Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = nano-iron (III) oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6249 KiB  
Article
Preparation of Cellulose-Grafted Acrylic Acid Stabilized Jujube Branch Biochar-Supported Nano Zero-Valent Iron Composite for Cr(VI) Removal from Water
by Xiaoxue Wang, Zhe Tan, Shuang Shi, Shanyuan Zhang, Shuang Yang, Xingyu Zhang, Pingqiang Gao and Yan Zhang
Nanomaterials 2025, 15(6), 441; https://doi.org/10.3390/nano15060441 - 14 Mar 2025
Viewed by 583
Abstract
A stabilized biochar (BC)–nano-scale zero-valent iron (nZVI) composite (BC-nZVI@Cell-g-PAA) was prepared using cellulose-grafted polyacrylic acid (Cell-g-PAA) as the raw material through in situ polymerization and liquid-phase reduction methods for the remediation of hexavalent chromium (Cr(VI))-contaminated water. BC-nZVI@Cell-g-PAA was characterized by XRD, FT-IR, SEM, [...] Read more.
A stabilized biochar (BC)–nano-scale zero-valent iron (nZVI) composite (BC-nZVI@Cell-g-PAA) was prepared using cellulose-grafted polyacrylic acid (Cell-g-PAA) as the raw material through in situ polymerization and liquid-phase reduction methods for the remediation of hexavalent chromium (Cr(VI))-contaminated water. BC-nZVI@Cell-g-PAA was characterized by XRD, FT-IR, SEM, BET, TEM, and XPS. According to the batch experiments, under optimized conditions (Cr(VI) concentration of 50 mg/L, pH = 3, and dosage of 2 g/L), the BC-nZVI@Cell-g-PAA composite achieved maximum Cr(VI) removal efficiency (99.69%) within 120 min. Notably, BC, as a carrier, achieved a high dispersion of nZVI through its porous structure, effectively preventing particle agglomeration and improving reaction activity. Simultaneously, the functional groups on the surface of Cell-g-PAA provided excellent protection for nZVI, significantly suppressing its oxidative deactivation. Furthermore, the composite effectively reduced Cr(VI) to insoluble trivalent chromium(Cr(III)) species and stabilized them on its surface through immobilization. The synergistic effects of physical adsorption and chemical reduction greatly contributed to the removal efficiency of Cr(VI). Remarkably, the composite exhibited excellent reusability with a removal efficiency of 62.4% after five cycles, demonstrating its potential as a promising material for remediating Cr(VI)-contaminated water. In conclusion, the BC-nZVI@Cell-g-PAA composite not only demonstrated remarkable efficiency in Cr(VI) removal but also showcased its potential for practical applications in environmental remediation, as evidenced by its sustained performance over multiple reuse cycles. Moreover, Cr(VI), a toxic and carcinogenic substance, poses significant risks to aquatic ecosystems and human health, underscoring the importance of developing effective methods for its removal from contaminated water. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

15 pages, 4343 KiB  
Article
A Low-Cost Electrochemical Cell Sensor Based on MWCNT-COOH/α-Fe2O3 for Toxicity Detection of Drinking Water Disinfection Byproducts
by Ying Liu, Zhipeng Zhang, Yuling Wu, Huan Yang, Jiao Qu and Xiaolin Zhu
Nanomaterials 2025, 15(2), 146; https://doi.org/10.3390/nano15020146 - 20 Jan 2025
Viewed by 2261
Abstract
The disinfection of drinking water is essential for eliminating pathogens and preventing waterborne diseases. However, this process generates various disinfection byproducts (DBPs), which toxicological research indicates can have detrimental effects on living organisms. Moreover, the safety of these DBPs has not been sufficiently [...] Read more.
The disinfection of drinking water is essential for eliminating pathogens and preventing waterborne diseases. However, this process generates various disinfection byproducts (DBPs), which toxicological research indicates can have detrimental effects on living organisms. Moreover, the safety of these DBPs has not been sufficiently assessed, underscoring the need for a comprehensive evaluation of their toxic effects and associated health risks. Compared to traditional methods for studying the toxicity of pollutants, emerging electrochemical sensing technologies offer advantages such as simplicity, speed, and sensitivity, presenting an effective means for toxicity research on pollutants. However, challenges remain in this field, including the need to improve electrode sensitivity and reduce electrode costs. In this study, a pencil graphite electrode (PGE) was modified with carboxylated multi-walled carbon nanotubes (MWCNT-COOH) and nano-iron (III) oxide (α-Fe2O3) to fabricate a low-cost electrode with excellent electrocatalytic performance for cell-active substances. Subsequently, a novel cellular electrochemical sensor was constructed for the sensitive detection of the toxicity of three drinking water DBPs. The half inhibitory concentration (IC50) values of 2-chlorophenylacetonitrile (2-CPAN), 3-chlorophenylacetonitrile (3-CPAN), and 4-chlorophenylacetonitrile (4-CPAN) for HepG2 cells were 660.69, 831.76, and 812.83 µM, respectively. This study provides technical support and scientific evidence for the toxicity detection and safety assessment of emerging contaminants. Full article
(This article belongs to the Special Issue Nanomaterials for Environmental Sensors and Pollutant Control)
Show Figures

