Nanocrystalline FeMnO3 Powder as Catalyst for Combustion of Volatile Organic Compounds
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Structure and Morphology
3.2. Catalytic Activity
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Masatake, H. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003, 3, 75–87. [Google Scholar]
- Suzuki, Y.; Horii, Y.; Kasagi, N. Microcatalytic combustor with tailored Pt/Al2O3 films. In Proceedings of the 3rd International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (Power MEMS 2003), Makuhari, Japan, 4–5 December 2003; pp. 23–26. [Google Scholar]
- Pecchi, G.; Reyes, P.; Figueroa, A.; Fierro, J.L.G. Catalytic combustion on toluene on Pd-Cu/SiO2 catalysts. Bol. Soc. Chil. Quím. 2000, 45, 213–218. [Google Scholar] [CrossRef]
- Andreeva, D.; Petrova, P.; Ilieva, L.; Sobczak, J.W.; Abrashev, M.V. Design of new gold catalysts supported on mechanochemically activated ceria-alumina, promoted by molybdena for complete benzene oxidation. Appl. Catal. B Environ. 2008, 77, 364–372. [Google Scholar] [CrossRef]
- Persson, K.; Ersson, A.; Jansson, K.; Iverlund, N.; Jaras, S. Influence of co-metals on bimetallic palladium catalysts for methane combustion. J. Catal. 2005, 231, 139–150. [Google Scholar] [CrossRef]
- Svensson, E.E. Nanomaterials for High-Temperature Catalytic Combustion. Ph.D. Thesis, KTH Chemical Science and Engineering, Stockholm, Sweden, 2007. [Google Scholar]
- Haber, J.; Mielczarska, E.; Turek, W. Oxide catalyst for the combustion of organic compounds in industrial waste gases. React. Kinet. Catal. Lett. 1987, 34, 45–49. [Google Scholar] [CrossRef]
- Fino, D.; Specchia, V. Compositional and structural optimal design of a nanostructured diesel-soot combustion catalyst for a fast-regenerating trap. Chem. Eng. Sci. 2004, 59, 4825–4831. [Google Scholar] [CrossRef]
- Tang, Y.; Lin, B. Perovskite-Type Rare Earth Complex Oxide Combustion Catalysts. U.S. Patent 5242881, 7 September 1993. [Google Scholar]
- Zhang, R.; Alamdari, H.; Bassir, M.; Kaliaguine, S. Optimization of mixed Ag catalysts for catalytic conversions of NO and C3H6. Int. J. Chem. React. Eng. 2007, 5, A70. [Google Scholar] [CrossRef]
- Huang, H.F.; Sun, Z.; Lu, H.F.; Shen, L.Q.; Chen, Y.F. Study on the poisoning tolerance and stability of perovskite catalysts for catalytic combustion of volatile organic compounds. React. Kinet. Mech. Catal. 2010, 101, 417–427. [Google Scholar] [CrossRef]
- Tomatis, M.; Xu, H.H.; He, J.; Zhang, X.D. Recent development of catalysts for removal of volatile organic compounds in flue gas by combustion: A Review. J. Chem. 2016, 2016, 8324826. [Google Scholar] [CrossRef]
- Shalva, G. Cigarette Wrapper with Nanoparticle Spinel Ferrite Catalyst and Methods of Making Same. International Patent Publication WO/2005/039330, 6 May 2005. [Google Scholar]
- Lin, B.; Zhang, W.; Liu, Y.; Li, S.; Li, N. Cu-Al/Ce-Al Complex Oxide Combustion Catalysts, Their Preparation and Use. U.S. Patent 6596249, 22 July 2003. [Google Scholar]
- Doroftei, C.; Leontie, L. Synthesis and characterization of some nanostructured composite oxides for low temperature catalytic combustion of dilute propane. RSC Adv. 2017, 7, 27863–27871. [Google Scholar] [CrossRef]
- Doroftei, C.; Popa, P.D.; Rezlescu, N. The influence of the heat treatment on the humidity sensitivity of magnesium nanoferrite. J. Optoelectron. Adv. Mater. 2010, 12, 881–884. [Google Scholar]
- Doroftei, C. Formaldehyde sensitive Zn-doped LPFO thin films obtained by rf sputtering. Sens. Actuators B Chem. 2016, 231, 793–799. [Google Scholar] [CrossRef]
