Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (214)

Search Parameters:
Keywords = nano- and microparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1280 KB  
Article
Enhanced Toxicity of Polymethylmethacrylate Microparticles on Cells and Tissue of the Marine Mussel Mytilus trossulus After UV Irradiation
by Nadezhda Vladimirovna Dovzhenko, Victor Pavlovich Chelomin, Sergey Petrovich Kukla, Valentina Vladimirovna Slobodskova and Andrey Alexandrovich Mazur
Toxics 2025, 13(10), 818; https://doi.org/10.3390/toxics13100818 - 26 Sep 2025
Abstract
In the marine environment, plastic fragments are constantly engaged in a complex degradation process under exposure to various physical and chemical factors, one of which is ultraviolet (UV) radiation. These processes result in the formation of smaller micro- and nano-sized plastic particles, which [...] Read more.
In the marine environment, plastic fragments are constantly engaged in a complex degradation process under exposure to various physical and chemical factors, one of which is ultraviolet (UV) radiation. These processes result in the formation of smaller micro- and nano-sized plastic particles, which are highly bioavailable to marine organisms. To clarify the toxicological effects of the exposure of degraded plastic on the marine organisms, the model used in this study was the Pacific mussel Mytilus trossulus and polymethylmethacrylate (PMMA), which is commonly found in marine debris. Using molecular and biochemical markers (DNA damage, lysosomal membrane stability, integral antiradical activity (IAA) of biological samples, and malondialdehyde (MDA) as a product of lipid peroxidation), the toxicity of pristine PMMA and photoaged (PMMA-UV) particles was assessed. Using Fourier transform infrared spectroscopy, the characteristics of the macromolecular changes in the chemical structure of PMMA-UV were obtained, with an oxidation index of 6.83 ± 0.46, compared to the pristine PMMA of 5.15 ± 0.54. Using a laser analyzer, the sizes of PMMA particles were determined, and it was found that after UV irradiation, the ratio of size groups changed—the proportion of particles with sizes of 500–1000 μm decreased, and the number of particles with sizes of 50–125 μm increased twofold. Analysis of mussel cell viability showed that after exposure to both types of PMMA microparticles, there was a decrease in the ability to retain neutral red dye in lysosomes: PMMA and PMMA-UV had a similar effect on hemocytes, reducing dye retention in cells to 55.2 ± 3.24% and 61.1 ± 1.99%, respectively. In gill and digestive gland cells, PMMA-UV particles reduced the stability of lysosomal membranes to a greater extent than PMMA. After PMMA and PMMA-UV particle exposure, the levels of DNA damage were as follows: in hemocytes, 10.1 ± 1.4% and 12.7 ± 0.8%, respectively; in gills, 7.8 ± 1.1% and 14.4 ± 2.9%, respectively; and in the digestive gland, 19.0 ± 1.3% and 21.9 ± 2.8%, respectively, according to the control values 3.6 ± 1.3%, 4.6 ± 1.1%, 5.1 ± 1.5%, respectively. According to the results of biochemical markers, the reaction of mussels to the presence of PMMA and PMMA-UV particles in the environment was tissue-specific: in the cells of the digestive gland, the level of IAA increased by 2 and 1.3 times compared to the control group of mussels (76.22 ± 6.77 nmol trolox/g wet weight and 52.43 ± 2.36 nmol trolox/g wet, respectively), while in the gill cells, the non-significant increase in antiradical activity was noted. An increase in MDA content was also observed in gill cells (255.8 ± 9.12 nmol MDA/g wet weight and 263.46 ± 9.45 nmol MDA/g wet weight, respectively) compared with the control group. This study showed that UV irradiation of PMMA microparticles increases their bioavailability and toxicity to M. trossulus. Full article
(This article belongs to the Special Issue Occurrence and Toxicity of Microplastics in the Aquatic Compartment)
Show Figures