Figure 1

17 pages, 2803 KiB  
Article
New Insights on Iron-Trimesate MOFs for Inorganic As(III) and As(V) Adsorption from Aqueous Media
by Afef Azri, Marwa Ben Amar, Khaled Walha, Clàudia Fontàs, José Elías Conde-González, Victoria Salvadó and Eladia M. Peña-Méndez
Nanomaterials 2025, 15(1), 36; https://doi.org/10.3390/nano15010036 - 29 Dec 2024
Cited by 2 | Viewed by 1030
Abstract
Arsenic contamination of water endangers the health of millions of people worldwide, affecting certain countries and regions with especial severity. Interest in the use of Fe-based metal organic frameworks (MOFs) to remove inorganic arsenic species has increased due to their stability and adsorptive [...] Read more.
Arsenic contamination of water endangers the health of millions of people worldwide, affecting certain countries and regions with especial severity. Interest in the use of Fe-based metal organic frameworks (MOFs) to remove inorganic arsenic species has increased due to their stability and adsorptive properties. In this study, the performance of a synthesized Nano-{Fe-BTC} MOF, containing iron oxide octahedral chains connected by trimesic acid linkers, in adsorbing As(III) and As(V) species was investigated and compared with commercial Basolite®F300 MOF. Despite their similarities in composition, they exhibit distinct structural characteristics in their porosity, pore size, and surface areas, which affected the adsorption processes. The kinetic data of the adsorption of As(III) and As(V) by both Fe-MOFs fitted the pseudo second-order model well, with the kinetic constant being higher for Basolite®F300 given its higher porosity. Intraparticle diffusion was, in both cases, the rate controlling step with the contribution of film diffusion in the adsorption processes, which achieved equilibrium after 1 h. The maximum adsorption capacity for As(V), 41.66 mg g−1, was obtained with Basolite®F300 at the 6.5–10 pH range, whereas Nano-{Fe-BTC} showed a different behaviour as maximum adsorption (14.99 mg g−1) was obtained at pH 2. However, both adsorbents exhibited the same performance for As(III) adsorption, which is not adsorbed at pH < 9. The Langmuir adsorption isotherm model fitted well for As(III) and As(V) adsorption by Nano-{Fe-BTC} and As(III) by Basolite®F300, whereas the Freundlich model fitted best for As(V) given its superior structural properties. Full article
Show Figures

Figure 1

34 pages, 7313 KiB  
Review
Sodium Thiosulfate: An Innovative Multi-Target Repurposed Treatment Strategy for Late-Onset Alzheimer’s Disease
by Melvin R. Hayden and Neetu Tyagi
Pharmaceuticals 2024, 17(12), 1741; https://doi.org/10.3390/ph17121741 - 23 Dec 2024
Cited by 2 | Viewed by 2785
Abstract
Late-onset Alzheimer’s disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of [...] Read more.
Late-onset Alzheimer’s disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of sodium thiosulfate (STS) as a possible multi-targeting treatment option for LOAD. Sulfur is widely available in our environment and is responsible for forming organosulfur compounds that are known to be associated with a wide range of biological activities in the brain. STS is known to have (i) antioxidant and (ii) anti-inflammatory properties; (iii) chelation properties for calcium and the pro-oxidative cation metals such as iron and copper; (iv) donor properties for hydrogen sulfide production; (v) possible restorative properties for brain endothelial-cell-derived bioavailable nitric oxide. Thus, it becomes apparent that STS has the potential for neuroprotection and neuromodulation and may allow for an attenuation of the progressive nature of neurodegeneration and impaired cognition in LOAD. STS has been successfully used to prevent cisplatin oxidative-stress-induced ototoxicity in the treatment of head and neck and solid cancers, cyanide and arsenic poisoning, and fungal skin diseases. Most recently, intravenous STS has become part of the treatment plan for calciphylaxis globally due to vascular calcification and ischemia-induced skin necrosis and ulceration. Side effects have been minimal with reports of metabolic acidosis and increased anion gap; as with any drug treatment, there is also the possibility of allergic reactions, possible long-term osteoporosis from animal studies to date, and minor side-effects of nausea, headache, and rhinorrhea if infused too rapidly. While STS poorly penetrates the intact blood–brain barrier(s) (BBBs), it could readily penetrate BBBs that are dysfunctional and disrupted to deliver its neuroprotective and neuromodulating effects in addition to its ability to penetrate the blood–cerebrospinal fluid barrier of the choroid plexus. Novel strategies such as the future use of nano-technology may be helpful in allowing an increased entry of STS into the brain. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Alzheimer’s Disease Treatment)
Show Figures

