Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = nanocrystalline FeMnO3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 12733 KiB  
Article
Enhanced Magnetic Properties of Co1−xMnxFe2O4 Nanoparticles
by Adam Szatmari, Rareș Bortnic, Roman Atanasov, Lucian Barbu-Tudoran, Fran Nekvapil, Roxana Dudric and Romulus Tetean
Appl. Sci. 2025, 15(1), 290; https://doi.org/10.3390/app15010290 - 31 Dec 2024
Cited by 3 | Viewed by 1043
Abstract
Co1−xMnxFe2O4 nanoparticles (0 ≤ x ≤ 1) have been prepared via the hydrothermal method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), Raman spectroscopy, and magnetic measurements. All studied [...] Read more.
Co1−xMnxFe2O4 nanoparticles (0 ≤ x ≤ 1) have been prepared via the hydrothermal method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), Raman spectroscopy, and magnetic measurements. All studied samples were found to be single phases and to have a cubic Fd-3m structure. The average crystalline sizes are between 7.8 and 15 nm. EDS analysis confirmed the presence of cobalt, manganese, iron, and oxygen in all prepared samples. It was found by Raman spectroscopy that Fe3+ would be placed on octahedral sites while Fe2+ would, in turn, be displaced to tetrahedral sites while Mn ions will be placed on both sites. Both Mn2+ and Mn4+ are present in studied ferrites. The experimental saturation magnetizations for doped samples are much higher when compared with previous reports, reaching values between 3.71 and 6.7 μB/f.u. The doping with Mn in nanocrystalline cobalt ferrite enhanced the magnetic properties due to changes in the cation distribution between the two sublattices. The higher magnetic moments are explained by the presence of Mn4+ ions located preferentially on tetrahedral sites while Mn2+ prefer octahedral sites, and by the high quality and crystallinity of our samples the nanoparticles being almost monodomain. Large values of the coercive field were found at 4.2 K while the hysteresis is almost absent in all investigated samples at room temperature. Full article
Show Figures

Figure 1

11 pages, 2595 KiB  
Article
Nanocrystalline FeMnO3 Powder as Catalyst for Combustion of Volatile Organic Compounds
by Corneliu Doroftei
Nanomaterials 2024, 14(6), 521; https://doi.org/10.3390/nano14060521 - 14 Mar 2024
Cited by 3 | Viewed by 1425
Abstract
The paper shows the obtaining of nanocrystalline iron manganite (FeMnO3) powders and their investigation in terms of catalytic properties for a series of volatile organic compounds. The catalyst properties were tested in the catalytic combustion of air-diluted vapors of ethanol, methanol, [...] Read more.
The paper shows the obtaining of nanocrystalline iron manganite (FeMnO3) powders and their investigation in terms of catalytic properties for a series of volatile organic compounds. The catalyst properties were tested in the catalytic combustion of air-diluted vapors of ethanol, methanol, toluene and xylene at moderate temperatures (50–550 °C). Catalytic combustion of the alcohols starts at temperatures between 180 °C and 230 °C. In the case of ethanol vapors, the conversion starts at 230 °C and increases rapidly reaching a value of around 97% at 300 °C. For temperatures higher than 300 °C, the degree of conversion is kept at the same value. In the case of methanol vapors, the conversion starts at a slightly lower temperature (180 °C), and the degree of conversion reaches the value of 97% at a higher temperature (440 °C) than in the case of ethanol, and it also remains constant as the temperature increases. Catalytic combustion of the hydrocarbons starts at lower temperatures (around 50 °C), the degree of conversion is generally lower, and it increases proportionally with the temperature, with the exception of toluene, which shows an intermediate behavior, reaching values of over 97% at 430 °C. The studied iron manganite can be recommended to achieve catalysts that operate at moderate temperatures for the combustion of some alcohols and, especially, ethanol. The performance of this catalyst with regard to ethanol is close to that of a catalyst that uses noble metals in its composition. Full article
(This article belongs to the Special Issue Advances in Nano-Enhanced Thermal Functional Materials)
Show Figures