Graphical abstract

23 pages, 2297 KB  
Article
Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes
by Andrzej Krupa, Arkadiusz Tomasz Sobczyk and Anatol Jaworek
Membranes 2025, 15(10), 291; https://doi.org/10.3390/membranes15100291 - 25 Sep 2025
Abstract
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning [...] Read more.
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning systems. Many nanotechnology material processes used for catalyst, solar cells, gas sensors, energy storage devices, anti-corrosion and hydrophobic surface coating, optical glasses, ceramics, nanocomposite membranes, textiles, and cosmetics production also generate various types of nanoparticles, which can retain in a conveying gas released into the atmosphere. Particles in this size range are particularly difficult to remove from the air by conventional methods, e.g., electrostatic precipitators, conventional filters, or cyclones. For these reasons, nanofibrous filters produced by electrospinning were developed to remove fine particles from the post-processing gases. The physical basis of electrospinning used for nanofilters production is an employment of electrical forces to create a tangential stress on the surface of a viscous liquid jet, usually a polymer solution, flowing out from a capillary nozzle. The paper presents results for investigation of the filtration process of metal oxide nanoparticles: TiO2, MgO, and Al2O3 by electrospun nanofibrous filter. The filter was produced from polyvinylidene fluoride (PVDF). The concentration of polymer dissolved in dimethylacetamide (DMAC) and acetone mixture was 15 wt.%. The flow rate of polymer solution was 1 mL/h. The nanoparticle aerosol was produced by the atomization of a suspension of these nanoparticles in a solvent (methanol) using an aerosol generator. The experimental results presented in this paper show that nanofilters made of PVDF with surface density of 13 g/m2 have a high filtration efficiency for nano- and microparticles, larger than 90%. The gas flow rate through the channel was set to 960 and 670 l/min. The novelty of this paper was the investigation of air filtration from various types of nanoparticles produced by different nanotechnology processes by nanofibrous filters and studies of the morphology of nanoparticle deposited onto the nanofibers. Full article
46 pages, 3112 KB  
Review
Protein Adsorption on Nano- and Microparticles: Dependence on Morphological and Physicochemical Properties of Particles and Effect on Particle–Cell Interactions
by Evgeniia Gerasimovich, Alexander Karaulov, Igor Nabiev and Alyona Sukhanova
Nanomaterials 2025, 15(13), 1013; https://doi.org/10.3390/nano15131013 - 1 Jul 2025
Cited by 1 | Viewed by 1689
Abstract
Engineered nano- and microparticles are considered as promising tools in biomedical applications, such as imaging, sensing, and drug delivery. Protein adsorption on these particles in biological media is an important factor affecting their properties, cellular interactions, and biological fate. Understanding the parameters determining [...] Read more.
Engineered nano- and microparticles are considered as promising tools in biomedical applications, such as imaging, sensing, and drug delivery. Protein adsorption on these particles in biological media is an important factor affecting their properties, cellular interactions, and biological fate. Understanding the parameters determining the efficiency and pattern of protein adsorption is crucial for the development of effective biocompatible particle-based applications. This review focuses on the influence of the morphological and physicochemical properties of particles on protein adsorption, including the pattern and amount of the adsorbed protein species, as well as the relative abundance of proteins with specific functions or physicochemical parameters. The effects of functionalization of the particle surface with polyethylene glycol, zwitterions, zwitterionic polymers, or proteins on the subsequent protein adsorption are analyzed. In addition, the dependences of protein adsorption on the protein species, biological buffers, fluids, tissues, and other experimental conditions are looked into. The influence of protein adsorption on the targeting efficiency of particle-based delivery systems is also discussed. Finally, the effect of the adsorbed protein corona on the interaction of the engineered micro- and nanoparticles with cells and the roles of specific proteins adsorbed on the particle surface in the recognition of the particles by the immune system are considered. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

55 pages, 20925 KB  
Review
Current Trends and Emerging Strategies in Friction Stir Spot Welding for Lightweight Structures: Innovations in Tool Design, Robotics, and Composite Reinforcement—A Review
by Suresh Subramanian, Elango Natarajan, Ali Khalfallah, Gopal Pudhupalayam Muthukutti, Reza Beygi, Borhen Louhichi, Ramesh Sengottuvel and Chun Kit Ang
Crystals 2025, 15(6), 556; https://doi.org/10.3390/cryst15060556 - 11 Jun 2025
Cited by 3 | Viewed by 2583
Abstract
Friction stir spot welding (FSSW) is a solid-state joining technique increasingly favored in industries requiring high-quality, defect-free welds in lightweight and durable structures, such as the automotive, aerospace, and marine industries. This review examines the current advancements in FSSW, focusing on the relationships [...] Read more.
Friction stir spot welding (FSSW) is a solid-state joining technique increasingly favored in industries requiring high-quality, defect-free welds in lightweight and durable structures, such as the automotive, aerospace, and marine industries. This review examines the current advancements in FSSW, focusing on the relationships between microstructure, properties, and performance under load. FSSW offers numerous benefits over traditional welding, particularly for joining both similar and dissimilar materials. Key process parameters, including tool design, rotational speed, axial force, and dwell time, are discussed for their impact on weld quality. Innovations in robotics are enhancing FSSW’s accuracy and efficiency, while numerical simulations aid in optimizing process parameters and predicting material behavior. The addition of nano/microparticles, such as carbon nanotubes and graphene, has further improved weld strength and thermal stability. This review identifies areas for future research, including refining robotic programming, using artificial intelligence for autonomous welding, and exploring nano/microparticle reinforcement in FSSW composites. FSSW continues to advance solid-state joining technologies, providing critical insights for optimizing weld quality in sheet material applications. Full article
Show Figures

