released from silver-coated titanium implants (n = 6). Regarding the antibacterial activity, isolated Streptococcus mutans was used. A turbidity test and lactate production test were performed to determine the effect of dissolved silver on bacterial growth in a suspension and biofilm formation. (3) Result: The results showed that the coating was successfully applied on the substrate. There was around 0.3 mg/L of silver released into the BHIB, and the turbidity of the control group was significantly higher than the treatment, with measured absorbance values of 1.4 and 0.8, respectively, indicating that the dissolved silver ions from the silver-coated titanium discs exhibited some degree of antibacterial activity by preventing the growth of Streptococcus mutans. However, the results of the antibiofilm activity test did not show any significant difference between the groups. (4) Conclusion: The dissolved silver from silver-coated titanium implants has an antibacterial activity but not a significant antimicrobial activity, indicating that the dissolved silver from silver-coated titanium abutments can significantly reduce the incidence of peri-implant mucositis. Full article
Show Figures

Figure 1

41 pages, 8042 KiB  
Review
Medical and Dental Applications of Titania Nanoparticles: An Overview
by Afsheen Mansoor, Zohaib Khurshid, Muhammad Talal Khan, Emaan Mansoor, Faaz Ahmad Butt, Asif Jamal and Paulo J. Palma
Nanomaterials 2022, 12(20), 3670; https://doi.org/10.3390/nano12203670 - 19 Oct 2022
Cited by 64 | Viewed by 6830
Abstract
Currently, titanium oxide (TiO2) nanoparticles are successfully employed in human food, drugs, cosmetics, advanced medicine, and dentistry because of their non-cytotoxic, non-allergic, and bio-compatible nature when used in direct close contact with the human body. These NPs are the most versatile [...] Read more.
Currently, titanium oxide (TiO2) nanoparticles are successfully employed in human food, drugs, cosmetics, advanced medicine, and dentistry because of their non-cytotoxic, non-allergic, and bio-compatible nature when used in direct close contact with the human body. These NPs are the most versatile oxides as a result of their acceptable chemical stability, lower cost, strong oxidation properties, high refractive index, and enhanced aesthetics. These NPs are fabricated by conventional (physical and chemical) methods and the latest biological methods (biological, green, and biological derivatives), with their advantages and disadvantages in this epoch. The significance of TiO2 NPs as a medical material includes drug delivery release, cancer therapy, orthopedic implants, biosensors, instruments, and devices, whereas their significance as a dental biomaterial involves dentifrices, oral antibacterial disinfectants, whitening agents, and adhesives. In addition, TiO2 NPs play an important role in orthodontics (wires and brackets), endodontics (sealers and obturating materials), maxillofacial surgeries (implants and bone plates), prosthodontics (veneers, crowns, bridges, and acrylic resin dentures), and restorative dentistry (GIC and composites). Full article
(This article belongs to the Special Issue Nanomaterials in Oral Science)
Show Figures

