Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = n-P-V-rings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1716 KiB  
Article
Beyond Empirical Trends: Density Functional Theory-Based Nuclear Magnetic Resonance Analysis of Mono-Hydroxyflavone Derivatives
by Feng Wang and Vladislav Vasilyev
Appl. Sci. 2025, 15(11), 5928; https://doi.org/10.3390/app15115928 - 24 May 2025
Viewed by 468
Abstract
Flavone derivatives have emerged as promising antiviral agents, with baicalein demonstrating the potent inhibition of the SARS-CoV-2 main protease (Mpro). In this study, the unique electronic and structural properties of 3-hydroxyflavone (3-HF) were investigated using the density functional theory (B3PW91/cc-pVTZ), providing insights into [...] Read more.
Flavone derivatives have emerged as promising antiviral agents, with baicalein demonstrating the potent inhibition of the SARS-CoV-2 main protease (Mpro). In this study, the unique electronic and structural properties of 3-hydroxyflavone (3-HF) were investigated using the density functional theory (B3PW91/cc-pVTZ), providing insights into its potential as a bioactive scaffold. Among mono-hydroxyflavone (n-HF) isomers, 3-HF exhibits an extensive intramolecular hydrogen-bonding network linking the phenyl B-ring to the A- and γ-pyrone C-rings, enabled by the distinctive C3-OH substitution. Despite a slight non-planarity (dihedral angle: 15.4°), this hydrogen-bonding network enhances rigidity and influences the electronic environment. A 13C-NMR chemical shift analysis revealed pronounced quantum mechanical effects of the C3-OH group, diverging from the trends observed in other flavones. A natural bond orbital (NBO) analysis highlighted an unusual charge distribution, with predominantly positive charges on the γ-pyrone C-ring carbons, in contrast to the typical negative charges in flavones. These effects impact C1s orbital energies, suggesting that the electronic structure plays a more significant role in 13C-NMR shifts than simple ring assignments. Given the established antiviral activity of hydroxylated flavones, the distinct electronic properties of 3-HF may enhance its interaction with SARS-CoV-2 Mpro, making it a potential candidate for further investigation. This study underscores the importance of quantum mechanical methods in elucidating the structure–activity relationships of flavones and highlights 3-HF as a promising scaffold for future antiviral drug development. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Graphical abstract

18 pages, 5239 KiB  
Article
Intrinsic Antibacterial Urushiol-Based Benzoxazine Polymer Coating for Marine Antifouling Applications
by Nuo Chen, Jide Zhu, Xinrong Chen, Fengcai Lin, Xiaoxiao Zheng, Guocai Zheng, Qi Lin, Jipeng Chen and Yanlian Xu
Int. J. Mol. Sci. 2025, 26(9), 4118; https://doi.org/10.3390/ijms26094118 - 26 Apr 2025
Viewed by 520
Abstract
Marine antifouling coatings that rely on the release of antifouling agents are the most prevalent and effective strategy for combating fouling. However, the environmental concerns arising from the widespread discharge of these agents into marine ecosystems cannot be overlooked. An innovative and promising [...] Read more.
Marine antifouling coatings that rely on the release of antifouling agents are the most prevalent and effective strategy for combating fouling. However, the environmental concerns arising from the widespread discharge of these agents into marine ecosystems cannot be overlooked. An innovative and promising alternative involves incorporating antimicrobial groups into polymers to create coatings endowed with intrinsic antimicrobial properties. In this study, we reported an urushiol-based benzoxazine (URB) monomer, synthesized from natural urushiol and antibacterial rosin amine. The URB monomer was subsequently polymerized through thermal curing ring-opening polymerization, resulting in the formation of a urushiol-based benzoxazine polymer (URHP) coating with inherent antimicrobial properties. The surface of the URHP coating is smooth, flat, and non-permeable. Contact angle and surface energy measurements confirm that the URHP coating is hydrophobic with low surface energy. In the absence of antimicrobial agent release, the intrinsic properties of the URHP coating can effectively kill or repel fouling organisms. Furthermore, with bare glass slides serving as the control sample, the coating demonstrates outstanding anti-adhesion capabilities against four types of bacteria (E. coli, S. aureus, V. alginolyticus, and Bacillus sp.), and three marine microalgae (N. closterium, P. tricornutum, and D. zhan-jiangensis), proving its efficacy in preventing fouling organisms from settling and adhering to the surface. Thus, the combined antibacterial and anti-adhesion properties endow the URHP coating with superior antifouling performance. This non-release antifouling coating represents a green and environmentally sustainable strategy for antifouling. Full article
(This article belongs to the Special Issue Molecular Advances in Anti-bacterial Polymers)
Show Figures

