Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = nanoclay biopolymer composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7456 KiB  
Article
Synthesis and Evaluation of Starch-Grafted-Poly[(Acrylic Acid)-Co-Acrylamide] Based Nanoclay Polymer Composite Fertilizers for Slow Release of Nitrogen in Soil
by Ravi Saini, Kanchikeri Math Manjaiah, Dibakar Roy, Rajesh Kumar, Sandeep Gawdiya, Siyaram Meena, A. Naveenkumar, Anil Kumar, Salah El-Hendawy and Mohamed A. Mattar
Polymers 2024, 16(21), 3013; https://doi.org/10.3390/polym16213013 - 27 Oct 2024
Viewed by 2250
Abstract
Nitrogen (N) losses from conventional N fertilizers contribute to environmental degradation and low N use efficiency. Highlighting the need for slow-release fertilizers (SRFs) to mitigate these problems, this study aims to develop slow-release N fertilizers using starch-grafted-poly[(acrylic acid)-co-acrylamide] based nanoclay polymer [...] Read more.
Nitrogen (N) losses from conventional N fertilizers contribute to environmental degradation and low N use efficiency. Highlighting the need for slow-release fertilizers (SRFs) to mitigate these problems, this study aims to develop slow-release N fertilizers using starch-grafted-poly[(acrylic acid)-co-acrylamide] based nanoclay polymer composites (NCPCs) and investigate their efficacy for slow N delivery in soil. Three types of NCPCs, NCPC(A) (poly [(acrylic acid)-co-acrylamide]), NCPC(W) (wheat starch-grafted-poly[(acrylic acid)-co-acrylamide), and NCPC(M) (maize starch-grafted-poly[(acrylic acid)-co-acrylamide) were prepared and characterized using FTIR spectroscopy and X-ray diffraction techniques. N-release behaviour of the products was assessed under two distinct soils, i.e., Assam (Typic Hapludults, pH 4.2) and Delhi (Typic Haplustepts, pH 7.9) soils. Additionally, the effects of varying soil moisture and temperature levels on N release were studied in the Assam soil. The N-release kinetics of the synthesized fertilizers were assessed using zero-order, first-order, Higuchi, and Korsmeyer−Peppas models. Degradability of the NCPCs was evaluated by measuring evolved CO2–C under various soil conditions as an indicator of microbial degradation. The results indicated that NCPC fertilizers significantly slowed down the release of N compared to urea. According to the R2 values obtained, it was evident that the first-order kinetic model most accurately describes the N release from both urea and NCPC-based N fertilizers in the studied soils. Among the formulations, NCPC(A) exhibited the lowest N release (42.94–53.76%), followed by NCPC(M) (51.05–61.70%), NCPC(W) (54.86–67.75%), and urea (74.33–84.27%) after 21 days of incubation. The rate of N release was lower in the Assam soil compared to the Delhi soil, with higher soil moisture and temperature levels accelerating the release. Starch addition improved the biodegradability of the NCPCs, with NCPC(W) showing the highest cumulative CO2-C evolution (18.18–22.62 mg g−1), followed by NCPC(M) (15.54–20.97 mg g−1) and NCPC(A) (10.89–19.53 mg g−1). In conclusion, NCPC-based slow-release fertilizers demonstrated a more gradual N release compared to conventional urea and the inclusion of starch enhanced their degradability in the soil, which confirms their potential for sustainable agricultural applications. However, soil properties and environmental factors influenced the N release and degradation rates of NCPCs. Full article
Show Figures