Figure 1

22 pages, 7211 KiB  
Article
Effect of Currently Available Nanoparticle Synthesis Routes on Their Biocompatibility with Fibroblast Cell Lines
by Afsheen Mansoor, Zohaib Khurshid, Emaan Mansoor, Muhammad Talal Khan, Jithendra Ratnayake and Asif Jamal
Molecules 2022, 27(20), 6972; https://doi.org/10.3390/molecules27206972 - 17 Oct 2022
Cited by 18 | Viewed by 3018 | Correction
Abstract
Nanotechnology has acquired significance in dental applications, but its safety regarding human health is still questionable due to the chemicals utilized during various synthesis procedures. Titanium nanoparticles were produced by three novel routes, including Bacillus subtilis, Cassia fistula and hydrothermal heating, and [...] Read more.
Nanotechnology has acquired significance in dental applications, but its safety regarding human health is still questionable due to the chemicals utilized during various synthesis procedures. Titanium nanoparticles were produced by three novel routes, including Bacillus subtilis, Cassia fistula and hydrothermal heating, and then characterized for shape, phase state, size, surface roughness, elemental composition, texture and morphology by SEM, TEM, XRD, AFM, DRS, DLS and FTIR. These novel titanium nanoparticles were tested for cytotoxicity through the MTT assay. L929 mouse fibroblast cells were used to test the cytotoxicity of the prepared titanium nanoparticles. Cell suspension of 10% DMEM with 1 × 104 cells was seeded in a 96-well plate and incubated. Titanium nanoparticles were used in a 1 mg/mL concentration. Control (water) and titanium nanoparticles stock solutions were prepared with 28 microliters of MTT dye and poured into each well, incubated at 37 °C for 2 h. Readings were recorded on day 1, day 15, day 31, day 41 and day 51. The results concluded that titanium nanoparticles produced by Bacillus subtilis remained non-cytotoxic because cell viability was >90%. Titanium nanoparticles produced by Cassia fistula revealed mild cytotoxicity on day 1, day 15 and day 31 because cell viability was 60–90%, while moderate cytotoxicity was found at day 41 and day 51, as cell viability was 30–60%. Titanium nanoparticles produced by hydrothermal heating depicted mild cytotoxicity on day 1 and day 15; moderate cytotoxicity on day 31; and severe cytotoxicity on day 41 and day 51 because cell viability was less than 30% (p < 0.001). The current study concluded that novel titanium nanoparticles prepared by Bacillus subtilis were the safest, more sustainable and most biocompatible for future restorative nano-dentistry purposes. Full article
Show Figures

Graphical abstract

22 pages, 1695 KiB  
Review
Recent Progress on the Applications of Nanomaterials and Nano-Characterization Techniques in Endodontics: A Review
by Olcay Özdemir and Turkan Kopac
Materials 2022, 15(15), 5109; https://doi.org/10.3390/ma15155109 - 22 Jul 2022
Cited by 23 | Viewed by 6106
Abstract
The impact of nano-based technologies in endodontics for the identification and treatment of various dental infections is showing fast progress. Studies show that nanoparticles could serve as useful agents with many beneficial results and continue to be promising in the field of endodontics. [...] Read more.
The impact of nano-based technologies in endodontics for the identification and treatment of various dental infections is showing fast progress. Studies show that nanoparticles could serve as useful agents with many beneficial results and continue to be promising in the field of endodontics. To ensure progress and improvements on novel nanomaterials in relation to their physicochemical and biological properties, nano-identification methods for the detection and evaluation of diseases need to be further highlighted. This study aims to review the current technological progress and recent research outcomes as well as possible prospective applications of nano-based technologies in endodontics. A comprehensive literature survey has been carried out on the utilizations of nanomaterials and nano-characterization techniques in endodontics. The current status and recent applications in endodontics are discussed with illustrative examples. The results have shown that the progress and improved accuracy of nano-identification techniques enabled a better characterization, evaluation and selection of appropriate treatment plans for endodontics-related diseases. The results have been inspiring for further clinical investigations. Nano-endodontics is still a developing field with a strong potential for revolutions of novel materials and techniques in the diagnosis and treatment of dental diseases. Further improvements in nanoparticles properties will pave the way for the development of many beneficial endodontic therapeutic agents. The future looks encouraging for sustainable products and testing methods for clinical endodontic applications. Full article
(This article belongs to the Special Issue Nanomaterials Design towards Biomedical Applications)
Show Figures