Figure 1

15 pages, 19552 KiB  
Article
Facile Synthesis of Binuclear Imidazole-Based Poly(ionic liquid) via Monomer Self-Polymerization: Unlocking High-Efficiency CO2 Conversion to Cyclic Carbonate
by Ranran Li, Yuqiao Jiang, Linyan Cheng, Cheng Fang, Hongping Li, Jing Ding, Hui Wan and Guofeng Guan
Catalysts 2025, 15(5), 406; https://doi.org/10.3390/catal15050406 - 22 Apr 2025
Viewed by 641
Abstract
Strategic utilization of carbon dioxide as both a carbon mitigation tool and a sustainable C1 feedstock represents a pivotal pathway toward green chemistry. Although poly(ionic liquid)s (PILs) exhibit promise in CO2 conversion, conventional divinylbenzene (DVB) cross-linked architectures are limited by reduced ionic [...] Read more.
Strategic utilization of carbon dioxide as both a carbon mitigation tool and a sustainable C1 feedstock represents a pivotal pathway toward green chemistry. Although poly(ionic liquid)s (PILs) exhibit promise in CO2 conversion, conventional divinylbenzene (DVB) cross-linked architectures are limited by reduced ionic density and limited accessibility of active sites. Herein, we reported a binuclear imidazolium-functionalized PIL catalyst (P-BVIMCl), synthesized through a simple self-polymerization process, derived from rationally designed ionic liquid monomers formed by quaternization of 1,4-bis(chloromethyl)benzene with N-vinylimidazole. The dual active sites in P-BVIMCl-quaternary ammonium cation (N+) and nucleophilic chloride anion (Cl) synergistically enhanced CO2 adsorption/activation and epoxide ring-opening. Under optimal catalyst preparation conditions (100 °C, 24 h, water/ethanol = 1:3 (v/v), 10 wt% AIBN initiator) and reaction conditions (100 °C, 2.0 MPa CO2, 10 mmol epichlorohydrin, 6.7 wt% catalyst loading, 3.0 h), P-BVIMCl catalyzed the synthesis of glycerol carbonate (GLC) with a yield of up to 93.4% and selectivity of 99.6%, maintaining activity close to 90% after five cycles. Systematic characterization and density functional theory (DFT) calculations confirmed the synergistic activation mechanism. This work established a paradigm for constructing high-ionic-density catalysts through molecular engineering, advancing the development of high-performance PILs for industrial CO2 valorization. Full article
(This article belongs to the Special Issue Ionic Liquids and Deep Eutectic Solvents in Catalysis)
Show Figures