Figure 1

14 pages, 8846 KiB  
Article
Producing Soft Magnetic Composites by Spark Plasma Sintering of Pseudo Core–Shell Ni–Fe Alloy@Mn0.5Zn0.5Fe2O4 Powders
by Loredana Cotojman, Traian Florin Marinca, Florin Popa, Bogdan Viorel Neamțu, Virgiliu Călin Prică and Ionel Chicinaș
Materials 2023, 16(2), 501; https://doi.org/10.3390/ma16020501 - 4 Jan 2023
Cited by 3 | Viewed by 1998
Abstract
Soft magnetic composite (SMC) cores have been obtained by Spark Plasma Sintering (SPS) using pseudo core–shell powders. Pseudo core–shell powders are formed by a core of soft magnetic particle (nanocrystalline permalloy or supermalloy) surrounded by a thin layer (shell) of nanosized soft ferrite [...] Read more.
Soft magnetic composite (SMC) cores have been obtained by Spark Plasma Sintering (SPS) using pseudo core–shell powders. Pseudo core–shell powders are formed by a core of soft magnetic particle (nanocrystalline permalloy or supermalloy) surrounded by a thin layer (shell) of nanosized soft ferrite (Mn0.5Zn0.5Fe2O4). Three compositions of pseudo core–shell powders were prepared, with 1, 2 and 3 wt.% of manganese–zinc mixt ferrite. The pseudo core–shell powders were compacted by SPS at temperatures between 500 and 700 °C, with a holding time ranging from 0 to 10 min. Several techniques have been used for characterization of the samples, both, powders and compacts X-ray diffraction (XRD, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), magnetic hysteresis measurements (DC and AC) and electrical resistivity. The electrical resistivity is in the order of 1 × 10−2 Ωm, 3–4 orders of magnitude higher than supermalloy electrical resistivity. The SPS at lower temperatures (500 °C) conserves the initial phases of the composite, but increasing the sintering temperature and/or sintering time produces a solid-state reaction between the alloy and ferrite phases, with negative consequence on the magnetic properties of the compacts. The initial relative permeability is around 40 and remains constant until to 2000 Hz. The power losses are lower than 2 W/kg until to 2000 Hz. Full article
(This article belongs to the Special Issue New Developments in Physics of Advanced Materials)
Show Figures

Figure 1

11 pages, 4668 KiB  
Article
Mechanochemical Synthesis and Nitrogenation of the Nd1.1Fe10CoTi Alloy for Permanent Magnet
by Hugo Martínez Sánchez, George Hadjipanayis, Germán Antonio Pérez Alcázar, Ligia Edith Zamora Alfonso and Juan Sebastián Trujillo Hernández
Molecules 2021, 26(13), 3854; https://doi.org/10.3390/molecules26133854 - 24 Jun 2021
Cited by 2 | Viewed by 2182
Abstract
In this work, the mechanochemical synthesis method was used for the first time to produce powders of the nanocrystalline Nd1.1Fe10CoTi compound from Nd2O3, Fe2O3, Co and TiO2. High-energy-milled powders [...] Read more.
In this work, the mechanochemical synthesis method was used for the first time to produce powders of the nanocrystalline Nd1.1Fe10CoTi compound from Nd2O3, Fe2O3, Co and TiO2. High-energy-milled powders were heat treated at 1000 °C for 10 min to obtain the ThMn12-type structure. Volume fraction of the 1:12 phase was found to be as high as 95.7% with 4.3% of a bcc phase also present. The nitrogenation process of the sample was carried out at 350 °C during 3, 6, 9 and 12 h using a static pressure of 80 kPa of N2. The magnetic properties Mr, µ0Hc, and (BH)max were enhanced after nitrogenation, despite finding some residual nitrogen-free 1:12 phase. The magnetic values of a nitrogenated sample after 3 h were Mr = 75 Am2 kg–1, µ0Hc = 0.500 T and (BH)max = 58 kJ·m–3. Samples were aligned under an applied field of 2 T after washing and were measured in a direction parallel to the applied field. The best value of (BH)max ~ 114 kJ·m–3 was obtained for 3 h and the highest µ0Hc = 0.518 T for 6 h nitrogenation. SEM characterization revealed that the particles have a mean particle size around 360 nm and a rounded shape. Full article
Show Figures