Graphical abstract

13 pages, 5913 KiB  
Article
Adsorption of Pyrene and Arsenite by Micro/Nano Carbon Black and Iron Oxide
by Shuai Zhang, Gulijiazi Yeerkenbieke, Shuai Shi, Zhaoyang Wang, Lijin Yi and Xiaoxia Lu
Toxics 2024, 12(4), 251; https://doi.org/10.3390/toxics12040251 - 29 Mar 2024
Cited by 2 | Viewed by 1548
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and arsenic (As) are common pollutants co-existing in the environment, causing potential hazards to the ecosystem and human health. How their behaviors are affected by micro/nano particles in the environment are still not very clear. Through a series of [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) and arsenic (As) are common pollutants co-existing in the environment, causing potential hazards to the ecosystem and human health. How their behaviors are affected by micro/nano particles in the environment are still not very clear. Through a series of static adsorption experiments, this study investigated the adsorption of pyrene and arsenite (As (III)) using micro/nano carbon black and iron oxide under different conditions. The objectives were to determine the kinetics and isotherms of the adsorption of pyrene and As (III) using micro/nano carbon black and iron oxide and evaluate the impact of co-existing conditions on the adsorption. The microstructure of micro/nano carbon black (C 94.03%) is spherical-like, with a diameter of 100–200 nm. The micro/nano iron oxide (hematite) has irregular rod-shaped structures, mostly about 1 µm long and 100–200 nm wide. The results show that the micro/nano black carbon easily adsorbed the pyrene, with a pseudo-second-order rate constant of 0.016 mg/(g·h) and an adsorption capacity of 283.23 μg/g at 24 h. The micro/nano iron oxide easily adsorbed As (III), with a pseudo-second-order rate constant of 0.814 mg/(g·h) and an adsorption capacity of 3.45 mg/g at 24 h. The mechanisms of adsorption were mainly chemical reactions. Micro/nano carbon black hardly adsorbed As (III), but its adsorption capability for pyrene was reduced by the presence of As (III), and this effect increased with an increase in the As (III) concentration. The adsorbed pyrene on the micro/nano black carbon could hardly be desorbed. On the other hand, the micro/nano iron oxide could hardly adsorb the pyrene, but its adsorption capability for As (III) was increased by the presence of pyrene, and this effect increased with an increase in the pyrene concentration. The results of this study provide guidance for the risk management and remediation of the environment when there is combined pollution of PAHs and As. Full article
(This article belongs to the Special Issue Environmental Transport and Transformation of Pollutants)
Show Figures

Figure 1

15 pages, 5049 KiB  
Article
Limonite as a Natural Adsorbent for the Removal of Antimony(III) from an Aqueous Solution
by Haicui Luo, Yuefei Zhou, Yan Chen, Qiaoqin Xie and Tianhu Chen
Minerals 2023, 13(12), 1494; https://doi.org/10.3390/min13121494 - 29 Nov 2023
Viewed by 1644
Abstract
Natural limonite, which contains mainly nano-sized iron and manganese oxides, is widely distributed worldwide. This study investigated the kinetics, thermodynamics, and the effects of pH, ion strength, and anions on the adsorption of Sb(III) via limonites sampled from Xinqiao and Yeshan (Tongling, China). [...] Read more.
Natural limonite, which contains mainly nano-sized iron and manganese oxides, is widely distributed worldwide. This study investigated the kinetics, thermodynamics, and the effects of pH, ion strength, and anions on the adsorption of Sb(III) via limonites sampled from Xinqiao and Yeshan (Tongling, China). Results show that adsorption equilibrium is achieved after 24 h for all experiments. Under initial Sb(III) = 200 mg/L, pH = 3.0, and temperature = 25 °C, Sb adsorption quantities for X1 (Mn-free limonite from Xinqiao), X2 (Mn-containing limonite from Xinqiao), Y1 (Mn-free limonite from Yeshan), and Y2 (Mn-containing limonite from Yeshan) are 10.92, 12.97, 27.12, and 89.34 mg/g, respectively. Manganese oxides in limonites promote Sb removal through oxidizing Sb(III) to Sb(V). The adsorption processes for all four limonites are fitted with a pseudo-second-order model. All adsorptions except for X1 fit with the Freundlich model; for X1, the Langmuir adsorption model is better. All adsorptions are spontaneous reactions (ΔG < 0). All adsorptions except for Y1 (ΔH < 0, exothermic reaction) are endothermic reactions (ΔH > 0). Antimony adsorption is independent of solution pH for Mn-free limonites but is negatively related to solution pH for Mn-containing limonites. Generally, ion strength has a weak positive effect on Sb adsorption. The effects of anions on Sb adsorption are grouped into three types: weak negative (NO3 and SO42−), negative (CO32−, SiO44−, and PO43−), and equivocal (humic acid). This study indicates that due to a much higher surface area, Yeshan (124.8 m2/g for X1 and 171.7 m2/g for X2) rather than Xinqiao (13.7 m2/g for Y1 and 12.8 m2/g for Y2) limonites are better materials for Sb(III) removal in an aqueous solution. The key factors for the better use of limonite as an Sb(III) treatment material include temperature, pH, ion strength, and Mn content. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