Graphical abstract

20 pages, 7521 KiB  
Article
The Design and Fabrication of Shear-Mode Piezoelectric Accelerometers with High Bandwidth Using High Piezoelectric g-Coefficient NKN-Based Ceramics
by Jian-Hao Huang, Chien-Min Cheng, Sheng-Yuan Chu and Cheng-Che Tsai
Materials 2025, 18(8), 1813; https://doi.org/10.3390/ma18081813 - 15 Apr 2025
Viewed by 394
Abstract
In this work, lead-free (Na0.475K0.475Li0.05)NbO3 + x wt.% ZnO (NKLN, x = 0 to 0.3) piezoelectric ceramics with high piezoelectric g-coefficients were prepared by conventional solid-state synthesis method. By adding different concentrations of ZnO dopants, we [...] Read more.
In this work, lead-free (Na0.475K0.475Li0.05)NbO3 + x wt.% ZnO (NKLN, x = 0 to 0.3) piezoelectric ceramics with high piezoelectric g-coefficients were prepared by conventional solid-state synthesis method. By adding different concentrations of ZnO dopants, we aimed to improve the material properties and enhance their piezoelectric properties. The effects of the ZnO addition on the microstructure, dielectric, piezoelectric and ferroelectric properties of the proposed samples are investigated. Adding ZnO reduced the dielectric constant and improved the g-value of the samples. The properties of the samples without ZnO doping were g33 = 31 mV·m/N, g15 = 34 mV·m/N, kp = 0.39, Qm = 92, εr = 458, d33 = 127 pC/N and dielectric loss = 3.4%. With the preferable ZnO doping of 1 wt.%, the piezoelectric properties improved to g33 = 40 mV·m/N, g15 = 44 mV·m/N, kp = 0.44, Qm = 89, εr = 406, d33 = 139 pC/N and dielectric loss = 2.4%. Finally, ring-shaped shear mode piezoelectric accelerometers were fabricated using the optimum ZnO-doped samples. The simulated resonant frequency using ANSYS 2024 R1 software was approximately 23 kHz, while the actual measured resonant frequency of the devices was 19 kHz. The sensitivity was approximately 7.08 mV/g. This piezoelectric accelerometer suits applications requiring lower sensitivity and higher resonant frequencies, such as monitoring high-frequency vibrations in high-speed machinery, robotic arms or scientific research and engineering fields involving high-frequency vibration testing. Full article
(This article belongs to the Special Issue Advances in Ferroelectric and Piezoelectric Materials)
Show Figures

Figure 1

15 pages, 3563 KiB  
Article
Toward Enhancing the Thermoelectric Properties of Bi2Te3 and Sb2Te3 Alloys by Co-Evaporation of Bi2Te3:Bi and Sb2Te3:Te
by Bernardo S. Dores, Marino J. Maciel, José H. Correia and Eliana M. F. Vieira
Nanomaterials 2025, 15(4), 299; https://doi.org/10.3390/nano15040299 - 16 Feb 2025
Cited by 1 | Viewed by 2986
Abstract
In this work, we developed nanostructured Bi2Te3 and Sb2Te3 thin films by thermal co-evaporation of their alloys with corresponding pure elements (Bi, Sb, and Te). The films were fabricated on borosilicate glass at different substrate temperatures and [...] Read more.
In this work, we developed nanostructured Bi2Te3 and Sb2Te3 thin films by thermal co-evaporation of their alloys with corresponding pure elements (Bi, Sb, and Te). The films were fabricated on borosilicate glass at different substrate temperatures and deposition rates. At 300 °C, enhanced thermoelectric performance was demonstrated for n-type Bi2Te3:Bi and p-type Sb2Te3:Te, with Seebeck coefficients of 195 µV K−1 and 178 μV K−1, along with electrical conductivities of 4.6 × 104 (Ω m)−1 and 6.9 × 104 (Ω m)−1, resulting in maximum power factor values of 1.75 mW K−2 m−1 and 2.19 mW K−2 m−1, respectively. These values are found to be higher than some reported works in the literature, highlighting the advantage of not introducing additional elements to the system (such as extra doping, which induces complexity to the system). The structural properties, film morphology, and chemical composition of the optimized films were investigated using X-ray diffraction (XRD) and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS). The films were found to be polycrystalline with preferred (0 0 6) and (0 1 5) orientations for Bi2Te3 and Sb2Te3 films, respectively, and stable rhombohedral phases. Additionally, a ring-shaped p-n thermoelectric device for localized heating/cooling was developed and a temperature difference of ~7 °C between the hot and cold zones was obtained using 4.8 mA of current (J = 0.068 mA/mm2). Full article
(This article belongs to the Special Issue Nano-Based Advanced Thermoelectric Design)
Show Figures