Figure 1

25 pages, 1292 KB  
Review
Nano/Micro-Enabled Modification and Innovation of Conventional Adjuvants for Next-Generation Vaccines
by Xingchi Liu, Xu Yang, Lu Tao, Xuanchen Li, Guoqiang Chen and Qi Liu
J. Funct. Biomater. 2025, 16(5), 185; https://doi.org/10.3390/jfb16050185 - 19 May 2025
Viewed by 2010
Abstract
The global spread of infectious diseases has raised public awareness of vaccines, highlighting their essential role in protecting public health. Among the components of modern vaccines, adjuvants have received increasing attention for boosting immune responses and enhancing efficacy. Recent advancements in adjuvant research, [...] Read more.
The global spread of infectious diseases has raised public awareness of vaccines, highlighting their essential role in protecting public health. Among the components of modern vaccines, adjuvants have received increasing attention for boosting immune responses and enhancing efficacy. Recent advancements in adjuvant research, particularly nanodelivery systems, have paved the way for developing more effective and safer adjuvants. This review outlines the properties, progress, and mechanisms of FDA-approved conventional adjuvants, focusing on their contributions to and challenges in vaccine success. Despite these advancements, conventional adjuvants still face suboptimal immunomodulatory effects, potential side effects, and limitations in targeting specific immune pathways. Nanodelivery systems have emerged as a transformative approach in adjuvant design, offering unique advantages such as enhancing vaccine stability, enabling controlled antigen release, and inducing specific immune responses. By addressing these limitations, nanocarriers improve the safety and efficacy of conventional adjuvants and drive the development of next-generation adjuvants for complex diseases. This review also explores strategies for incorporating nanodelivery systems into adjuvant development, emphasizing its role in optimizing vaccine formulations. By summarizing current challenges and recent advances, this review aims to provide valuable insights guiding future efforts in designing innovative adjuvants that meet the evolving needs of global immunization programs. Full article
(This article belongs to the Special Issue 15th Anniversary of JFB—Advanced Biomaterials for Drug Delivery)
Show Figures

Figure 1

36 pages, 11511 KB  
Review
Recent Advances in Functional Biopolymer Films with Antimicrobial and Antioxidant Properties for Enhanced Food Packaging
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(9), 1257; https://doi.org/10.3390/polym17091257 - 5 May 2025
Cited by 20 | Viewed by 4288
Abstract
Food packaging plays a crucial role in preserving freshness and prolonging shelf life worldwide. However, traditional packaging primarily acts as a passive barrier, providing limited protection against spoilage. Packaged food often deteriorates due to oxidation and microbial growth, reducing its quality over time. [...] Read more.
Food packaging plays a crucial role in preserving freshness and prolonging shelf life worldwide. However, traditional packaging primarily acts as a passive barrier, providing limited protection against spoilage. Packaged food often deteriorates due to oxidation and microbial growth, reducing its quality over time. Moreover, the majority of commercial packaging relies on petroleum-derived polymers, which add to environmental pollution since they are not biodegradable. Growing concerns over sustainability have driven research into eco-friendly alternatives, particularly natural-based active packaging solutions. Among the various biopolymers, cellulose is the most abundant natural polysaccharide and has gained attention for its biodegradability, non-toxicity, and compatibility with biological systems. These qualities make it a strong candidate for developing sustainable packaging materials. However, pure cellulose films have limitations, as they lack antimicrobial and antioxidant properties, reducing their ability to actively preserve food. To tackle this issue, researchers have created cellulose-based active packaging films by integrating bioactive agents with antimicrobial and antioxidant properties. Recent innovations emphasize improving these films through the incorporation of natural extracts, polyphenols, nanoparticles, and microparticles. These enhancements strengthen their protective functions, leading to more effective food preservation. The films are generally classified into two types: (i) blend films, where soluble antimicrobial and antioxidant substances like plant extracts and polyphenols are incorporated into the cellulose solution, and (ii) composite films, which embed nano- or micro-sized bioactive fillers within the cellulose structure. The addition of these functional components enhances the antimicrobial and antioxidant efficiency of the films while also affecting properties like water resistance, vapor permeability, and mechanical strength. The continuous progress in cellulose-based active packaging highlights its potential as a viable alternative to conventional materials. These innovative films not only extend food shelf life but also contribute to environmental sustainability by reducing reliance on synthetic polymers. This review deals with the development of functional biopolymer films with antimicrobial and antioxidant properties towards sustainable food packaging. Full article
(This article belongs to the Special Issue Application of Polymers in Food Sciences (2nd Edition))
Show Figures