14 pages, 6548 KiB  
Article
Transformation of Iron (III) Nitrate from an Aerosol by Ultrasonic Spray Pyrolysis and Hydrogen Reduction
by Srecko Stopic, Ayadjenou Humphrey Hounsinou, Koffi Aka Stéphane, Tatjana Volkov Husovic, Elif Emil-Kaya and Bernd Friedrich
Metals 2023, 13(10), 1686; https://doi.org/10.3390/met13101686 - 2 Oct 2023
Cited by 3 | Viewed by 2423
Abstract
Due to their unique properties, iron nanoparticles find diverse applications across various fields, including catalysis, electronics, wastewater treatment, and energy storage. Nano-iron particles are mostly sub-micrometer particles that are highly reactive to both air (oxygen) and water, and in nanoparticles (size below 100 [...] Read more.
Due to their unique properties, iron nanoparticles find diverse applications across various fields, including catalysis, electronics, wastewater treatment, and energy storage. Nano-iron particles are mostly sub-micrometer particles that are highly reactive to both air (oxygen) and water, and in nanoparticles (size below 100 nm), it is even more rapid than the bulk material. This characteristic limits its use in inert environments. Iron nanoparticles are not toxic and are mostly used for wastewater treatment. Understanding the hydrogen reduction mechanisms and conditions that lead to the formation of metallic iron particles from iron (III)-nitrate from an aerosol is crucial for enabling their effective utilization. In this work, we studied the hydrogen reduction behavior of Fe2O3 in the absence and presence of additives (SiO2 or Pt). The particles were prepared via ultrasonic spray pyrolysis and hydrogen reduction. The characterization was performed with a scanning electron microscope, energy-dispersive X-ray spectroscopy, and X-ray diffraction. In the absence of additives, the oxygen content of iron oxide particles decreased with increasing temperature from 700 to 950 °C but significantly increased with the doping of 10 mL (40 wt.%) of SiO2. The inhibitory effect of Si on the hydrogen reduction of Fe2O3 formed was more pronounced at 950 °C than at 700 °C. In contrast, the doping of only 5 mL (15 wt.%) of Pt significantly decreased the oxygen concentration in the synthesized particles by catalyzing the reduction reaction of iron oxides at 700 °C. The metallic iron (Fe) product, obtained in the undoped iron oxides run at only 950 °C, was also formed at 700 °C in the Pt-doped Fe2O3 run. Full article
Show Figures