Figure 1

24 pages, 4672 KiB  
Review
Fabrication and Biomedical Application of Alginate Composite Hydrogels in Bone Tissue Engineering: A Review
by Xiuqiong Chen, Ting Wu, Yanan Bu, Huiqiong Yan and Qiang Lin
Int. J. Mol. Sci. 2024, 25(14), 7810; https://doi.org/10.3390/ijms25147810 - 17 Jul 2024
Cited by 19 | Viewed by 4313
Abstract
Nowadays, as a result of the frequent occurrence of accidental injuries and traumas such as bone damage, the number of people causing bone injuries or fractures is increasing around the world. The design and fabrication of ideal bone tissue engineering (BTE) materials have [...] Read more.
Nowadays, as a result of the frequent occurrence of accidental injuries and traumas such as bone damage, the number of people causing bone injuries or fractures is increasing around the world. The design and fabrication of ideal bone tissue engineering (BTE) materials have become a research hotspot in the scientific community, and thus provide a novel path for the treatment of bone diseases. Among the materials used to construct scaffolds in BTE, including metals, bioceramics, bioglasses, biomacromolecules, synthetic organic polymers, etc., natural biopolymers have more advantages against them because they can interact with cells well, causing natural polymers to be widely studied and applied in the field of BTE. In particular, alginate has the advantages of excellent biocompatibility, good biodegradability, non-immunogenicity, non-toxicity, wide sources, low price, and easy gelation, enabling itself to be widely used as a biomaterial. However, pure alginate hydrogel as a BTE scaffold material still has many shortcomings, such as insufficient mechanical properties, easy disintegration of materials in physiological environments, and lack of cell-specific recognition sites, which severely limits its clinical application in BTE. In order to overcome the defects of single alginate hydrogels, researchers prepared alginate composite hydrogels by adding one or more materials to the alginate matrix in a certain proportion to improve their bioapplicability. For this reason, this review will introduce in detail the methods for constructing alginate composite hydrogels, including alginate/polymer composite hydrogels, alginate/bioprotein or polypeptide composite hydrogels, alginate/bioceramic composite hydrogels, alginate/bioceramic composite hydrogels, and alginate/nanoclay composite hydrogels, as well as their biological application trends in BTE scaffold materials, and look forward to their future research direction. These alginate composite hydrogel scaffolds exhibit both unexceptionable mechanical and biochemical properties, which exhibit their high application value in bone tissue repair and regeneration, thus providing a theoretical basis for the development and sustainable application of alginate-based functional biomedical materials. Full article
(This article belongs to the Special Issue Research on Synthesis and Application of Polymer Materials)
Show Figures

Figure 1

18 pages, 3872 KiB  
Article
Biopolymer Meets Nanoclay: Rational Fabrication of Superb Adsorption Beads from Green Precursors for Efficient Capture of Pb(II) and Dyes
by Jie Qi, Xue Wang, Huan Zhang, Xiangyu Liu, Wenbo Wang, Qingdong He and Fang Guo
Nanomaterials 2024, 14(9), 766; https://doi.org/10.3390/nano14090766 - 26 Apr 2024
Cited by 2 | Viewed by 1909
Abstract
Renewable, green, and safe natural biopolymer-derived materials are highly desired for the purification of pollutants, but significantly improving their performance without the introduction of additional harmful chemicals remains a huge challenge. Based on the concept of “structure optimization design”, environment-friendly composite beads (named [...] Read more.
Renewable, green, and safe natural biopolymer-derived materials are highly desired for the purification of pollutants, but significantly improving their performance without the introduction of additional harmful chemicals remains a huge challenge. Based on the concept of “structure optimization design”, environment-friendly composite beads (named SA/PASP/RE) with excellent adsorption performance and recyclability were rationally constructed through a green ionic crosslinking route, using the completely green biopolymer sodium alginate (SA), sodium salt of polyaspartic acid (PASP), and the natural nanoclay rectorite (RE) as starting materials. The nano-layered RE was embedded in the polymer matrix to prevent the polymer chain from becoming over-entangled so that more adsorption sites inside the polymer network were exposed, which effectively improved the mass transfer efficiency of the adsorbent and the removal rate of contaminants. The composite beads embedded with 0.6% RE showed high adsorption capacities of 211.78, 197.13, and 195.69 mg/g for Pb(II) and 643.00, 577.80, and 567.10 mg/g for methylene blue (MB) in Yellow River water, Yangtze River water, and tap water, respectively. And the beads embedded with 43% RE could efficiently adsorb Pb(II) and MB with high capacities of 187.78 mg/g and 586.46 mg/g, respectively. This study provides a new route to design and develop a green, cost-effective, and efficient adsorbent for the decontamination of wastewater. Full article
Show Figures