Figure 1

11 pages, 957 KB  
Article
Comparison of the Level and Mechanisms of Toxicity of Nanoparticles of Underwater Welding in Bioassay with Three Marine Microalgae
by Konstantin Yu. Kirichenko, Konstantin S. Pikula, Vladimir V. Chayka, Alexander V. Gridasov, Igor A. Vakhniuk, Vladislava N. Volkova, Anton V. Pogodaev, Sergei G. Parshin, Yulia S. Parshina, Yuri E. Kalinin, Aleksei S. Kholodov, Sergey M. Ugay, Tatyana Yu. Orlova and Kirill S. Golokhvast
Nanomaterials 2025, 15(7), 518; https://doi.org/10.3390/nano15070518 - 29 Mar 2025
Viewed by 546
Abstract
In this work, the toxicity level of nano- and microparticles obtained by underwater welding was assessed. The toxicity of nano- and microparticles obtained by underwater welding was evaluated on three types of marine microalgae: Heterosigma akashiwo (Ochrophyta), Porphyridium purpureum (Rhodophyta), and Attheya ussuriensis [...] Read more.
In this work, the toxicity level of nano- and microparticles obtained by underwater welding was assessed. The toxicity of nano- and microparticles obtained by underwater welding was evaluated on three types of marine microalgae: Heterosigma akashiwo (Ochrophyta), Porphyridium purpureum (Rhodophyta), and Attheya ussuriensis (Bacillariophyta). The aim was to study the environmental risks associated with the ingress of micro- and nanoparticles of metal oxides into the marine environment. Water samples containing suspensions from wet welding and cutting processes were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine heavy metal concentrations. Biotesting included evaluation of growth inhibition, cell size change, and membrane potential of microalgae using flow cytometry. The results showed that samples APL-1 and APL-2 (flux-cored wire) were the most toxic, causing concentration-dependent growth inhibition of H. akashiwo and A. ussuriensis (p < 0.0001) as well as membrane depolarization. For P. purpureum, ELc and ELw (coated electrodes) samples stimulated growth, indicating species-specific responses. The stability of the nanoparticles and their bioavailability were found to play a key role in the mechanisms of toxicity. The study highlights the need to control the composition of materials for underwater welding and to develop environmentally friendly technologies. The data obtained are important for predicting the long-term effects of pollution of marine ecosystems by substances formed during underwater welding. Full article
(This article belongs to the Special Issue Nanosafety and Nanotoxicology: Current Opportunities and Challenges)
Show Figures

