Application of Nanotechnology in Orthodontic Materials: A State-of-the-Art Review
Abstract
:1. Introduction
2. Methods
3. Orthodontic Elastomeric Ligatures
4. Orthodontic Power Chains
5. Orthodontic Bands
6. Orthodontic Miniscrews
7. Prevention of Dental Caries and Control of Oral Biofilm
8. Coated Orthodontic Archwires
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Solanke, I.A.; Ajayi, D.; Arigbede, A. Nanotechnology and its application in dentistry. Ann. Med. Health Sci. Res. 2014, 4, 171–177. [Google Scholar]
- Bhardwaj, A.; Bhardwaj, A.; Misuriya, A.; Maroli, S.; Manjula, S.; Singh, A.K. Nanotechnology in dentistry: Present and future. J. Int. Oral Health 2014, 6, 121–126. [Google Scholar]
- Kumar, S.R.; Vijayalakshmi, R. Nanotechnology in dentistry. Indian J. Dent. Res. 2006, 17, 62. [Google Scholar]
- Aeran, H.; Kumar, V.; Uniyal, S.; Tanwer, P. Nanodentistry: Is just a fiction or future. J. Oral Biol. Craniofacial Res. 2015, 5, 207–211. [Google Scholar]
- Schmalz, G.; Hickel, R.; Van Landuyt, K.L.; Reichl, F.-X. Scientific update on nanoparticles in dentistry. Int. Dent. J. 2018, 68, 299–305. [Google Scholar]
- Mantri, S.S.; Mantri, S. The nano era in dentistry. J. Nat. Sci. Biol. Med. 2013, 4, 39–44. [Google Scholar]
- Theodore Roberson, J.; Harald, O.H.; Edward, J.S. Sturdevant’s Art and Science of Operative Dentistry; Elsevier: Amsterdam, The Netherlands, 2006; pp. 807–840. [Google Scholar]
- Freitas, R.A. Nanodentistry. J. Am. Dent. Assoc. 2000, 131, 1559–1565. [Google Scholar]
- Kavoosi, F.; Modaresi, F.; Sanaei, M.; Rezaei, Z. Medical and dental applications of nanomedicines. APMIS 2018, 126, 795–803. [Google Scholar]
- Bayne, S.C. Dental Biomaterials: Where Are We and Where Are We Going? J. Dent. Educ. 2005, 69, 571–585. [Google Scholar]
- Gracco, A.; Siviero, L.; Dandrea, M.; Crivellin, G. Use of nanotechnology for the superlubrication of orthodontic wires. In Nanobiomaterials in Dentistry: Applications of Nanobiomaterials; Elsevier Inc.: Amsterdam, The Netherlands, 2016; Volume 11, pp. 241–267. [Google Scholar]
- Hernández-Gómora, A.E.; Lara-Carrillo, E.; Robles-Navarro, J.B.; Scougall-Vilchis, R.J.; Hernández-López, S.; Medina-Solís, C.E.; Morales-Luckie, R.A. Biosynthesis of Silver Nanoparticles on Orthodontic Elastomeric Modules: Evaluation of Mechanical and Antibacterial Properties. Molecules 2017, 22, 1407. [Google Scholar]
- Cheng, H.C.; Chen, M.S.; Peng, B.Y.; Lin, W.T.; Shen, Y.-K.; Wang, Y.H. Surface Treatment on Physical Properties and Biocompatibility of Orthodontic Power Chains. BioMed Res. Int. 2017, 2017, 6343724. [Google Scholar]
- Prabha, R.D.; Kandasamy, R.; Sivaraman, U.S.; Nandkumar, M.A.; Nair, P.D. Antibacterial nanosilver coated orthodontic bands with potential implications in dentistry. Indian J. Med. Res. 2016, 144, 580–586. [Google Scholar]
- Moreira, D.M.; Oei, J.; Rawls, H.R.; Wagner, J.; Chu, L.; Li, Y.; Zhang, W.; Whang, K. A novel antimicrobial orthodontic band cement with in situ–generated silver nanoparticles. Angle Orthod. 2015, 85, 175–183. [Google Scholar]
- Jang, I.; Choi, D.-S.; Lee, J.-K.; Kim, W.-T.; Cha, B.-K.; Choi, W.-Y. Effect of drug-loaded TiO2 nanotube arrays on osseointegration in an orthodontic miniscrew: An in-vivo pilot study. Biomed. Microdevices 2017, 19, 94. [Google Scholar]
- Jang, I.; Shim, S.-C.; Choi, D.-S.; Cha, B.-K.; Lee, J.-K.; Choe, B.-H.; Choi, W.-Y. Effect of TiO2 nanotubes arrays on osseointegration of orthodontic miniscrew. Biomed. Microdevices 2015, 17, 76. [Google Scholar]
- Suhani, M.F.; Băciuţ, G.; Băciuţ, M.; Şuhani, R.; Bran, S. Current perspectives regarding the application and incorporation of silver nanoparticles into dental biomaterials. Med. Pharm. Rep. 2018, 91, 274–279. [Google Scholar]
