Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = mysticete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9486 KiB  
Article
Surviving a Dark Age: The Oldest Baleen-Bearing Whales (Cetacea: Chaeomysticeti) of Pacific South America (Lower Miocene, Peru)
by Francesco Nobile, Olivier Lambert, Giovanni Bianucci, Eli Amson, Mark Bosselaers, Giulia Bosio, Luca Pellegrino, Elisa Malinverno, Claudio Di Celma, Mario Urbina and Alberto Collareta
Life 2025, 15(3), 452; https://doi.org/10.3390/life15030452 - 13 Mar 2025
Viewed by 1610
Abstract
The evolution of baleen whales (Mysticeti) comprises two main phases, namely, (i) a Paleogene phase, which saw the diversification of stem lineages, and (ii) a Neogene phase, dominated by modern-looking, toothless, baleen-bearing forms in the monophyletic group Chaeomysticeti. These two phases are separated [...] Read more.
The evolution of baleen whales (Mysticeti) comprises two main phases, namely, (i) a Paleogene phase, which saw the diversification of stem lineages, and (ii) a Neogene phase, dominated by modern-looking, toothless, baleen-bearing forms in the monophyletic group Chaeomysticeti. These two phases are separated by a global turnover event coinciding with a gap—or “dark age”—in the mysticete fossil record. This dark age occurred between 23 and ~18 Ma and is apparently detected worldwide, except in Zealandia. Here, we report on a new mysticete fossil from the Lower Miocene (Burdigalian: ~19.2 Ma) strata of the Chilcatay Formation cropping out at the newly discovered locality of Cerro Tiza (East Pisco Basin, Peru), which represents a limited but precious testament from the last phase of the baleen whale dark age. Two previously mentioned, slightly geologically younger fossils from the same formation are also reappraised herein, revealing the occurrence of at least another baleen whale taxon in the upper Chilcatay strata—one that belongs in the mysticete crown group. Although the Early Miocene remains a problematic time interval for the fossil record of baleen whales, our new results encourage the search for mysticete fossils in the Lower Miocene strata of the East Pisco Basin, whose basin fill preserves a cornucopia of extraordinarily informative marine vertebrate fossils of the Cenozoic age, as well as in coeval deposits worldwide. Full article
(This article belongs to the Section Paleobiology)
Show Figures

Figure 1

14 pages, 26658 KiB  
Article
Retrieving Palaeoecological Information from Historic Fossil Finds: A Taphonomic Cold Case from Orciano Pisano (Central Italy) Reveals a Distinctive Trophic Interaction in the Pliocene Mediterranean Sea
by Edoardo Terranova, Giovanni Bianucci, Marco Merella, Chiara Sorbini and Alberto Collareta
J. Mar. Sci. Eng. 2025, 13(3), 508; https://doi.org/10.3390/jmse13030508 - 5 Mar 2025
Viewed by 1133
Abstract
Evidence of trophic interactions between sharks and cetaceans is rather widespread in the fossil record, consisting as it does of tooth marks on bones and rarer teeth or tooth fragments embedded in (or associated with) skeletal remains. Here, we reappraise a partial mysticete [...] Read more.
Evidence of trophic interactions between sharks and cetaceans is rather widespread in the fossil record, consisting as it does of tooth marks on bones and rarer teeth or tooth fragments embedded in (or associated with) skeletal remains. Here, we reappraise a partial mysticete (baleen whale) forelimb that was collected more than a century ago from Pliocene deposits exposed at the celebrated fossil locality of Orciano Pisano (Tuscany, central Italy). This specimen, which is revealed to originate from an early juvenile individual, features shark tooth marks on both the humerus and radius. Whether these traces are due to active predation or to scavenging cannot be ascertained. During the Pliocene, the Mediterranean Basin was inhabited by a diverse elasmobranch fauna, including a number of mammal-eating forms that no longer inhabit the Mediterranean Sea (e.g., Galeocerdo and some Carcharhinus spp. as well as the extinct Parotodus). Early juvenile mysticetes were also likely more common than today in the Pliocene Mediterranean Sea, which may have contained balaenid and balaenopterid calving grounds, thus providing the Mediterranean mammal-eating sharks with vulnerable, energetically valuable potential prey items. Thus, our results evoke a kind of trophic interaction that was likely common and ecologically relevant in the Pliocene Mediterranean Sea. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