Figure 1

13 pages, 14655 KiB  
Article
Biomechanical Evaluation of a Novel V-Shaped A2 Pulley Reconstruction Technique Using a Free Palmaris Longus Tendon Graft Tenodesis
by Gabriel Halát, Hannah E. Halát, Lukas L. Negrin, Thomas Koch, Lena Hirtler, Christoph Fuchssteiner and Stefan Hajdu
J. Clin. Med. 2025, 14(4), 1092; https://doi.org/10.3390/jcm14041092 - 8 Feb 2025
Viewed by 789
Abstract
Background: The aim of this biomechanical investigation was to evaluate a V-shaped three-point graft tenodesis technique using a free palmaris longus (PL) tendon for reconstructing traumatic A2 pulley lesions and to compare its biomechanical performance with two previously described reconstruction techniques. Methods [...] Read more.
Background: The aim of this biomechanical investigation was to evaluate a V-shaped three-point graft tenodesis technique using a free palmaris longus (PL) tendon for reconstructing traumatic A2 pulley lesions and to compare its biomechanical performance with two previously described reconstruction techniques. Methods: After A2 pulley lesion simulation in 27 fingers (index, middle and ring finger) from nine human anatomical hand specimens, reconstructions were performed using the innovative V-shaped graft tenodesis technique, a double-loop encircling technique and a suture anchor graft fixation technique. Load at failure and the failure mechanisms were evaluated. Results: The V-shaped graft tenodesis technique was superior biomechanically (p = 0.004) considering load at failure (mean: 299 N). The only observed failure mechanism in this group was the extrusion of the central tenodesis screw. In contrast, reconstructions in the other two groups failed due to suture cut-out. Conclusions: Patients may benefit from the new technique’s high load tolerance during early mobilization. Furthermore, a reduction in complications may be anticipated due to an absence of sutures and the sparing of extensor structures. Full article
(This article belongs to the Special Issue Innovation in Hand Surgery)
Show Figures

Figure 1

13 pages, 5328 KiB  
Article
InP/Si3N4 Hybrid Integrated Lasers for RF Local Oscillator Signal Generation in Satellite Payloads
by Jessica César-Cuello, Alberto Zarzuelo, Robinson C. Guzmán, Charoula Mitsolidou, Ilka Visscher, Roelof B. Timens, Paulus W. L. Van Dijk, Chris G. H. Roeloffzen, Luis González, José Manuel Delgado Mendinueta and Guillermo Carpintero
Photonics 2025, 12(1), 77; https://doi.org/10.3390/photonics12010077 - 16 Jan 2025
Viewed by 1184
Abstract
This paper presents an integrated tunable hybrid multi-laser module designed to simultaneously generate multiple radiofrequency (RF) local oscillator (LO) signals through optical heterodyning. The device consists of five hybrid InP/Si3N4 integrated lasers, each incorporating an intracavity wavelength-selective optical filter formed [...] Read more.
This paper presents an integrated tunable hybrid multi-laser module designed to simultaneously generate multiple radiofrequency (RF) local oscillator (LO) signals through optical heterodyning. The device consists of five hybrid InP/Si3N4 integrated lasers, each incorporating an intracavity wavelength-selective optical filter formed by two micro-ring resonators. Through beating the wavelengths generated from three of these lasers, we demonstrate the simultaneous generation of two LO signals within bands crucial for satellite communications (SatCom): one in the Ka-band and the other in the V-band. The device provides an extensive wavelength tuning range across the entire C-band and exhibits exceptionally narrow optical linewidths, below 40 kHz in free-running mode. This results in ultra-wideband tunable RF signals with narrow electrical linewidths below 100 kHz. The system is compact and highly scalable, with the potential to generate up to 10 simultaneous LO signals, being a promising solution for advanced RF signal generation in high throughput satellite payloads. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