Figure 1

23 pages, 5867 KiB  
Article
Nanocomposites Materials of PLA Reinforced with Nanoclays Using a Masterbatch Technology: A Study of the Mechanical Performance and Its Sustainability
by Helena Oliver-Ortega, Josep Tresserras, Fernando Julian, Manel Alcalà, Alba Bala, Francesc Xavier Espinach and José Alberto Méndez
Polymers 2021, 13(13), 2133; https://doi.org/10.3390/polym13132133 - 29 Jun 2021
Cited by 31 | Viewed by 3823
Abstract
Packaging consumes around 40% of the total plastic production. One of the most important fields with high requirements is food packaging. Food packaging products have been commonly produced with petrol polymers, but due to environmental concerns, the market is being moved to biopolymers. [...] Read more.
Packaging consumes around 40% of the total plastic production. One of the most important fields with high requirements is food packaging. Food packaging products have been commonly produced with petrol polymers, but due to environmental concerns, the market is being moved to biopolymers. Poly (lactic acid) (PLA) is the most promising biopolymer, as it is bio-based and biodegradable, and it is well established in the market. Nonetheless, its barrier properties need to be enhanced to be competitive with other polymers such as polyethylene terephthalate (PET). Nanoclays improve the barrier properties of polymeric materials if correct dispersion and exfoliation are obtained. Thus, it marks a milestone to obtain an appropriate dispersion. A predispersed methodology is proposed as a compounding process to improve the dispersion of these composites instead of common melt procedures. Afterwards, the effect of the polarity of the matrix was analyzing using polar and surface modified nanoclays with contents ranging from 2 to 8% w/w. The results showed the suitability of the predispersed and concentrated compound, technically named masterbatch, to obtain intercalated structures and the higher dispersion of polar nanoclays. Finally, the mechanical performance and sustainability of the prepared materials were simulated in a food tray, showing the best assessment of these materials and their lower fingerprint. Full article
(This article belongs to the Special Issue Advances in Biobased Polymer Composites)
Show Figures

Graphical abstract

10 pages, 1875 KiB  
Article
The Influence of Kaolin Clay on the Mechanical Properties and Structure of Thermoplastic Starch Films
by Anita Kwaśniewska, Dariusz Chocyk, Grzegorz Gładyszewski, Jarosław Borc, Michał Świetlicki and Bożena Gładyszewska
Polymers 2020, 12(1), 73; https://doi.org/10.3390/polym12010073 - 2 Jan 2020
Cited by 51 | Viewed by 6353
Abstract
The aim of study was to investigate the influence of kaolin on the physical properties and utility of film produced from native starch. The work involved measurements of strength, structure, and thermal properties. The films were prepared by the casting method. Composite films [...] Read more.
The aim of study was to investigate the influence of kaolin on the physical properties and utility of film produced from native starch. The work involved measurements of strength, structure, and thermal properties. The films were prepared by the casting method. Composite films with 0%, 5%, 10%, and 15% kaolin additives were examined. Measurements of mechanical properties were carried out using the uniaxial tensile test, the nanoindentation test, and nanoscratching. Surface properties were examined by atomic force microscopy and contact angle measurements. Structure was determined by the X-ray diffraction method, and thermal properties were determined by differential scanning calorimetry. A significant influence of kaolin on the strength parameters and thermal and barrier properties of composite films was found. An increase in kaolin content reduced the tensile strength, Young’s modulus, and Poisson’s ratio. Structural analysis showed a partial intercalation and the layered arrangement of kaolin particles. Kaolin additives increased the barrier properties of water vapor in composite films of about 9%. Biopolymer modification by nanoclay reduced the thermal stability of composite films by 7% and could accelerate the biodegradation process. Increasing the concentration of kaolin in the biopolymer matrix led to heightened surface roughness (approximately 64%) and wettability of the surfaces of the film composites of 58%. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

17 pages, 2640 KiB  
Article
Chitosan-Based Bionanocomposite Films Prepared by Emulsion Technique for Food Preservation
by Elena Butnaru, Elena Stoleru, Mihai Adrian Brebu, Raluca Nicoleta Darie-Nita, Alexandra Bargan and Cornelia Vasile
Materials 2019, 12(3), 373; https://doi.org/10.3390/ma12030373 - 25 Jan 2019
Cited by 85 | Viewed by 10493
Abstract
Biopolymer nanocomposite films were prepared by casting film-forming emulsions based on chitosan/Tween 80/rosehip seed oil and dispersed montmorillonite nanoclay C30B. The effect of composition on structural, morphological characteristics and, mechanical, barrier, antimicrobial and antioxidant properties was studied. The presence of rosehip seed oil [...] Read more.
Biopolymer nanocomposite films were prepared by casting film-forming emulsions based on chitosan/Tween 80/rosehip seed oil and dispersed montmorillonite nanoclay C30B. The effect of composition on structural, morphological characteristics and, mechanical, barrier, antimicrobial and antioxidant properties was studied. The presence of rosehip seed oil in chitosan films led to the formation of flexible films with improved mechanical, gas and water vapour barrier properties and antioxidant activity. The in vitro antibacterial tests against Escherichia coli, Salmonella typhymurium, and Bacillus cereus showed that the chitosan/rosehip seed oil/montmorillonite nanoclay composites effectively inhibited all the three microorganisms. Full article
(This article belongs to the Special Issue Food Packaging: Materials and Technologies)
Show Figures