- Doroftei, C.; Popa, P.D.; Rezlescu, E.; Rezlescu, N. Nanocrystalline SrMnO3 powder as catalyst for hydrocarbon combustion. J. Alloys Compd. 2014, 584, 195–198. [Google Scholar] [CrossRef]
- Rezlescu, N.; Rezlescu, E.; Popa, P.D.; Doroftei, C.; Ignat, M. Nanostructured GdAlO3 perovskite, a new possible catalyst for combustion of volatile organic compounds. J. Mater. Sci. 2013, 48, 4297–4304. [Google Scholar] [CrossRef]
- Rezlescu, N.; Rezlescu, E.; Popa, P.D.; Doroftei, C.; Ignat, M. Partial substitution of manganese with cerium in SrMnO3 nanoperovskite catalyst. Effect of the modification on the catalytic combustion of dilute acetone. Mater. Chem. Phys. 2016, 182, 332–337. [Google Scholar] [CrossRef]
- Nikolica, M.V.; Krsticb, J.B.; Labusc, N.J.; Lukovica, M.D.; Dojcinovica, M.P.; Radovanovicd, M.; Tadic, N.B. Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing. Mater. Sci. Eng. B 2020, 257, 114547. [Google Scholar] [CrossRef]
- Rayaprol, S.; Kaushik, S.D. Magnetic and magnetocaloric properties of FeMnO3. Ceram. Int. 2015, 41, 9567–9571. [Google Scholar] [CrossRef]
- Rayaprol, S.; Ribeiro, R.A.P.; Singh, K.; Reddy, V.R.; Kaushik, S.D.; de Lazaro, S.R. Experimental and theoretical interpretation of magnetic ground state of FeMnO3. J. Alloys Compd. 2019, 774, 290–298. [Google Scholar] [CrossRef]
- Available online: https://www.cryst.ehu.es/magndata/index.php?index=0.508 (accessed on 19 January 2024).
- Rayaprol, S.; Kaushik, S.D.; Babu, P.D.; Siruguri, V. Structureand magnetism of FeMnO3. AIP Conf. Proc. 2013, 1512, 1132–1133. [Google Scholar]
- Vasiljevic, Z.Z.; Dojcinovic, M.P.; Krstic, J.B.; Ribic, V.; Tadic, N.B.; Ognjanovic, M.; Auger, S.; Vidic, J.; Nikolic, M.V. Synthesis and antibacterial activity of iron manganite (FeMnO3) particles against the environmental bacterium Bacillus subtilis. RSC Adv. 2020, 10, 13879–13888. [Google Scholar] [CrossRef]
- Battiston, A.A.; Bitter, J.H.; Heijboer, W.M.; de Groot, F.M.F.; Koningsberger, D.C. Reactivity of Fe-binuclear complexes in over-exchanged Fe/ZSM5 studied by in situ XAFS spectroscopy. J. Catal. 2003, 215, 279–293. [Google Scholar] [CrossRef]
- Han, Y.; Xu, J.; Xie, W.; Wang, Z.; Hu, P. Comprehensive Study of Oxygen Vacancies on the Catalytic Performance of ZnO for CO/H2 Activation Using Machine Learning-Accelerated First-Principles Simulations. ACS Catal. 2023, 13, 5104–5113. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, W.; Wang, W.; Liu, Y.; Cui, B.; Guo, X. Facile synthesis of specific FeMnO3 hollow sphere/graphene composites and their superior electrochemical energy storage performances for supercapacitor. J. Power Sources 2014, 248, 465–473. [Google Scholar] [CrossRef]
- Lobo, L.S.; Rubankumar, A. Investigation on structural and electrical properties of FeMnO3 synthesized by sol-gel method. Ionics 2019, 25, 1341–1350. [Google Scholar] [CrossRef]
- Bin, H.; Yao, Z.; Zhu, S.; Zhu, C.; Pan, H.; Chen, Z.; Wolverton, C.; Zhang, D. A high-performance anode material based on FeMnO3/graphene composite. J. Alloys Compd. 2017, 695, 1223–1230. [Google Scholar] [CrossRef]
- Audi, A.A.; Sherwood, P. Valence-band X-ray photoelectron spectroscopic studies of manganese and its oxides interpreted by cluster and band structure calculations. Surf. Interface Anal. 2002, 33, 274–282. [Google Scholar] [CrossRef]
- Tang, Q.; Jiang, L.; Liu, J.; Wang, S.; Sun, G. Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal. 2014, 4, 457–463. [Google Scholar] [CrossRef]
- Deng, Q.; Li, X.; Peng, Z.; Long, Y.; Xiang, L.; Cai, T. Catalytic performance and kinetics of Au/γ-Al2O3 catalysts for low-temperature combustion of light alcohols. Treans. Nonferrous Met. Soc. China 2010, 20, 437–442. [Google Scholar] [CrossRef]