Graphical abstract

19 pages, 8130 KB  
Article
Silicon/Hard Carbon Composites Synthesized from Phenolic Resin as Anode Materials for Lithium-Ion Batteries
by Yu-Hsuan Li, Sompalli Kishore Babu, Duncan H. Gregory, Soorathep Kheawhom, Jeng-Kuei Chang and Wei-Ren Liu
Nanomaterials 2025, 15(6), 455; https://doi.org/10.3390/nano15060455 - 17 Mar 2025
Cited by 2 | Viewed by 2111
Abstract
Silicon could revolutionize the performance of lithium-ion batteries (LIBs) due to its formidable theoretical gravimetric capacity, approximately ten times that of graphite. However, huge volume expansion during charge/discharge processes and poor electronic conductivity inhibited its commercialization. To address the problems, new carbon-silicon core-shell [...] Read more.
Silicon could revolutionize the performance of lithium-ion batteries (LIBs) due to its formidable theoretical gravimetric capacity, approximately ten times that of graphite. However, huge volume expansion during charge/discharge processes and poor electronic conductivity inhibited its commercialization. To address the problems, new carbon-silicon core-shell microparticles have emerged for prospective anodes in LIBs. In this study, we develop a core-shell structure by using hard carbon derived from phenolic resin as the core and nano silicon/pitch coating as the shell to the resulting HC@Si-P composite anode. A composition-optimized 20 wt.% pitch coated-Si/HC composite anode delivers superior cycling stability over 200 cycles under 1 A/g current density, showing a 398 mAh/g capacity. At 5.0 A/g current density during charge and discharge processes, the reversible capacity reaches 215 mAh/g. Upon reducing the current density to 0.1 A/g, the capacity remains high at 537 mAh/g. Impedance testing shows that after pitch coating, the RSEI impedance decreases and the diffusion coefficient of HC@Si-P increases. Moreover, the facile and scalable preparation technique is encouraging for the potential practical application of silicon-based anode materials of this type in the upcoming generation of LIBs. Full article
Show Figures

Figure 1

30 pages, 4205 KB  
Review
Nano-Radiopharmaceuticals in Colon Cancer: Current Applications, Challenges, and Future Directions
by Ajnas Alkatheeri, Suliman Salih, Noon Kamil, Sara Alnuaimi, Memona Abuzar and Shahd Shehadeh Abdelrahman
Pharmaceuticals 2025, 18(2), 257; https://doi.org/10.3390/ph18020257 - 14 Feb 2025
Cited by 4 | Viewed by 2276
Abstract
Colon cancer remains a significant global health challenge; however, the treatment outcome for colon patients can be improved through early detection and effective treatment. Nano-radiopharmaceuticals, combining nanotechnology with radiopharmaceuticals, are emerging as a revolutionary approach in both colon cancer diagnostic imaging and therapy, [...] Read more.
Colon cancer remains a significant global health challenge; however, the treatment outcome for colon patients can be improved through early detection and effective treatment. Nano-radiopharmaceuticals, combining nanotechnology with radiopharmaceuticals, are emerging as a revolutionary approach in both colon cancer diagnostic imaging and therapy, playing a significant role in the management of colon cancer patients. This review examines the use of nano-radiopharmaceuticals in the diagnosis and treatment of colon cancer, highlighting current applications, challenges, and future directions. Nanocarriers of radionuclides have shown potential in improving cancer treatment, including liposomes, microparticles, nanoparticles, micelles, dendrimers, and hydrogels, which are approved by the FDA. These nanocarriers can deliver targeted drugs into malignant cells without affecting normal cells, reducing side effects. Antibody-guided systemic radionuclide-targeted therapy has shown potential for treating cancer. Novel cancer nanomedicines, like Hensify and 32P BioSilicon, are under clinical development for targeted radiation delivery in percutaneous intratumoral injections. Although using nano-radiopharmaceuticals is a superior technique for diagnosing and treating colon cancer, there are limitations and challenges, such as the unintentional accumulation of nanoparticles in healthy tissues, which leads to toxicity due to biodistribution issues, as well as high manufacturing costs that limit their availability for patients. However, the future direction is moving toward providing more precise radiopharmaceuticals, which is crucial for enhancing the diagnosis and treatment of colon cancer and reducing production costs. Full article
(This article belongs to the Special Issue Radiopharmaceuticals and Nanotechnology)
Show Figures