Figure 1

22 pages, 4671 KiB  
Article
Microfabrication Process Development for a Polymer-Based Lab-on-Chip Concept Applied in Attenuated Total Reflection Fourier Transform Infrared Spectroelectrochemistry
by Noah Atkinson, Tyler A. Morhart, Garth Wells, Grace T. Flaman, Eric Petro, Stuart Read, Scott M. Rosendahl, Ian J. Burgess and Sven Achenbach
Sensors 2023, 23(14), 6251; https://doi.org/10.3390/s23146251 - 8 Jul 2023
Cited by 7 | Viewed by 3498
Abstract
Micro electro-mechanical systems (MEMS) combining sensing and microfluidics functionalities, as are common in Lab-on-Chip (LoC) devices, are increasingly based on polymers. Benefits of polymers include tunable material properties, the possibility of surface functionalization, compatibility with many micro and nano patterning techniques, and optical [...] Read more.
Micro electro-mechanical systems (MEMS) combining sensing and microfluidics functionalities, as are common in Lab-on-Chip (LoC) devices, are increasingly based on polymers. Benefits of polymers include tunable material properties, the possibility of surface functionalization, compatibility with many micro and nano patterning techniques, and optical transparency. Often, additional materials, such as metals, ceramics, or silicon, are needed for functional or auxiliary purposes, e.g., as electrodes. Hybrid patterning and integration of material composites require an increasing range of fabrication approaches, which must often be newly developed or at least adapted and optimized. Here, a microfabrication process concept is developed that allows one to implement attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and electrochemistry on an LoC device. It is designed to spatially resolve chemical sensitivity and selectivity, which are instrumental for the detection of chemical distributions, e.g., during on-flow chemical and biological reaction chemistry. The processing sequence involves (i) direct-write and soft-contact UV lithography in SUEX dry resist and replication in polydimethylsiloxane (PDMS) elastomers as the fluidic structure; (ii) surface functionalization of PDMS with oxygen plasma, 3-aminopropyl-triethoxysilane (APTES), and a UV-curable glue (NOA 73) for bonding the fluidic structure to the substrate; (iii) double-sided patterning of silicon nitride-coated silicon wafers serving as the ATR-FTIR-active internal reflection element (IRE) on one side and the electrode-covered substrate for microfluidics on the back side with lift-off and sputter-based patterning of gold electrodes; and (iv) a custom-designed active vacuum positioning and alignment setup. Fluidic channels of 100 μm height and 600 μm width in 5 mm thick PDMS were fabricated on 2” and 4” demonstrators. Electrochemistry on-chip functionality was demonstrated by cyclic voltammetry (CV) of redox reactions involving iron cyanides in different oxidation states. Further, ATR-FTIR measurements of laminar co-flows of H2O and D2O demonstrated the chemical mapping capabilities of the modular fabrication concept of the LoC devices. Full article
(This article belongs to the Special Issue Process Technologies for Polymer-Based Sensor Systems)
Show Figures

Figure 1

23 pages, 2389 KiB  
Article
Modified Nano-Fe2O3-Paraffin Wax for Efficient Photovoltaic/Thermal System in Severe Weather Conditions
by Miqdam T. Chaichan, Maytham T. Mahdi, Hussein A. Kazem, Ali H. A. Al-Waeli, Mohammed A. Fayad, Ahmed A. Al-Amiery, Wan Nor Roslam Wan Isahak, Abdul Amir H. Kadhum and Mohd S. Takriff
Sustainability 2022, 14(19), 12015; https://doi.org/10.3390/su141912015 - 23 Sep 2022
Cited by 23 | Viewed by 4539
Abstract
The development of modern photovoltaic thermal systems (PV/T) is one of the most important steps in the application of using solar energy to produce both electricity and heat. Studies have shown that a system consisting of a heat-collecting tank the is most efficient [...] Read more.
The development of modern photovoltaic thermal systems (PV/T) is one of the most important steps in the application of using solar energy to produce both electricity and heat. Studies have shown that a system consisting of a heat-collecting tank the is most efficient system, in which the phase change materials (PCMs) are mixed with nanoparticles inside the system that are cooled by a cooling fluid (preferably a nanofluid). The PCMs have a high capacity to store energy in the form of latent heat. Nanoparticles are added to PCMs to treat and improve the low thermal conductivity of these materials. In this experimental study, nano-iron oxide III (Fe2O3) was added to paraffin wax in multiple mass fractions to evaluate the thermophysical changes that can be occur on the wax properties. Four samples of paraffin–nano-Fe2O3 were prepared with mass fractions of 0.5%, 1%, 2% and 3%, and their thermophysical properties were compared with pure paraffin (without nano additives). The results from this study showed that adding nano-Fe2O3 at any mass fraction increases the viscosity and density of the product. Thermal conductivity is improved by adding nano-Fe2O3 to paraffin wax by 10.04%, 57.14%, 76.19%, and 78.57% when adding mass fractions of 0.5%, 1%, 2%, and 3%, respectively. Stability tests showed that the prepared samples have excellent thermal stability (especially for 0.5% and 1% added nano-Fe2O3) to acceptable level of stability when adding 3% of nano-Fe2O3. The nano-Fe2O3 paraffin PV/T system was tested outdoors to ensure its ability to operate in the harshest weather conditions of Baghdad city. The current experimental results indicated clear evidence of the success of the examined nano-PCM. Full article
(This article belongs to the Special Issue Advanced Technologies Applied to Renewable Energy)
Show Figures