- Avgouropoulos, G.; Oikonomopoulos, E.; Kanistras, D.; Ioannides, T. Complete oxidation of ethanol over alkali-promoted Pt/Al2O3 catalysts. Appl. Catal. B 2006, 65, 62–69. [Google Scholar] [CrossRef]
- Ivanov, D.V.; Pinaeva, L.G.; Sadovskaya, E.M.; Isupova, L.A. Influence of the mobility of oxygen on the reactivity of La1-xSr(x)MnO3 perovskites in methane oxidation. Kinet. Catal. 2011, 52, 401–408. [Google Scholar] [CrossRef]
- Doroftei, C. Nanostructured Perovskites for Catalytic Combustion. In Nanostructures Book; IntechOpen: London, UK, 2019; Volume 5, pp. 75–93. ISBN 978-1-78985-739-9. [Google Scholar]
- Feng, S.; Yang, W.; Wang, Z. Synthesis of porous NiFe2O4 microparticles and its catalytic properties for methane combustion. Mater. Sci. Eng. B 2011, 176, 1509–1512. [Google Scholar] [CrossRef]
- Hea, L.; Fan, Y.; Bellettre, J.; Yue, J.; Luo, L. A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs. Renew. Sustain. Energy Rev. 2020, 119, 109589. [Google Scholar] [CrossRef]
- Milt, V.G.; Ulla, M.A.; Lombardo, E.A. Cobalt-containing catalysts for the high-temperature combustion of methane. Catal. Lett. 2000, 65, 67–73. [Google Scholar] [CrossRef]
- Milt, V.G.; Spretz, R.; Ulla, M.A.; Lombardo, E.A.; Garcia Fierro, J.L. The nature of active sites for the oxidation of methane on La-based perovskites. Catal. Lett. 1996, 42, 57–63. [Google Scholar] [CrossRef]
- Hammami, R.; Aissa, S.B.; Batis, H. Effects of thermal treatment on physico-chemical and catalytic properties of lanthanum manganite LaMnO3+y. Appl. Catal. A Gen. 2009, 353, 145–153. [Google Scholar] [CrossRef]
- Cicmanec, P.; Kotera, J.; Vaculík, J.; Bulánek, R. Influence of Substrate Concentration on Kinetic Parameters of Ethanol Dehydration in MFI and CHA Zeolites and Relation of These Kinetic Parameters to Acid–Base Properties. Catalysts 2022, 12, 51. [Google Scholar] [CrossRef]
- Song, K.S.; Klvana, D.; Kirchnerova, J. Kinetics of propane combustion over La0.66Sr0.34Ni0.3Co0.7O3 perovskite. Appl. Catal. A 2001, 213, 113–121. [Google Scholar] [CrossRef]
- Cimino, S.; Pirone, R.; Lisi, L. Zirconia supported LaMnO3 monoliths for the catalytic combustion of methane. Appl. Catal. B 2002, 35, 243–254. [Google Scholar] [CrossRef]
- Baiker, A.; Marti, P.E.; Keusch, P.; Fritsch, E.; Reller, A. Influence of the A-site cation in ACoO3 (A = La, Pr, Nd, and Gd) perovskite-type oxides on catalytic activity for methane combustion. J. Catal. 1994, 146, 268–276. [Google Scholar] [CrossRef]
VOCs/. FeMnO3 | Conversion at 290 °C (%) | Conversion at 500 °C (%) | Reaction Rate * (µmol s−1 m−2) | Activation Energy ** (KJ/mol) |
---|---|---|---|---|
Ethanol | 95.43 | 97.58 | 14.25 × 10−2 | 195.248 |
Methanol | 74.09 | 97.05 | 6.27 × 10−2 | 99.816 |
Toluene | 70.25 | 97.91 | 5.55 × 10−2 | 19.477 |
Xylene | 20.63 | 59.00 | 1.07 × 10−2 | 18.232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doroftei, C. Nanocrystalline FeMnO3 Powder as Catalyst for Combustion of Volatile Organic Compounds. Nanomaterials 2024, 14, 521. https://doi.org/10.3390/nano14060521
Doroftei C. Nanocrystalline FeMnO3 Powder as Catalyst for Combustion of Volatile Organic Compounds. Nanomaterials. 2024; 14(6):521. https://doi.org/10.3390/nano14060521
Chicago/Turabian StyleDoroftei, Corneliu. 2024. "Nanocrystalline FeMnO3 Powder as Catalyst for Combustion of Volatile Organic Compounds" Nanomaterials 14, no. 6: 521. https://doi.org/10.3390/nano14060521
APA StyleDoroftei, C. (2024). Nanocrystalline FeMnO3 Powder as Catalyst for Combustion of Volatile Organic Compounds. Nanomaterials, 14(6), 521. https://doi.org/10.3390/nano14060521