Figure 1

17 pages, 9859 KB  
Article
Comparison Between Micro- and Micro-Nano Surface Texturization in the Initial Osseointegration Process: An Experimental In Vitro and In Vivo Preclinical Study
by Sergio Alexandre Gehrke, Eleani Maria da Costa, Jaime Aramburú Júnior, Tiago Luis Eilers Treichel, Massimo Del Fabbro and Antonio Scarano
Bioengineering 2025, 12(2), 175; https://doi.org/10.3390/bioengineering12020175 - 12 Feb 2025
Cited by 1 | Viewed by 1789
Abstract
Background: The physicochemical changes of the surface aim to improve cell adhesion, proliferation, and differentiation, that is, better biological interaction with the cells and, consequently, with the peri-implant tissues. In the present study, implants with the same macrogeometry were compared in vitro and [...] Read more.
Background: The physicochemical changes of the surface aim to improve cell adhesion, proliferation, and differentiation, that is, better biological interaction with the cells and, consequently, with the peri-implant tissues. In the present study, implants with the same macrogeometry were compared in vitro and in vivo, but with two different surfaces: micro-rough and a new micro-nano-rough surface. Materials and Methods: A total of 90 implants were used, 10 of which were used for in vitro surface characterization (n = 5 per group) through scanning electron microscopy (SEM), atomic force microscopy (AFM), and surface roughness measurements. For in vivo tests, 80 implants (n = 40 per group) were used in 20 rabbits (n = 2 implants per tibia). Two experimental groups were created: a control group, where the implants had a surface treated by sandblasting with titanium oxide microparticles, and a test group, where the implants were sandblasted using the same process as the previous group plus acid conditioned. The implant stability quotient (ISQ) was measured by resonance frequency (initially and at both euthanasia times). Animals were euthanized 3 and 5 weeks after implantation (n = 10 animals per time). Ten samples from each group at each time point were evaluated by removal torque (RTv). Another ten samples from each group were evaluated histologically and histomorphometrically, measuring the percentage of bone-to-implant contact (%BIC) and the bone area fraction occupancy (%BAFO). Results: In vitro, it was possible to observe a more homogeneous surface for the test group compared to the control group. ISQ values showed statistical differences at both 3 and 5 weeks (test > control). For RTv, the values were: 44.5 ± 4.25 Ncm (control group) and 48.6 ± 3.17 Ncm (test group) for the time of 3 weeks; 64.3 ± 4.50 Ncm (control group) and 76.1 ± 4.18 Ncm (test group) at 5 weeks. The %BIC and %BAFO values measured in both groups and at both times did not show significant differences (p > 0.05). Conclusions: The higher removal torque and ISQ values presented in the samples from the test group compared to the control group indicate that there was an acceleration in the mineralization process of the newly formed bone matrix. Full article
(This article belongs to the Special Issue Periodontics and Implant Dentistry)
Show Figures

Figure 1

21 pages, 5045 KB  
Article
Comparative Toxicity of Micro, Nano, and Leachate Fractions of Three Rubber Materials to Freshwater Species: Zebrafish and Daphnia
by Miranda E. Jackson, Bryan J. Harper, Manuel Garcia-Jaramillo and Stacey L. Harper
Microplastics 2025, 4(1), 8; https://doi.org/10.3390/microplastics4010008 - 11 Feb 2025
Cited by 1 | Viewed by 1973
Abstract
Rubber materials enter aquatic environments by stormwater runoff via sources such as playground mulch, athletic fields, and roadway surfaces. Tire rubbers are considered plastics as they comprise a substantial portion of synthetic polymers. Rubber particles are complex and variable depending on the type, [...] Read more.
Rubber materials enter aquatic environments by stormwater runoff via sources such as playground mulch, athletic fields, and roadway surfaces. Tire rubbers are considered plastics as they comprise a substantial portion of synthetic polymers. Rubber particles are complex and variable depending on the type, source, and age of rubber. In this study, zebrafish embryos and daphnids were exposed to nano-scale or micro-scale particles, or leachate from recycled rubber (RR), crumb rubber (CR), and cryo-milled tire tread (CMTT). Zebrafish embryos were evaluated for lethal and sub-lethal effects over a 120 h exposure, while daphnids were tested over a 48 h period. Nano-scale RR, CR, and CMTT particles elicited a hatch delay in zebrafish embryos with similar EC50 values (1.3 × 109–1.4 × 109 particles/mL). Micro-scale particles did not elicit any significant effects in developing zebrafish. Nano-scale particles of all rubber materials significantly increased hatch delay compared to leachate, suggesting an adverse nanoparticle effect unexplained by chemical leaching alone, indicating tire particle-specific effects. Daphnia RR micro- and nanoparticle exposures resulted in mortality, with LC50 values of 9.8 × 105 microparticles/mL and 5.0 × 108 nanoparticles/mL, respectively. Leachate exposures did not elicit significant Daphnia mortality. Sublethal micro- and nano-TP exposures significantly decreased microalgae ingestion by Daphnia after 24 h. The effects of tire-derived exposures observed pose a risk to aquatic organism survival at environmentally relevant concentrations. Full article
Show Figures