Figure 1

28 pages, 3273 KiB  
Review
Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications
by Ariagna L. Rivera-Briso and Ángel Serrano-Aroca
Polymers 2018, 10(7), 732; https://doi.org/10.3390/polym10070732 - 3 Jul 2018
Cited by 244 | Viewed by 23292
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, is a microbial biopolymer with excellent biocompatible and biodegradable properties that make it a potential candidate for substituting petroleum-derived polymers. However, it lacks mechanical strength, water sorption and diffusion, electrical and/or thermal properties, antimicrobial activity, wettability, biological properties, and [...] Read more.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, is a microbial biopolymer with excellent biocompatible and biodegradable properties that make it a potential candidate for substituting petroleum-derived polymers. However, it lacks mechanical strength, water sorption and diffusion, electrical and/or thermal properties, antimicrobial activity, wettability, biological properties, and porosity, among others, limiting its application. For this reason, many researchers around the world are currently working on how to overcome the drawbacks of this promising material. This review summarises the main advances achieved in this field so far, addressing most of the chemical and physical strategies to modify PHBV and placing particular emphasis on the combination of PHBV with other materials from a variety of different structures and properties, such as other polymers, natural fibres, carbon nanomaterials, nanocellulose, nanoclays, and nanometals, producing a wide range of composite biomaterials with increased potential applications. Finally, the most important methods to fabricate porous PHBV scaffolds for tissue engineering applications are presented. Even though great advances have been achieved so far, much research needs to be conducted still, in order to find new alternative enhancement strategies able to produce advanced PHBV-based materials able to overcome many of these challenges. Full article
Show Figures

Graphical abstract

44 pages, 2704 KiB  
Review
Bio-Based Coatings for Paper Applications
by Vibhore Kumar Rastogi and Pieter Samyn
Coatings 2015, 5(4), 887-930; https://doi.org/10.3390/coatings5040887 - 20 Nov 2015
Cited by 315 | Viewed by 61124
Abstract
The barrier resistance and wettability of papers are commonly controlled by the application of petroleum-based derivatives such as polyethylene, waxes and/or fluor- derivatives as coating. While surface hydrophobicity is improved by employing these polymers, they have become disfavored due to limitations in fossil-oil [...] Read more.
The barrier resistance and wettability of papers are commonly controlled by the application of petroleum-based derivatives such as polyethylene, waxes and/or fluor- derivatives as coating. While surface hydrophobicity is improved by employing these polymers, they have become disfavored due to limitations in fossil-oil resources, poor recyclability, and environmental concerns on generated waste with lack of biodegradation. Alternatively, biopolymers including polysaccharides, proteins, lipids and polyesters can be used to formulate new pathways for fully bio-based paper coatings. However, difficulties in processing of most biopolymers may arise due to hydrophilicity, crystallization behavior, brittleness or melt instabilities that hinder a full exploitation at industrial scale. Therefore, blending with other biopolymers, plasticizers and compatibilizers is advantageous to improve the coating performance. In this paper, an overview of barrier properties and processing of bio-based polymers and their composites as paper coating will be discussed. In particular, recent technical advances in nanotechnological routes for bio-based nano- composite coatings will be summarized, including the use of biopolymer nanoparticles, or nanofillers such as nanoclay and nanocellulose. The combination of biopolymers along with surface modification of nanofillers can be used to create hierarchical structures that enhance hydrophobicity, complete barrier protection and functionalities of coated papers. Full article
(This article belongs to the Special Issue Coatings and Sustainability)
Show Figures

Graphical abstract

Back to TopTop