Figure 1

15 pages, 3889 KiB  
Article
Fabrication of Nano Iron Oxide–Modified Biochar from Co-Hydrothermal Carbonization of Microalgae and Fe(II) Salt for Efficient Removal of Rhodamine B
by Ziling Peng, Zeyu Fan, Xia Chen, Xian Zhou, Zhuo Fan Gao, Shanshan Deng, Sha Wan, Xingdong Lv, Yan Shi and Wei Han
Nanomaterials 2022, 12(13), 2271; https://doi.org/10.3390/nano12132271 - 1 Jul 2022
Cited by 38 | Viewed by 3704
Abstract
Dye adsorption by magnetic modified biochar has now received growing interest due to its excellent adsorption performance and facile separation for recycling. In this study, nano iron oxide–modified biochar was fabricated via the successive hydrothermal-pyrolyzing method using Chlorella vulgaris (Cv) and FeSO4 [...] Read more.
Dye adsorption by magnetic modified biochar has now received growing interest due to its excellent adsorption performance and facile separation for recycling. In this study, nano iron oxide–modified biochar was fabricated via the successive hydrothermal-pyrolyzing method using Chlorella vulgaris (Cv) and FeSO4·7H2O as raw materials, and its adsorption on Rhodamine B (RhB) in aqueous solution was studied. Multiple techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS) were employed to comprehensively characterize the structure, morphology and physicochemical properties of the adsorbent. The as-synthesized nano iron oxide–modified biochar (CBC-Fe(II)) exhibited a large surface area (527.6 m2/g) and high magnetic saturation value (13.7 emu/g) to facilitate magnetic separation. Compared with CBC and CBC-Fe(III), CBC-Fe(II) exhibited superior adsorption ability towards RhB in aqueous solution, with a maximum adsorption capacity of 286.4 mg/g. The adsorption process of RhB onto CBC-Fe(II) was well described by the pseudo-second-order kinetic model and Langmuir isotherm model, indicating monolayer chemisorption behaviors for the adsorption system. Facile preparation, great adsorption performance and magnetic recovery properties endow CBC-Fe(II) to be a promising adsorbent for dye removal. Full article
(This article belongs to the Special Issue Nanomaterials for Detection and Removal of Organic Pollutants)
Show Figures

Figure 1

18 pages, 8633 KiB  
Article
Removal of P-Nitrophenol by Nano Zero Valent Iron-Cobalt and Activated Persulfate Supported onto Activated Carbon
by Jiankun Zhang, Lei Chen and Xueyang Zhang
Water 2022, 14(9), 1387; https://doi.org/10.3390/w14091387 - 25 Apr 2022
Cited by 15 | Viewed by 3269
Abstract
P-nitrophenol (PNP), a highly toxic carcinogen, is very stable due to its benzene structure. Advanced oxidation technology is becoming the main means for degrading it. A nano iron-cobalt (Co-nZVI) catalyst, supported by granular activated carbon (GAC), was prepared using liquid-phase reduction, and sodium [...] Read more.
P-nitrophenol (PNP), a highly toxic carcinogen, is very stable due to its benzene structure. Advanced oxidation technology is becoming the main means for degrading it. A nano iron-cobalt (Co-nZVI) catalyst, supported by granular activated carbon (GAC), was prepared using liquid-phase reduction, and sodium persulfate’s (PS’s) potential to degrade PNP was studied. The Co-nZVI/GAC nanocomposites were classified, and effects of PS dosage, Co-nZVI/GAC dosage, material system type, PNP concentration, initial pH, and material reuse rate on the reaction were investigated. Activated carbon successfully supported iron and cobalt. At 1 mmol/L of PS, the maximum PNP degradation rate was 99.19%, which was unachievable at other dosages. With only Co-nZVI/GAC present, the rate was 69.8%; with activated persulfate present, it increased to 99.19%. The activated PS system was relatively stable under acidic conditions. Catalysis was induced by adding Co-nZVI/GAC (1.5 g/L). When added four times, the catalytic rate was 57%. Liquid chromatography–mass spectrometry (LC-MS) showed that PNP degradation involves the transfer of PNP to p-benzoquinone (PBQ), the main activators being iron(II) and iron(III) and the key active substances being sulfate (SO42−) and hydroxide (·OH). In conclusion, Co-nZVI/GAC-activated PS effectively removes PNP. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