11 pages, 1759 KiB  
Communication
All-Fiber Micro-Ring Resonator Based p-Si/n-ITO Heterojunction Electro-Optic Modulator
by Yihan Zhu, Ziqian Wang, Xing Chen, Honghai Zhu, Lizhuo Zhou, Yujie Zhou, Yi Liu, Yule Zhang, Xilin Tian, Shuo Sun, Jianqing Li, Ke Jiang, Han Zhang and Huide Wang
Materials 2025, 18(2), 307; https://doi.org/10.3390/ma18020307 - 11 Jan 2025
Viewed by 1313
Abstract
With the rapid advancement of information technology, the data demands in transmission rates, processing speed, and storage capacity have been increasing significantly. However, silicon electro-optic modulators, characterized by their weak electro-optic effect, struggle to balance modulation efficiency and bandwidth. To overcome this limitation, [...] Read more.
With the rapid advancement of information technology, the data demands in transmission rates, processing speed, and storage capacity have been increasing significantly. However, silicon electro-optic modulators, characterized by their weak electro-optic effect, struggle to balance modulation efficiency and bandwidth. To overcome this limitation, we propose an electro-optic modulator based on an all-fiber micro-ring resonator and a p-Si/n-ITO heterojunction, achieving high modulation efficiency and large bandwidth. ITO is introduced in this design, which exhibits an ε-near-zero (ENZ) effect in the communication band. The real and imaginary parts of the refractive index of ITO undergo significant changes in response to variations in carrier concentration induced by the reverse bias voltage, thereby enabling efficient electro-optic modulation. Additionally, the design of the all-fiber micro-ring eliminates coupling losses associated with spatial optical-waveguide coupling, thereby resolving the high insertion loss of silicon waveguide modulators and the challenges of integrating MZI modulation structures. The results demonstrate that this modulator can achieve significant phase shifts at low voltages, with a modulation efficiency of up to 3.08 nm/V and a bandwidth reaching 82.04 GHz, indicating its potential for high-speed optical chip applications. Full article
(This article belongs to the Special Issue Advances in Materials Science for Engineering Applications)
Show Figures

Figure 1

14 pages, 3212 KiB  
Article
Designs of Charge-Balanced Edge Termination Structures for 3.3 kV SiC Power Devices Using PN Multi-Epitaxial Layers
by Sangyeob Kim and Ogyun Seok
Micromachines 2025, 16(1), 47; https://doi.org/10.3390/mi16010047 - 30 Dec 2024
Viewed by 1339
Abstract
We demonstrated 3.3 kV silicon carbide (SiC) PiN diodes using a trenched ring-assisted junction termination extension (TRA-JTE) with PN multi-epitaxial layers. Multiple P+ rings and width-modulated multiple trenches were utilized to alleviate electric-field crowding at the edges of the junction to quantitively [...] Read more.
We demonstrated 3.3 kV silicon carbide (SiC) PiN diodes using a trenched ring-assisted junction termination extension (TRA-JTE) with PN multi-epitaxial layers. Multiple P+ rings and width-modulated multiple trenches were utilized to alleviate electric-field crowding at the edges of the junction to quantitively control the effective charge (Qeff) in the termination structures. The TRA-JTE forms with the identical P-type epitaxial layer, which enables high-efficiency hole injection and conductivity modulation. The effects of major design parameters for the TRA-JTE, such as the number of trenches (Ntrench) and depth of trenches (Dtrench), were analyzed to obtain reliable blocking capabilities. Furthermore, the single-zone-JTE (SZ-JTE), ring-assisted-JTE (RA-JTE), and trenched-JTE (T-JTE) were also evaluated for comparative analysis. Our results show that the TRA-JTE exhibited the highest breakdown voltage (BV), exceeding 4.2 kV, and the strongest tolerance against variance in doping concentration for the JTE (NJTE) compared to both the RA-JTE and T-JTE due to the charge-balanced edge termination by multiple P+ rings and trench structures. Full article
(This article belongs to the Special Issue Silicon-Based Photonic Technology and Devices)
Show Figures