Graphical abstract

25 pages, 17433 KB  
Article
Silicone Composites with Electrically Oriented Boron Nitride Platelets and Carbon Microfibers for Thermal Management of Electronics
by Romeo Cristian Ciobanu, Magdalena Aflori, Cristina Mihaela Scheiner, Mihaela Aradoaei and Dorel Buncianu
Polymers 2025, 17(2), 204; https://doi.org/10.3390/polym17020204 - 15 Jan 2025
Viewed by 1798
Abstract
This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR [...] Read more.
This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains. Based on SEM images, the chains are uniformly distributed on the surface of the sample, fully formed and mature, but their architecture critically depends on composition. The physical and electrical characteristics of composites were extensively studied with regard to the composition and orientation of particles. The higher the concentration of BN platelets, the greater the enhancement of dielectric permittivity, but the effect decreases gradually after reaching a concentration of 15%. The impact of incorporating carbon microfibers into the dielectric permittivity of composites is clearly beneficial, especially when the BN content surpasses 12%. Thermal conductivity showed a significant improvement in all samples with aligned particles, regardless of their composition. For homogeneous materials, the thermal conductivity is significantly enhanced by the inclusion of carbon microfibers, particularly when the boron nitride content exceeds 12%. The biggest increase happened when carbon microfibers were added at a rate of 2%, while the BN content surpassed 15.5%. The thermal conductivity of composites is greatly improved by adding carbon microfibers when oriented particles are present, even at BN content over 12%. When the BN content surpasses 15.5%, the effect diminishes as the fibers within chains are only partly vertically oriented, with BN platelets prioritizing vertical alignment. The outcomes of this study showed improved results for composites with BN platelets and carbon microfibers compared to prior findings in the literature, all while utilizing a more straightforward approach for processing the polymer matrix and aligning particles. In contrast to current technologies, utilizing homologous materials with uniformly dispersed particles, the presented technology reduces ingredient consumption by 5–10 times due to the arrangement in chains, which enhances heat transfer efficiency in the desired direction. The present technology can be used in a variety of industrial settings, accommodating different ingredients and film thicknesses, and can be customized for various applications in electronics thermal management. Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

13 pages, 1978 KB  
Article
Influence of Composition on the Patterns of Electrokinetic Potential of Thermosensitive N-(Isopropyl)Acrylamide Derivatives with Poly(Ethylene Glycol) Dimethacrylate and N-(2-Hydroxyethyl)Acrylamide
by Monika Gasztych, Aleksandra Malamis-Stanowska, Mateusz Trafalski and Witold Musiał
Int. J. Mol. Sci. 2024, 25(24), 13554; https://doi.org/10.3390/ijms252413554 - 18 Dec 2024
Viewed by 810
Abstract
The synthesis of poly(N-isopropyl acrylamide) (pNIPA)-based polymers via the surfactant-free precipitation polymerization (SFPP) method produced thermosensitive nanospheres with a range of distinctive physicochemical properties. Nano- and microparticles were generated using various initiators, significantly influencing particle characteristics, including the hydrodynamic diameter (DH), [...] Read more.
The synthesis of poly(N-isopropyl acrylamide) (pNIPA)-based polymers via the surfactant-free precipitation polymerization (SFPP) method produced thermosensitive nanospheres with a range of distinctive physicochemical properties. Nano- and microparticles were generated using various initiators, significantly influencing particle characteristics, including the hydrodynamic diameter (DH), which varied from 87.7 nm to 1618.1 nm. Initiators, such as potassium persulfate and 2,2′-azobis(2-methylpropionamidine) dihydrochloride, conferred anionic and cationic functionalities, respectively, impacting the electrokinetic potential (EP) of the particles. Notably, certain particles with cationic initiators exhibited negative EP values at 18 °C, attributed to residual initiator components that affected the surface charge distribution. The presence of hydrophilic N-(2-hydroxyethyl)acrylamide (HEAA) segments also influenced solubility and phase transition behaviors, with critical dependencies on the HEAA/NIPA (N-isopropyl acrylamide) molar ratios. EP measurements taken at 18 °C and 42 °C revealed substantial differences, primarily governed by the initiator type and polymer composition. Observed variations in particle stability and size were associated with the choice of crosslinking agents and comonomer content, which affected both DH and EP in distinct ways. This study provides insights into key factors influencing colloidal stability and electrostatic interactions within thermosensitive polymer systems, underscoring their potential applications in biomedical and industrial fields. Full article
Show Figures