18 pages, 1093 KiB  
Article
Ameliorating Seed Germination and Seedling Growth of Nano-Primed Wheat and Flax Seeds Using Seven Biogenic Metal-Based Nanoparticles
by Maryam Bayat, Meisam Zargar, Kheda Magomed-Salihovna Murtazova, Magomed Ramzanovich Nakhaev and Sergey I. Shkurkin
Agronomy 2022, 12(4), 811; https://doi.org/10.3390/agronomy12040811 - 27 Mar 2022
Cited by 43 | Viewed by 4350
Abstract
Recently, large-scale agriculture has led to increasing crop production. To increase crop productivity in large-scale cropping systems, attempts have been made to make nano-fertilizers and deliver them to the crops by extension of nanotechnology. Hence, nano-fertilizers might be defined as nanoparticles that may [...] Read more.
Recently, large-scale agriculture has led to increasing crop production. To increase crop productivity in large-scale cropping systems, attempts have been made to make nano-fertilizers and deliver them to the crops by extension of nanotechnology. Hence, nano-fertilizers might be defined as nanoparticles that may directly assist in supplying essential nutrients for crop productivity. Seed germination is the first and the most susceptible stage in the plant’s growing phases, so could be considered as an index to evaluate the effect of newly developed materials such as nanoparticles (NPs), providing useful information for researchers. In our experiments, germination tests have been carried out in Petri dishes containing wet filter paper and nano-primed seeds. We had biosynthesized seven nanoparticles in our previous studies including calcinated and non-calcinated zinc oxide, zinc, magnesium oxide, silver, copper, and iron nanoparticles. The effect of these biogenic nanoparticles and their counterpart metallic salts including zinc acetate, magnesium sulfate, silver nitrate, copper sulfate, and iron (III) chloride was studied on two popularly grown plants, wheat and flax, in laboratory conditions to obtain preliminary information for future field experiments. Germination percentage, shoot length, root length, seedlings length, root–shoot ratio, seedling vigor index (SVI), shoot length stress tolerance index (SLSI), and root length stress tolerance index (RLSI) were calculated on the second and seventh days of the experiment. According to the results, the response of the plants to metal containing nanoparticles and metal salts mainly depend on the type of the metal, plant species, concentration of the NP suspension or salt solution, condition of the exposure, and the stage of growth. Full article
(This article belongs to the Special Issue Crop Productivity and Energy Balance in Large-Scale Fields)
Show Figures

Figure 1

16 pages, 5774 KiB  
Article
Iron Oxide Mesoporous Magnetic Nanostructures with High Surface Area for Enhanced and Selective Drug Delivery to Metastatic Cancer Cells
by Kheireddine El-Boubbou, Rizwan Ali, Sulaiman Al-Humaid, Alshaimaa Alhallaj, O. M. Lemine, Mohamed Boudjelal and Abdulmohsen AlKushi
Pharmaceutics 2021, 13(4), 553; https://doi.org/10.3390/pharmaceutics13040553 - 14 Apr 2021
Cited by 10 | Viewed by 3050
Abstract
This work reports the fabrication of iron oxide mesoporous magnetic nanostructures (IO-MMNs) via the nano-replication method using acid-prepared mesoporous spheres (APMS) as the rigid silica host and iron (III) nitrate as the iron precursor. The obtained nanosized mesostructures were fully characterized by SEM, [...] Read more.
This work reports the fabrication of iron oxide mesoporous magnetic nanostructures (IO-MMNs) via the nano-replication method using acid-prepared mesoporous spheres (APMS) as the rigid silica host and iron (III) nitrate as the iron precursor. The obtained nanosized mesostructures were fully characterized by SEM, TEM, DLS, FTIR, XRD, VSM, and nitrogen physisorption. IO-MMNs exhibited relatively high surface areas and large pore volumes (SBET = 70–120 m2/g and Vpore = 0.25–0.45 cm3/g), small sizes (~300 nm), good crystallinity and magnetization, and excellent biocompatibility. With their intrinsic porosities, high drug loading efficiencies (up to 70%) were achieved and the drug release rates were found to be pH-dependent. Cytotoxicity, confocal microscopy, and flow cytometry experiments against different types of cancerous cells indicated that Dox-loaded IO-MMNs reduced the viability of metastatic MCF-7 and KAIMRC-1 breast as well as HT-29 colon cancer cells, with the least uptake and toxicity towards normal primary cells (up to 4-fold enhancement). These results strongly suggest the potential use of IO-MMNs as promising agents for enhanced and effective drug delivery in cancer theranostics. Full article
(This article belongs to the Special Issue Development of Micro and Nano Systems for the Drug Delivery)
Show Figures