Figure 1

26 pages, 4740 KiB  
Article
Kinetic and Thermodynamic Studies on Synthesis of Mg-Doped LiMn2O4 Nanoparticles
by Aleksei Llusco, Mario Grageda and Svetlana Ushak
Nanomaterials 2020, 10(7), 1409; https://doi.org/10.3390/nano10071409 - 19 Jul 2020
Cited by 29 | Viewed by 5398
Abstract
In this work, a first study on kinetics and thermodynamics of thermal decomposition for synthesis of doped LiMn2O4 nanoparticles is presented. The effect of Mg doping concentration on thermal decomposition of synthesis precursors, prepared by ultrasound-assisted Pechini-type sol–gel process, and [...] Read more.
In this work, a first study on kinetics and thermodynamics of thermal decomposition for synthesis of doped LiMn2O4 nanoparticles is presented. The effect of Mg doping concentration on thermal decomposition of synthesis precursors, prepared by ultrasound-assisted Pechini-type sol–gel process, and its significance on nucleation and growth of Mg-doped LiMn2O4 nanoparticles was studied through a method based on separation of multistage processes in single-stage reactions by deconvolution and transition state theory. Four zones of thermal decomposition were identified: Dehydration, polymeric matrix decomposition, carbonate decomposition and spinel formation, and spinel decomposition. Kinetic and thermodynamic analysis focused on the second zone. First-order Avrami-Erofeev equation was selected as reaction model representing the polymer matrix thermal decomposition. Kinetic and thermodynamic parameters revealed that Mg doping causes an increase in thermal inertia on conversion rate, and CO2 desorption was the limiting step for formation of thermodynamically stable spinel phases. Based on thermogravimetry experiments and the effect of Mg on thermal decomposition, an optimal two-stage heat treatment was determined for preparation of LiMgxMn2−xO4 (x = 0.00, 0.02, 0.05, 0.10) nanocrystalline powders as promising cathode materials for lithium-ion batteries. Crystalline structure, morphology, and stoichiometry of synthesized powders were characterized by XRD, FE-SEM, and AAS, respectively. Full article
Show Figures

Figure 1

17 pages, 6670 KiB  
Article
CO Oxidation over Metal Oxide (La2O3, Fe2O3, PrO2, Sm2O3, and MnO2) Doped CuO-Based Catalysts Supported on Mesoporous Ce0.8Zr0.2O2 with Intensified Low-Temperature Activity
by Yan Cui, Leilei Xu, Mindong Chen, Chufei Lv, Xinbo Lian, Cai-e Wu, Bo Yang, Zhichao Miao, Fagen Wang and Xun Hu
Catalysts 2019, 9(9), 724; https://doi.org/10.3390/catal9090724 - 28 Aug 2019
Cited by 17 | Viewed by 4391
Abstract
CuO-based catalysts are usually used for CO oxidation owing to their low cost and excellent catalytic activities. In this study, a series of metal oxide (La2O3, Fe2O3, PrO2, Sm2O3, [...] Read more.
CuO-based catalysts are usually used for CO oxidation owing to their low cost and excellent catalytic activities. In this study, a series of metal oxide (La2O3, Fe2O3, PrO2, Sm2O3, and MnO2)-doped CuO-based catalysts with mesoporous Ce0.8Zr0.2O2 support were simply prepared by the incipient impregnation method and used directly as catalysts for CO catalytic oxidation. These mesoporous catalysts were systematically characterized by X-ray powder diffraction (XRD), N2 physisorption, transmission electron microscopy (TEM), energy-dispersed spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and H2 temperature programmed reduction (H2-TPR). It was found that the CuO and the dopants were highly dispersed among the mesoporous framework via the incipient impregnation method, and the strong metal framework interaction had been formed. The effects of the types of the dopants and the loading amounts of the dopants on the low-temperature catalytic performances were carefully studied. It was concluded that doped transition metal oxides could regulate the oxygen mobility and reduction ability of catalysts, further improving the catalytic activity. It was also found that the high dispersion of rare earth metal oxides (PrO2, Sm2O3) was able to prevent the thermal sintering and aggregation of CuO-based catalysts during the process of calcination. In addition, their presence also evidently improved the reducibility and significantly reduced the particle size of the CuO active sites for CO oxidation. The results demonstrated that the 15CuO-3Fe2O3/M-Ce80Zr20 catalyst with 3 wt. % of Fe2O3 showed the best low-temperature catalytic activity toward CO oxidation. Overall, the present Fe2O3-doped CuO-based catalysts with mesoporous nanocrystalline Ce0.8Zr0.2O2 solid solution as support were considered a promising series of catalysts for low-temperature CO oxidation. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