Figure 1

16 pages, 2382 KB  
Article
Encapsulation of Nanocrystals in Mannitol-Based Inhalable Microparticles via Spray-Drying: A Promising Strategy for Lung Delivery of Curcumin
by Luca Casula, Emanuela Fabiola Craparo, Eleonora Lai, Cinzia Scialabba, Donatella Valenti, Michele Schlich, Chiara Sinico, Gennara Cavallaro and Francesco Lai
Pharmaceuticals 2024, 17(12), 1708; https://doi.org/10.3390/ph17121708 - 18 Dec 2024
Cited by 2 | Viewed by 1442
Abstract
Background/Objectives: Curcumin is well known for its great anti-inflammatory and antioxidant efficacy, representing a potential strategy for the treatment of respiratory disorders. However, several drawbacks, such as chemical instability, poor water solubility and rapid metabolism, result in low bioavailability, limiting its clinical applications. [...] Read more.
Background/Objectives: Curcumin is well known for its great anti-inflammatory and antioxidant efficacy, representing a potential strategy for the treatment of respiratory disorders. However, several drawbacks, such as chemical instability, poor water solubility and rapid metabolism, result in low bioavailability, limiting its clinical applications. In this study, curcumin nanocrystals were incorporated into mannitol-based microparticles to obtain an inhalable dry powder. Methods: A curcumin nanosuspension was produced by wet-ball media milling and thoroughly characterized. Spray drying was then used to produce mannitol microparticles incorporating curcumin nanocrystals. In vitro release/dissolution tests were carried out in simulated lung fluids, and the aerosolization properties were evaluated using a Next-Generation Impactor (NGI, Apparatus E Ph. Eu.). Results: The incorporation of curcumin nanocrystals into mannitol-based microparticles influenced their morphological properties, such as geometric diameters, and flowability. Despite these changes, nebulization studies confirmed optimal MMAD values (<5 µm), while multi-step dissolution/release studies evidenced the influence of mannitol. Conclusions: The developed curcumin nanocrystals-loaded mannitol microparticles show promise as an inhalable treatment for respiratory diseases, combining effective aerodynamic properties with controlled drug release. Full article
(This article belongs to the Special Issue Recent Advances in Inhalation Therapy)
Show Figures

Graphical abstract

10 pages, 7382 KB  
Article
Near-Field Nano-Focusing and Nano-Imaging of Dielectric Microparticle Lenses
by Jinzhong Ling, Yucheng Wang, Jinkun Guo, Xin Liu and Xiaorui Wang
Nanomaterials 2024, 14(23), 1974; https://doi.org/10.3390/nano14231974 - 9 Dec 2024
Cited by 1 | Viewed by 1057
Abstract
Compared with traditional far-field objective lenses, microparticle lenses have a distinct advantage of nonobservance of the diffraction limit, which has attracted extensive attention for its application in subwavelength photolithography and super-resolution imaging. In this article, a complete simulation model for a microparticle lens [...] Read more.
Compared with traditional far-field objective lenses, microparticle lenses have a distinct advantage of nonobservance of the diffraction limit, which has attracted extensive attention for its application in subwavelength photolithography and super-resolution imaging. In this article, a complete simulation model for a microparticle lens assisted microscopic imaging system was built to analyze the imaging characteristics of any shape of microparticle lens. With this model, we simulated the resolution of a conventional objective lens, a microsphere lens and a hollow microsphere lens, which verified the correctness of our simulation model and demonstrated the super-resolution imaging ability of microsphere lenses. Secondly, the focusing and imaging characteristics of four typical microparticle lenses are illustrated, and how the focal spot affects imaging resolution and imaging quality is analyzed. Upon this conclusion, we reformed and upgraded the microsphere lens with several parameters for smaller focal spots and higher imaging resolution. Finally, three types of microparticle lenses were designed through the optimized parameters and their focusing and imaging characteristics were demonstrated with a minimum FWHM of 140 nm at the focal plane and a highest imaging resolution around 70 nm (~λ/6). Our work opens up a new perspective of super-resolution imaging with near-field microparticle lens. Full article
(This article belongs to the Special Issue Nanophotonic: Structure, Devices and System)
Show Figures

Figure 1

Back to TopTop