Figure 1

12 pages, 222 KiB  
Article
Regularity of n-P-V-Rings and n-P-V’-Rings
by Liuwen Li, Wenlin Zou and Ying Li
Axioms 2024, 13(12), 863; https://doi.org/10.3390/axioms13120863 - 10 Dec 2024
Viewed by 595
Abstract
The regularity of the n-P-V-rings and n-P-V’-rings is systematically investigated in this paper. Employing the notions of quasi-ideals, weakly left (or right) ideals, and generalized weak ideals, we focus on investigating the strong π-regularity and weak π-regularity of the n-P-V-rings and [...] Read more.
The regularity of the n-P-V-rings and n-P-V’-rings is systematically investigated in this paper. Employing the notions of quasi-ideals, weakly left (or right) ideals, and generalized weak ideals, we focus on investigating the strong π-regularity and weak π-regularity of the n-P-V-rings and the n-P-V’-rings. Subsequently, we demonstrate our results as follows: (1) R is strongly π-regular if R is a left n-P-V-ring where all its maximal left ideals are either quasi-ideals, weakly right ideals, or generalized weak ideals. (2) R is strongly π-regular iff R is an abelian left (right) n-P-V’-ring where all its maximal essential left (right) ideals are either quasi-ideals, weakly right (left) ideals, or generalized weak ideals. (3) R is reduced left weakly π-regular if R is an idempotent reflexive semi-abelian left n-P-V’-ring where all its maximal essential left ideals are either quasi-ideals, weakly right ideals, or generalized weak ideals. Full article
20 pages, 1797 KiB  
Article
Hyperon Production in Bi + Bi Collisions at the Nuclotron-Based Ion Collider Facility and Angular Dependence of Hyperon Spin Polarization
by Nikita S. Tsegelnik, Vadym Voronyuk and Evgeni E. Kolomeitsev
Particles 2024, 7(4), 984-1003; https://doi.org/10.3390/particles7040060 - 13 Nov 2024
Cited by 2 | Viewed by 1132
Abstract
The strange baryon production in Bi + Bi collisions at sNN=9.0 GeV is studied using the PHSD transport model. Hyperon and anti-hyperon yields, transverse momentum spectra, and rapidity spectra are calculated, and their centrality dependence and the effect of [...] Read more.
The strange baryon production in Bi + Bi collisions at sNN=9.0 GeV is studied using the PHSD transport model. Hyperon and anti-hyperon yields, transverse momentum spectra, and rapidity spectra are calculated, and their centrality dependence and the effect of rapidity and transverse momentum cuts are studied. The rapidity distributions for Λ¯, Ξ, Ξ¯ baryons are found to be systematically narrower than for Λs. The pT slope parameters for anti-hyperons vary more with centrality than those for hyperons. Restricting the accepted rapidity range to |y|<1 increases the slope parameters by 13–30 MeV, depending on the centrality class and the hyperon mass. Hydrodynamic velocity and vorticity fields are calculated, and the formation of two oppositely rotating vortex rings moving in opposite directions along the collision axis is found. The hyperon spin polarization induced by the medium vorticity within the thermodynamic approach is calculated, and the dependence of the polarization on the transverse momentum and rapidity cuts and on the centrality selection is analyzed. The cuts have stronger effect on the polarization of Λ and Ξ hyperons than on the corresponding anti-hyperons. The polarization signal is maximal for the centrality class, 60–70%. We show that, for the considered hyperon polarization mechanism, the structure of the vorticity field makes an imprint on the polarization signal as a function of the azimuthal angle in the transverse momentum plane, ϕH, cosϕH=px/pT. For particles with positive longitudinal momentum, pz>0, the polarization increases with cosϕH, while for particles with pz<0 it decreases. Full article
(This article belongs to the Special Issue Infinite and Finite Nuclear Matter (INFINUM))
Show Figures