17 pages, 4108 KiB  
Article
Mechanosynthesis of the Whole Y1−xBixMn1−xFexO3 Perovskite System: Structural Characterization and Study of Phase Transitions
by Jose Ángel Quintana-Cilleruelo, Vignaswaran K. Veerapandiyan, Marco Deluca, Miguel Algueró and Alicia Castro
Materials 2019, 12(9), 1515; https://doi.org/10.3390/ma12091515 - 9 May 2019
Cited by 8 | Viewed by 3656
Abstract
Perovskite BiFeO3 and YMnO3 are both multiferroic materials with distinctive magnetoelectric coupling phenomena. Owing to this, the Y1−xBix Mn1−xFexO3 solid solution seems to be a promising system, though poorly studied. This is due [...] Read more.
Perovskite BiFeO3 and YMnO3 are both multiferroic materials with distinctive magnetoelectric coupling phenomena. Owing to this, the Y1−xBix Mn1−xFexO3 solid solution seems to be a promising system, though poorly studied. This is due to the metastable nature of the orthorhombic perovskite phase of YMnO3 at ambient pressure, and to the complexity of obtaining pure rhombohedral phases for BiFeO3-rich compositions. In this work, nanocrystalline powders across the whole perovskite system were prepared for the first time by mechanosynthesis in a high-energy planetary mill, avoiding high pressure and temperature routes. Thermal decomposition temperatures were determined, and structural characterization was carried out by X-ray powder diffraction and Raman spectroscopy on thermally treated samples of enhanced crystallinity. Two polymorphic phases with orthorhombic Pnma and rhombohedral R3c h symmetries, and their coexistence over a wide compositional range were found. A gradual evolution of the lattice parameters with the composition was revealed for both phases, which suggests the existence of two continuous solid solutions. Following bibliographic data for BiFeO3, first order ferroic phase transitions were located by differential thermal analysis in compositions with x ≥ 0.9. Furthermore, an orthorhombic-rhombohedral structural evolution across the ferroelectric transition was characterized with temperature-dependent X-ray diffraction. Full article
(This article belongs to the Special Issue Advances in Multiferroics)
Show Figures

Figure 1

16 pages, 4953 KiB  
Article
Nanocrystalline Transition-Metal Gallium Oxide Spinels from Acetylacetonate Precursors via Solvothermal Synthesis
by Daniel S. Cook, Reza J. Kashtiban, Klaus Krambrock, Geraldo M. de Lima, Humberto O. Stumpf, Luciano R. S. Lara, José D. Ardisson and Richard I. Walton
Materials 2019, 12(5), 838; https://doi.org/10.3390/ma12050838 - 12 Mar 2019
Cited by 5 | Viewed by 4963
Abstract
The synthesis of mixed-metal spinels based on substituted γ-Ga2O3 is reported using metal acetylacetonate precursors in solvothermal reactions with alcohols as solvents at 240 °C. New oxides of Cr, Mn and Fe have been produced, all of which are formed [...] Read more.
The synthesis of mixed-metal spinels based on substituted γ-Ga2O3 is reported using metal acetylacetonate precursors in solvothermal reactions with alcohols as solvents at 240 °C. New oxides of Cr, Mn and Fe have been produced, all of which are formed as nanocrystalline powders, as seen by high-resolution transmission electron microscopy (HR-TEM). The first chromium-gallium mixed oxide is thus formed, with composition 0.33Ga1.87Cr0.8O4 ( = vacant site). X-ray absorption near-edge spectroscopy (XANES) at the chromium K-edge shows the presence of solely octahedral Cr3+, which in turn implies a mixture of tetrahedral and octahedral Ga3+, and the material is stable on annealing to at least 850 °C. An analogous manganese material with average chemical composition close to MnGa2O4 is shown to contain octahedral Mn2+, along with some Mn3+, but a different inversion factor to materials reported by conventional solid-state synthesis in the literature, which are known to have a significant proportion of tetrahedral Mn2+. In the case of iron, higher amounts of the transition metal can be included to give an Fe:Ga ratio of 1:1. Elemental mapping using energy dispersive X-ray spectroscopy on the TEM, however, reveals inhomogeneity in the distribution of the two metals. This is consistent with variable temperature 57Fe Mössbauer spectroscopy that shows the presence of Fe2+ and Fe3+ in more than one phase in the sample. Variable temperature magnetisation and electron paramagnetic resonance (EPR) indicate the presence of superparamagnetism at room temperature in the iron-gallium oxides. Full article
Show Figures

Graphical abstract

Back to TopTop