Figure 1

20 pages, 2022 KiB  
Review
Nanomaterials in Dentistry: Current Applications and Future Scope
by Pavan Kumar Pavagada Sreenivasalu, Chander Parkash Dora, Rajan Swami, Veeriah Chowdary Jasthi, Predeepkumar Narayanappa Shiroorkar, Sreeharsha Nagaraja, Syed Mohammed Basheeruddin Asdaq and Md. Khalid Anwer
Nanomaterials 2022, 12(10), 1676; https://doi.org/10.3390/nano12101676 - 14 May 2022
Cited by 62 | Viewed by 11103
Abstract
Nanotechnology utilizes the mechanics to control the size and morphology of the particles in the required nano range for accomplishing the intended purposes. There was a time when it was predominantly applied only to the fields of matter physics or chemical engineering, but [...] Read more.
Nanotechnology utilizes the mechanics to control the size and morphology of the particles in the required nano range for accomplishing the intended purposes. There was a time when it was predominantly applied only to the fields of matter physics or chemical engineering, but with time, biological scientists recognized its vast benefits and explored the advantages in their respective fields. This extension of nanotechnology in the field of dentistry is termed ‘Nanodentistry.’ It is revolutionizing every aspect of dentistry. It consists of therapeutic and diagnostic tools and supportive aids to maintain oral hygiene with the help of nanomaterials. Research in nanodentistry is evolving holistically but slowly with the advanced finding of symbiotic use of novel polymers, natural polymers, metals, minerals, and drugs. These materials, in association with nanotechnology, further assist in exploring the usage of nano dental adducts in prosthodontic, regeneration, orthodontic, etc. Moreover, drug release cargo abilities of the nano dental adduct provide an extra edge to dentistry over their conventional counterparts. Nano dentistry has expanded to every single branch of dentistry. In the present review, we will present a holistic view of the recent advances in the field of nanodentistry. The later part of the review compiled the ethical and regulatory challenges in the commercialization of the nanodentistry. This review tracks the advancement in nano dentistry in different but important domains of dentistry. Full article
(This article belongs to the Special Issue Nanomaterials in Dentistry)
Show Figures

Figure 1

26 pages, 2921 KiB  
Review
Emergence of Nano-Dentistry as a Reality of Contemporary Dentistry
by Orest Kochan, Svitlana Boitsaniuk, Mariana Levkiv, Krzysztof Przystupa, Nadiia Manashchuk, Khrystyna Pohoretska, Natalia Chornij, Iryna Tsvyntarna and Liudmyla Patskan
Appl. Sci. 2022, 12(4), 2008; https://doi.org/10.3390/app12042008 - 15 Feb 2022
Cited by 13 | Viewed by 4881
Abstract
(1) Background. Nanotechnology offers significant alternative ways to solve scientific, medical, and human health issues. Dental biomaterials were improved by nanotechnology. It manufactures better materials or improves the existing ones and forms the basis of novel methods for disease diagnosis and prevention. Modern [...] Read more.
(1) Background. Nanotechnology offers significant alternative ways to solve scientific, medical, and human health issues. Dental biomaterials were improved by nanotechnology. It manufactures better materials or improves the existing ones and forms the basis of novel methods for disease diagnosis and prevention. Modern nanotechnology makes oral health care services more acceptable for patients. Nanotechnology is now important area of research, covering a broad range of applications in dentistry. (2) Methods. Relevant literature from Scopus published in English was selected using the keywords “nanoparticle” and “dentistry”. To the selected articles we applied the inclusion and exclusion criteria to choose the relevant ones. (3) Results. Based on the relevant articles, a literature review was prepared. This review provides an insight into the applications of nanotechnology in various branches of dentistry. We applied several regression models to fit number of papers versus time and chose the best one. We used it to construct the forecast and its 95%-confidence interval for the number of publications in 2022–2026. (4) Conclusions. It shows that a significant rise in papers is expected. This review familiarizes dentists with properties and benefits of nanomaterials and nanotechnology. Additionally, it can help scientists to consider the direction of their research and to plan prospective research projects. Full article
(This article belongs to the Special Issue Nanotechnology for Early Diagnosis and Improving Oral Health)
Show Figures