Figure 1

13 pages, 1634 KiB  
Article
Nuclear Magnetic Resonance (NMR) and Density Functional Theory (DFT) Study of Water Clusters of Hydrogen-Rich Water (HRW)
by Nikolay Vassilev, Ignat Ignatov, Teodora P. Popova, Fabio Huether, Alexander I. Ignatov, Mario T. Iliev and Yordan Marinov
Water 2024, 16(22), 3261; https://doi.org/10.3390/w16223261 - 13 Nov 2024
Cited by 4 | Viewed by 1931
Abstract
The present study investigated the 1H Nuclear Magnetic Resonance (NMR) spectra of hydrogen-rich water (HRW) produced using the EVObooster device. The analyzed HRW has pH = 7.1 ± 0.11, oxidation–reduction potential (ORP) of (−450 ± 11) mV, and a dissolved hydrogen concentration [...] Read more.
The present study investigated the 1H Nuclear Magnetic Resonance (NMR) spectra of hydrogen-rich water (HRW) produced using the EVObooster device. The analyzed HRW has pH = 7.1 ± 0.11, oxidation–reduction potential (ORP) of (−450 ± 11) mV, and a dissolved hydrogen concentration of 1.2 ppm. The control sample was tap water filtered by patented technology. A 600 NMR spectrometer was used to measure NMR spectra. Isotropic 1H nuclear magnetic shielding constants of the most stable clusters (H2O)n with n from 3 to 28 have been calculated by employing the gauge-including-atomic-orbital (GIAO) method at the MPW1PW91/6-311+G(2d,p) density function level of theory (DFT). The HRW chemical shift is downfield (higher chemical shifts) due to increased hydrogen bonding. More extensive formations were formed in HRW than in control filtered tap water. The exchange of protons between water molecules is rapid in HRW, and the 1H NMR spectra are in fast exchange mode. Therefore, we averaged the calculated chemical shifts of the investigated water clusters. As the size of the clusters increases, the number of hydrogen bonds increases, which leads to an increase in the chemical shift. The dependence is an exponential saturation that occurs at about N = 10. The modeled clusters in HRW are structurally stabilized, suggesting well-ordered hydrogen bonds. In the article, different processes are described for the transport of water molecules and clusters. These processes are with aquaporins, fusion pores, gap-junction channels, and WAT FOUR model. The exponential trend of saturation shows the dynamics of water molecules in clusters. In our research, the chemical shift of 4.257 ppm indicates stable water clusters of 4–5 water molecules. The pentagonal rings in dodecahedron cage H3O+(H2O)20 allow for an optimal arrangement of hydrogen bonds that minimizes the potential energy. Full article
(This article belongs to the Section Water and One Health)
Show Figures

Figure 1

14 pages, 5334 KiB  
Article
Development and Field Test of Integrated Electronics Piezoelectric Accelerometer Based on Lead-Free Piezoelectric Ceramic for Centrifugal Pump Monitoring
by Byung-Hoon Kim, Dae-Sic Jang, Jeong-Han Lee, Min-Ku Lee and Gyoung-Ja Lee
Sensors 2024, 24(19), 6436; https://doi.org/10.3390/s24196436 - 4 Oct 2024
Viewed by 1500
Abstract
In this study, an Integrated Electronics Piezoelectric (IEPE)-type accelerometer based on an environmentally friendly lead-free piezoceramic was fabricated, and its field applicability was verified using a cooling pump owned by the Korea Atomic Energy Research Institute (KAERI). As an environmentally friendly piezoelectric material, [...] Read more.
In this study, an Integrated Electronics Piezoelectric (IEPE)-type accelerometer based on an environmentally friendly lead-free piezoceramic was fabricated, and its field applicability was verified using a cooling pump owned by the Korea Atomic Energy Research Institute (KAERI). As an environmentally friendly piezoelectric material, 0.96(K,Na)NbO3-0.03(Bi,Na,K,Li)ZrO3-0.01BiScO3 (0.96KNN-0.03BNKLZ-0.01BS) piezoceramic with an optimized piezoelectric charge constant (d33) was introduced. It was manufactured in a ring shape using a solid-state reaction method for application to a compression mode accelerometer. The fabricated ceramic ring has a high piezoelectric constant d33 of ~373 pC/N and a Curie temperature TC of ~330 °C. It was found that the electrical and physical characteristics of the 0.96KNN-0.03BNKLZ-0.01BS piezoceramic were comparable to those of a Pb(Zr,Ti)O3 (PZT) ring ceramic. As a result of a vibration test of the IEPE accelerometer fabricated using the lead-free piezoelectric ceramic, the resonant frequency fr = 20.0 kHz and voltage sensitivity Sv = 101.1 mV/g were confirmed. The fabricated IEPE accelerometer sensor showed an excellent performance equivalent to or superior to that of a commercial IEPE accelerometer sensor based on PZT for general industrial use. A field test was carried out to verify the applicability of the fabricated sensor in an actual industrial environment. The test was conducted by simultaneously installing the developed sensor and a commercial PZT-based sensor in the ball bearing housing location of a centrifugal pump. The centrifugal pump was operated at 1180 RPM, and the generated vibration signals were collected and analyzed. The test results confirmed that the developed eco-friendly lead-free sensor has comparable vibration measurement capability to that of commercial PZT-based sensors. Full article
Show Figures