- Nakashima, S.; Yoshie, M.; Sano, H.; Bahar, A. Effect of a test dentifrice containing nano-sized calcium carbonate on remineralization of enamel lesions in vitro. J. Oral Sci. 2009, 51, 69–77. [Google Scholar]
- Kanaparthy, R. The changing face of dentistry: Nanotechnology. Int. J. Nanomed. 2011, 6, 2799–2804. [Google Scholar]
- Gracco, A.L.T.; Dandrea, M.; Deflorian, F.; Zanella, C.; De Stefani, A.; Bruno, G.; Stellini, E. Application of a Molybdenum and Tungsten Disulfide Coating to Improve Tribological Properties of Orthodontic Archwires. Nanomaterirls 2019, 9, 753. [Google Scholar]
- Rapoport, L.P.; Bilik, Y.; Feldman, Y.A.; Homyonfer, M.; Cohen, S.R.; Tenne, R. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nat. Cell Biol. 1997, 387, 791–793. [Google Scholar]
- Sawhney, R.; Sharma, R.; Sharma, K. Microbial Colonization on Elastomeric Ligatures during Orthodontic Therapeutics: An Overview. Turk. J. Orthod. 2018, 31, 21–25. [Google Scholar]
- Sharma, R.; Sharma, K.; Sawhney, R. Evidence of variable bacterial colonization on coloured elastomeric ligatures during orthodontic treatment: An intermodular comparative study. J. Clin. Exp. Dent. 2018, 10, e271–e278. [Google Scholar]
- Sharan, J.; Singh, S.; Lale, S.; Mishra, M.; Koul, V.; Kharbanda, O.P. Applications of Nanomaterials in Dental Science: A Review. J. Nanosci. Nanotechnol. 2017, 17, 2235–2255. [Google Scholar]
- Maxfield, B.J.; Hamdan, A.M.; Tüfekçi, E.; Shroff, B.; Best, A.M.; Lindauer, S.J. Development of white spot lesions during orthodontic treatment: Perceptions of patients, parents, orthodontists, and general dentists. Am. J. Orthod. Dentofac. Orthop. 2012, 141, 337–344. [Google Scholar]
- Robertson, M.A.; Kau, C.H.; English, J.D.; Lee, R.P.; Powers, J.; Nguyen, J.T. MI Paste Plus to prevent demineralization in orthodontic patients: A prospective randomized controlled trial. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 660–668. [Google Scholar]
- Costa, A.; Raffainl, M.; Melsen, B. Miniscrews as orthodontic anchorage: A preliminary report. Int. J. Adult Orthod. Orthognath. Surg. 1998, 13, 201–209. [Google Scholar]
- Reynders, R.; Ronchi, L.; Bipat, S. Mini-implants in orthodontics: A systematic review of the literature. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 564.e1–564.e19. [Google Scholar]
- Tsui, W.; Chua, H.; Cheung, L.K. Bone anchor systems for orthodontic application: A systematic review. Int. J. Oral Maxillofac. Surg. 2012, 41, 1427–1438. [Google Scholar]
- Leung, M.T.-C.; Lee, T.C.-K.; Rabie, A.B.M.; Wong, R.W.-K. Use of Miniscrews and Miniplates in Orthodontics. J. Oral Maxillofac. Surg. 2008, 66, 1461–1466. [Google Scholar]
- Seres, L.; Kocsis, A. Closure of Severe Skeletal Anterior Open Bite With Zygomatic Anchorage. J. Craniofacial Surg. 2009, 20, 478–482. [Google Scholar]
- Rossi, M.; Bruno, G.; De Stefani, A.; Perri, A.; Gracco, A. Quantitative CBCT evaluation of maxillary and mandibular cortical bone thickness and density variability for orthodontic miniplate placement. Int. Orthod. 2017, 15, 610–624. [Google Scholar]
- Gracco, A.; Lombardo, L.; Cozzani, M.; Siciliani, G. Quantitative cone-beam computed tomography evaluation of palatal bone thickness for orthodontic miniscrew placement. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 361–369. [Google Scholar]
- Gracco, A.; Lombardo, L.; Cozzani, M.; Siciliani, G. Quantitative evaluation with CBCT of palatal bone thickness in growing patients. Prog. Orthod. 2006, 7, 164–174. [Google Scholar]
- Ma, Y.; Zhang, N.; Weir, M.D.; Bai, Y.; Xu, H.H.K. Novel multifunctional dental cement to prevent enamel demineralization near orthodontic brackets. J. Dent. 2017, 64, 58–67. [Google Scholar]
- Borzabadi-Farahani, A.; Borzabadi, E.; Lynch, E. Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications. Acta Odontol. Scand. 2013, 72, 413–417. [Google Scholar]