Figure 1

22 pages, 5806 KiB  
Review
Exploiting Nanomaterials for Optical Coherence Tomography and Photoacoustic Imaging in Nanodentistry
by Avishek Das, Gisele Cruz Camboim Raposo, Daniela Siqueira Lopes, Evair Josino da Silva, Vanda Sanderana Macêdo Carneiro, Cláudia Cristina Brainer de Oliveira Mota, Marcello Magri Amaral, Denise Maria Zezell, Renato Barbosa-Silva and Anderson Stevens Leonidas Gomes
Nanomaterials 2022, 12(3), 506; https://doi.org/10.3390/nano12030506 - 1 Feb 2022
Cited by 19 | Viewed by 5068
Abstract
There is already a societal awareness of the growing impact of nanoscience and nanotechnology, with nanomaterials (with at least one dimension less than 100 nm) now incorporated in items as diverse as mobile phones, clothes or dentifrices. In the healthcare area, nanoparticles of [...] Read more.
There is already a societal awareness of the growing impact of nanoscience and nanotechnology, with nanomaterials (with at least one dimension less than 100 nm) now incorporated in items as diverse as mobile phones, clothes or dentifrices. In the healthcare area, nanoparticles of biocompatible materials have already been used for cancer treatment or bioimaging enhancement. Nanotechnology in dentistry, or nanodentistry, has already found some developments in dental nanomaterials for caries management, restorative dentistry and orthodontic adhesives. In this review, we present state-of-the-art scientific development in nanodentistry with an emphasis on two imaging techniques exploiting nanomaterials: optical coherence tomography (OCT) and photoacoustic imaging (PAI). Examples will be given using OCT with nanomaterials to enhance the acquired imaging, acting as optical clearing agents for OCT. A novel application of gold nanoparticles and nanorods for imaging enhancement of incipient occlusal caries using OCT will be described. Additionally, we will highlight how the OCT technique can be properly managed to provide imaging with spatial resolution down to 10′s–100′s nm resolution. For PAI, we will describe how new nanoparticles, namely TiN, prepared by femtosecond laser ablation, can be used in nanodentistry and will show photoacoustic microscopy and tomography images for such exogenous agents. Full article
(This article belongs to the Special Issue Nanomaterials in Dentistry)
Show Figures

Figure 1

16 pages, 4434 KiB  
Article
Engineering of a Biomimetic Interface between a Native Dental Tissue and Restorative Composite and Its Study Using Synchrotron FTIR Microscopic Mapping
by Pavel Seredin, Dmitry Goloshchapov, Yuri Ippolitov and Jitraporn Vongsvivut
Int. J. Mol. Sci. 2021, 22(12), 6510; https://doi.org/10.3390/ijms22126510 - 17 Jun 2021
Cited by 15 | Viewed by 4517
Abstract
The aim of this work is to develop a biomimetic interface between the natural tooth tissue and the restorative composite and to study it on the basis of synchrotron micro-FTIR mapping and multidimensional processing of the spectral data array. Using hierarchical cluster analysis [...] Read more.
The aim of this work is to develop a biomimetic interface between the natural tooth tissue and the restorative composite and to study it on the basis of synchrotron micro-FTIR mapping and multidimensional processing of the spectral data array. Using hierarchical cluster analysis of 3D FTIR data revealed marked improvements in the formation of the dentine/adhesive/dental hybrid interface using a biomimetic approach. The use of a biomimetic strategy (application of an amino acid–modified primer, alkaline calcium and a nano-c-HAp–modified adhesive) allowed the formation of a matrix that can be structurally integrated with natural dentine and dental composite. The biomimetic hybrid layer was characterised by homogeneous chemical composition and a higher degree of conversion of the adhesive during polymerisation, which should provide optimal integration of the dental composite with the dentine. Full article
Show Figures