Figure 1

15 pages, 4017 KiB  
Article
Evaluation of Fe-Mg Binary Oxide for As (III) Adsorption—Synthesis, Characterization and Kinetic Modelling
by Saif Ullah Khan, Rumman Zaidi, Feroz Shaik, Izharul Haq Farooqi, Ameer Azam, Hatem Abuhimd and Faheem Ahmed
Nanomaterials 2021, 11(3), 805; https://doi.org/10.3390/nano11030805 - 21 Mar 2021
Cited by 21 | Viewed by 3209
Abstract
Nanotechnology has received much attention in treating contaminated waters. In the present study, a facile co-precipitation method was employed to synthesize a novel iron and magnesium based binary metal oxide using a stoichiometrically fixed amount of FeNO3·9H2O and MgNO [...] Read more.
Nanotechnology has received much attention in treating contaminated waters. In the present study, a facile co-precipitation method was employed to synthesize a novel iron and magnesium based binary metal oxide using a stoichiometrically fixed amount of FeNO3·9H2O and MgNO3·6H2O in a proportion of molar concentration 1:1 and was later evaluated in removing As (III) from contaminated waters. Characterization of the prepared nanomaterial was done using X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDAX) and ultraviolet–visible spectrophotometry (UV-VIS). Experimental studies on batch scale were carried out, examining the effect of varying initial concentrations of metal, adsorbent dosage, application time and initial pH on removal efficiency. Arsenic removal increased on increasing adsorbent dosage (0.1–1 g/L) but trend reversed on increasing initial arsenic concentration attaining qmax of 263.20 mg/g. Adsorption was quite efficient in pH range 4–8. Freundlich fitted better for adsorption isotherm along with following Pseudo-2nd order kinetics. The reusability and effect of co-existing ions on arsenic adsorption, namely SO42−, CO32− and PO43− were also explored with reusability in 1st and 2nd cycles attained adsorptive removal up to 77% and 64% respectively. The prepared nano-adsorbent showed promising results in terms of high arsenic uptake (qmax of 263.20 mg/g) along with facile and cost-effective synthesis. Thus, the co-precipitation technique used in this work is a simple one step procedure without any use of any precursor as compared to most of the other procedures used for synthesis. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Wastewater Treatment)
Show Figures

Figure 1

17 pages, 5658 KiB  
Article
The Synthesis Methodology of PEGylated Fe3O4@Ag Nanoparticles Supported by Their Physicochemical Evaluation
by Magdalena Kędzierska, Piotr Potemski, Anna Drabczyk, Sonia Kudłacik-Kramarczyk, Magdalena Głąb, Beata Grabowska, Dariusz Mierzwiński and Bożena Tyliszczak
Molecules 2021, 26(6), 1744; https://doi.org/10.3390/molecules26061744 - 20 Mar 2021
Cited by 19 | Viewed by 4225
Abstract
Many investigations are currently being performed to develop the effective synthesis methodology of magnetic nanoparticles with appropriately functionalized surfaces. Here, the novelty of the presented work involves the preparation of nano-sized PEGylated Fe3O4@Ag particles, i.e., the main purpose was [...] Read more.
Many investigations are currently being performed to develop the effective synthesis methodology of magnetic nanoparticles with appropriately functionalized surfaces. Here, the novelty of the presented work involves the preparation of nano-sized PEGylated Fe3O4@Ag particles, i.e., the main purpose was the synthesis of magnetic nanoparticles with a functionalized surface. Firstly, Fe3O4 particles were prepared via the Massart process. Next, Ag+ reduction was conducted in the presence of Fe3O4 particles to form a nanosilver coating. The reaction was performed with arabic gum as a stabilizing agent. Sound energy-using sonication was applied to disintegrate the particles’ agglomerates. Next, the PEGylation process aimed at the formation of a coating on the particles’ surface using PEG (poly(ethylene glycol)) has been performed. It was proved that the arabic gum limited the agglomeration of nanoparticles, which was probably caused by the steric effect caused by the branched compounds from the stabilizer that adsorbed on the surface of nanoparticles. This effect was also enhanced by the electrostatic repulsions. The process of sonication caused the disintegration of aggregates. Formation of iron (II, III) oxide with a cubic structure was proved by diffraction peaks. Formation of a nanosilver coating on the Fe3O4 nanoparticles was confirmed by diffraction peaks with 2θ values 38.15° and 44.35°. PEG coating on the particles’ surface was proven via FT-IR (Fourier Transform Infrared Spectroscopy) analysis. Obtained PEG–nanosilver-coated Fe3O4 nanoparticles may find applications as carriers for targeted drug delivery using an external magnetic field. Full article
(This article belongs to the Special Issue Polymer Molecules and Biopolymers in Drug Delivery)
Show Figures

Figure 1

Back to TopTop