- Pokrowiecki, R.; Pałka, K.; Mielczarek, A. Nanomaterials in dentistry: A cornerstone or a black box? Nanomedicine 2018, 13, 639–667. [Google Scholar]
- Sodagar, A.; Akhundi, M.S.A.; Bahador, A.; Jalali, Y.F.; Behzadi, Z.; Elhaminejad, F.; Mirhashemi, A. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics. Dent. Press J. Orthod. 2017, 22, 67–74. [Google Scholar]
- Cao, B.; Wang, Y.; Li, N.; Liu, B.; Zhang, Y. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO2-xNy thin film and examination of its antimicrobial performance. Dent. Mater. J. 2013, 32, 311–316. [Google Scholar]
- Pradhaban, G.; Kaliaraj, G.S.; Vishwakarma, V. Antibacterial effects of silver-zirconia composite coatings using pulsed laser deposition onto 316L SS for bio implants. Prog. Biomater. 2014, 3, 123–130. [Google Scholar]
- Nanobiomaterials in Clinical Dentistry—Google Libri. Available online: https://books.google.it/books?hl=it&lr=&id=klnVINhjSEsC&oi=fnd&pg=PP1&dq=Subramani,+K.,+Ahmed,+W.,+Hartsfield,+J.K.,+2013.+Nanobiomaterials+in+Clinical+Dentistry,+first+ed.+Elsevier,+Oxford.&ots=G3AluFRyF4&sig=yM5jnWymyQD8luVP9NRWBCAK2CI#v=onepage&q&f=false (accessed on 17 October 2019).
- Melo, M.A.S.; Morais, W.A.; Passos, V.F.; Lima, J.P.M.; Rodrigues, L.K.A. Fluoride releasing and enamel demineralization around orthodontic brackets by fluoride-releasing composite containing nanoparticles. Clin. Oral Investig. 2013, 18, 1343–1350. [Google Scholar]
- Kusy, R.P.; Whitley, J.Q. Friction between different wire-bracket configurations and materials. Semin. Orthod. 1997, 3, 166–177. [Google Scholar]
- Chimenti, C.; Franchi, L.; Di Giuseppe, M.G.; Lucci, M. Friction of orthodontic elastomeric ligatures with different dimensions. Angle Orthod. 2005, 75, 421–425. [Google Scholar]
- Syed, S.S.; Kulkarni, D.; Todkar, R.; Bagul, R.S.; Parekh, K.; Bhujbal, N. A Novel Method of Coating Orthodontic Archwires with Nanoparticles. J. Int. Oral Health 2015, 7, 30–33. [Google Scholar]
- Reznikov, N.; Har-Zion, G.; Barkana, I.; Abed, Y.; Redlich, M. Influence of Friction Resistance on Expression of Superelastic Properties of Initial NiTi Wires in “Reduced Friction” and Conventional Bracket Systems. J. Dent. Biomech. 2010, 2010, 613142. [Google Scholar]
- Redlich, M.; Katz, A.; Rapoport, L.; Wagner, H.D.; Feldman, Y.; Tenne, R. Improved orthodontic stainless steel wires coated with inorganic fullerene-like nanoparticles of WS2 impregnated in electroless nickel–phosphorous film. Dent. Mater. 2008, 24, 1640–1646. [Google Scholar]
- Mehta, D.S.; Guvva, S.; Patil, M. Future impact of nanotechnology on medicine and dentistry. J. Indian Soc. Periodontol. 2008, 12, 34–40. [Google Scholar]
- Maman, P.; Nagpal, M.; Gilhotra, R.M.; Aggarwal, G. Nano Era of Dentistry-An Update. Curr. Drug Deliv. 2018, 15, 186–204. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Stefani, A.; Bruno, G.; Preo, G.; Gracco, A. Application of Nanotechnology in Orthodontic Materials: A State-of-the-Art Review. Dent. J. 2020, 8, 126. https://doi.org/10.3390/dj8040126
De Stefani A, Bruno G, Preo G, Gracco A. Application of Nanotechnology in Orthodontic Materials: A State-of-the-Art Review. Dentistry Journal. 2020; 8(4):126. https://doi.org/10.3390/dj8040126
Chicago/Turabian StyleDe Stefani, Alberto, Giovanni Bruno, Giorgia Preo, and Antonio Gracco. 2020. "Application of Nanotechnology in Orthodontic Materials: A State-of-the-Art Review" Dentistry Journal 8, no. 4: 126. https://doi.org/10.3390/dj8040126
APA StyleDe Stefani, A., Bruno, G., Preo, G., & Gracco, A. (2020). Application of Nanotechnology in Orthodontic Materials: A State-of-the-Art Review. Dentistry Journal, 8(4), 126. https://doi.org/10.3390/dj8040126