Figure 1

20 pages, 350 KiB  
Article
On Linear Codes over Local Rings of Order p4
by Sami Alabiad, Alhanouf Ali Alhomaidhi and Nawal A. Alsarori
Mathematics 2024, 12(19), 3069; https://doi.org/10.3390/math12193069 - 30 Sep 2024
Cited by 6 | Viewed by 800
Abstract
Suppose R is a local ring with invariants p,n,r,m,k and mr=4, that is R of order p4. Then, [...] Read more.
Suppose R is a local ring with invariants p,n,r,m,k and mr=4, that is R of order p4. Then, R=R0+uR0+vR0+wR0 has maximal ideal J=uR0+vR0+wR0 of order p(m1)r and a residue field F of order pr, where R0=GR(pn,r) is the coefficient subring of R. In this article, the goal is to improve the understanding of linear codes over small-order non-chain rings. In particular, we produce the MacWilliams formulas and generator matrices for linear codes of length N over R. In order to accomplish that, we first list all such rings up to isomorphism for different values of p,n,r,m,k. Furthermore, we fully describe the lattice of ideals in R and their orders. Next, for linear codes C over R, we compute the generator matrices and MacWilliams identities, as shown by numerical examples. Given that non-chain rings are not principal ideals rings, it is crucial to acknowledge the difficulties that arise while studying linear codes over them. Full article
Show Figures

Figure 1

11 pages, 3185 KiB  
Article
Evaluation of Proximal Contact Tightness and Contact Area of Posterior Composite Resin Restorations
by Cem Peskersoy, Mert Sener, Oguz Baris Gurses, Eda Erbil and Murat Turkun
Appl. Sci. 2024, 14(18), 8335; https://doi.org/10.3390/app14188335 - 16 Sep 2024
Cited by 3 | Viewed by 2819
Abstract
The purpose of this study is to evaluate the influence of the matrix system on proximal contact tightness (PCT) of posterior composite resin restorations. Standardized class II cavities on 180 first lower molar dentiform model teeth (Frasaco GmbH, Tettnang, Germany) were prepared. Three [...] Read more.
The purpose of this study is to evaluate the influence of the matrix system on proximal contact tightness (PCT) of posterior composite resin restorations. Standardized class II cavities on 180 first lower molar dentiform model teeth (Frasaco GmbH, Tettnang, Germany) were prepared. Three groups were formed considering the matrix system: Group-IM: Ivory matrix (Hahnenkratt GmbH, Königsbach-Stein, Germany), Group-OM: Omni matrix (Ultradent, South Jordan, UT, USA), and Group-PM: Palodent V3 sectional matrix (Dentsply, Charlotte, NC, USA). Teeth were restored with resin composite mounted in a manikin head to simulate the clinical environment. Proximal contact tightness (PCT) was measured using a custom-made portable dental pressure meter (PDPM), and the validation of the PCT results was performed with a histogram analysis acquired from bite-wing radiography. All data were statistically analyzed by ANOVA and t-test in SPSS software (v.27.0) (p < 0.05). PM group showed statistically tighter contacts on both mesial (PCTm: 228.28 ± 59.17 N) and distal surfaces (PCTd: 254.91 ± 65.69 N) (p > 0.05). Mesial contacts were found to be significantly tighter than distal contacts among all (p < 0.05). According to the histogram results, only in the PM group, the difference between the mesial and distal areas is significant (p < 0.05). Histogram results confirmed that the tightest contact values were achieved in the PM group, followed by the OM and IM groups, respectively (p < 0.05). The use of sectional matrix systems and separation rings is more effective in creating tighter contact than conventional matrix systems. The use of anatomical wedges will help to create a more natural approximal contour and narrow contact area. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

Back to TopTop