Figure 1

10 pages, 1142 KiB  
Review
Application of Nanotechnology in Orthodontic Materials: A State-of-the-Art Review
by Alberto De Stefani, Giovanni Bruno, Giorgia Preo and Antonio Gracco
Dent. J. 2020, 8(4), 126; https://doi.org/10.3390/dj8040126 - 9 Nov 2020
Cited by 29 | Viewed by 6195
Abstract
Nanotechnology refers to the science that manipulates matter at molecular and atomic levels, and studies matter at the nanoscale level to detect and exploit the useful properties that derive from these dimensions; materials with components less than 100 nm in at least one [...] Read more.
Nanotechnology refers to the science that manipulates matter at molecular and atomic levels, and studies matter at the nanoscale level to detect and exploit the useful properties that derive from these dimensions; materials with components less than 100 nm in at least one dimension are called nanomaterials. Nanotechnology is applied in many fields, such as medicine (nanomedicine) and dentistry (nano-dentistry). The purpose of these innovations and research in this field is to improve human life and health. This article aims to summarize and describe what the most recent and known innovations of nanotechnology in dentistry are, focusing on and paying particular attention to the branch that is orthodontics, and on the application of new nanomaterials in the realization, for example, of orthodontic elastomeric ligatures, orthodontic power chains, and orthodontic miniscrews. We also address a very important topic in orthodontics, which is how to reduce the friction force. Full article
(This article belongs to the Special Issue Applied Science and Technology in Orthodontics)
Show Figures

Figure 1

15 pages, 697 KiB  
Review
Advances in Nanotechnology for Restorative Dentistry
by Zohaib Khurshid, Muhammad Zafar, Saad Qasim, Sana Shahab, Mustafa Naseem and Ammar AbuReqaiba
Materials 2015, 8(2), 717-731; https://doi.org/10.3390/ma8020717 - 16 Feb 2015
Cited by 200 | Viewed by 31300
Abstract
Rationalizing has become a new trend in the world of science and technology. Nanotechnology has ascended to become one of the most favorable technologies, and one which will change the application of materials in different fields. The quality of dental biomaterials has been [...] Read more.
Rationalizing has become a new trend in the world of science and technology. Nanotechnology has ascended to become one of the most favorable technologies, and one which will change the application of materials in different fields. The quality of dental biomaterials has been improved by the emergence of nanotechnology. This technology manufactures materials with much better properties or by improving the properties of existing materials. The science of nanotechnology has become the most popular area of research, currently covering a broad range of applications in dentistry. This review describes the basic concept of nanomaterials, recent innovations in nanomaterials and their applications in restorative dentistry. Advances in nanotechnologies are paving the future of dentistry, and there are a plenty of hopes placed on nanomaterials in terms of improving the health care of dental patients. Full article
(This article belongs to the Special Issue Dental Materials)
Show Figures

Figure 1

23 pages, 2381 KiB  
Review
Nanocharacterization in Dentistry
by Shivani Sharma, Sarah E. Cross, Carlin Hsueh, Ruseen P. Wali, Adam Z. Stieg and James K. Gimzewski
Int. J. Mol. Sci. 2010, 11(6), 2523-2545; https://doi.org/10.3390/ijms11062523 - 17 Jun 2010
Cited by 50 | Viewed by 19295
Abstract
About 80% of US adults have some form of dental disease. There are a variety of new dental products available, ranging from implants to oral hygiene products that rely on nanoscale properties. Here, the application of AFM (Atomic Force Microscopy) and optical interferometry [...] Read more.
About 80% of US adults have some form of dental disease. There are a variety of new dental products available, ranging from implants to oral hygiene products that rely on nanoscale properties. Here, the application of AFM (Atomic Force Microscopy) and optical interferometry to a range of dentistry issues, including characterization of dental enamel, oral bacteria, biofilms and the role of surface proteins in biochemical and nanomechanical properties of bacterial adhesins, is reviewed. We also include studies of new products blocking dentine tubules to alleviate hypersensitivity; antimicrobial effects of mouthwash and characterizing nanoparticle coated dental implants. An outlook on future “nanodentistry” developments such as saliva exosomes based diagnostics, designing biocompatible, antimicrobial dental implants and personalized dental healthcare is presented. Full article
(This article belongs to the Special Issue Dental Materials)
Show Figures

Back to TopTop