18 pages, 7170 KiB  
Article
Study of Non-Linearities in Humpback Whale Song Units
by Yann Doh, Dorian Cazau, Giulia Lamaj, Eduardo Mercado, Joy S. Reidenberg, Jeff K. Jacobsen, Christina E. Perazio, Beverley Ecalle and Olivier Adam
J. Mar. Sci. Eng. 2025, 13(2), 215; https://doi.org/10.3390/jmse13020215 - 23 Jan 2025
Viewed by 2504
Abstract
Unique in mammals, the vocal generator of mysticete species comprises membranes covering the two arytenoid cartilages that vibrate as the airflow passes through the trachea from the lungs to the laryngeal sac. By adjusting the airflow as well as the spacing and orientation [...] Read more.
Unique in mammals, the vocal generator of mysticete species comprises membranes covering the two arytenoid cartilages that vibrate as the airflow passes through the trachea from the lungs to the laryngeal sac. By adjusting the airflow as well as the spacing and orientation of the two cartilages, mysticetes control the vibrations and vary acoustic qualities of the produced sounds, including the duration, amplitude, and frequency modulation of vocalizations. Humpback whales control sound production in this way to construct a complex vocal repertoire, including vocalizations with or without harmonics as well as pulsed sounds. Some vocalizations within humpback whale songs, called units, exhibit non-linearities such as frequency jumps and chaos. Here, we further describe non-linear features of units, including two additional non-linearities: subharmonics and biphonation. Subharmonics within units are probably due to higher air flow rates and to the acoustic modes of internal resonators. Biphonic vocalizations are likely generated either by an asymmetric opening of the arytenoid cartilages or by the passage of the air flow at two separate positions along the membranes. Our analyses revealed acoustic non-linearities in vocalizations emitted by six different singers during multiple breeding seasons and from populations in different oceans, suggesting that singing humpback whales often produce units with non-linear features. Full article
(This article belongs to the Special Issue Recent Advances in Marine Bioacoustics)
Show Figures

Figure 1

27 pages, 9087 KiB  
Article
Physical Measures of Welfare in Fin (Balaenoptera physalus) and Humpback Whales (Megaptera novangliae) Found in an Anthropized Environment: Validation of a First Animal-Based Indicator in Mysticetes
by Anik Boileau, Jonathan Blais, Marie-Françoise Van Bressem, Kathleen E. Hunt and Jamie Ahloy-Dallaire
Animals 2024, 14(23), 3519; https://doi.org/10.3390/ani14233519 - 5 Dec 2024
Viewed by 2607
Abstract
Anthropogenic activities impacting marine environments are internationally recognized as welfare issues for wild cetaceans. This study validates a first evidence-based physical indicator for the welfare assessment protocol of humpback (n = 50) and fin whales (n = 50) living in a highly anthropized [...] Read more.
Anthropogenic activities impacting marine environments are internationally recognized as welfare issues for wild cetaceans. This study validates a first evidence-based physical indicator for the welfare assessment protocol of humpback (n = 50) and fin whales (n = 50) living in a highly anthropized environment. Visual assessments of body condition, skin health, prevalence of injuries and parasite/epibiont loads were performed using a species-specific multi-scale measuring tool. A total of 6403 images were analyzed (fin, n = 3152; humpback, n = 3251) and results were validated through reliability and positive discrimination statistical tests. Based on physical measures, welfare assessment results showed that 60% of humpback whales were considered in a good welfare state compared to only 46% of fin whales. Significant relationships were observed in both species, between environmental parameters like dissolved oxygen levels, and prevalence of cutaneous lesions like pale skin patch syndrome. Furthermore, animals with injuries due to anthropogenic activities were more likely to be in poorer body condition, suggesting chronic stress affecting welfare. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

30 pages, 55008 KiB  
Article
Ecomorphological and Age-Related Adaptations in the Tongues of Phocoena dioptrica (Spectacled Porpoise) and Phocoena spinipinnis (Burmeister’s Porpoise) (Phocoenidae: Cetacea)
by Cleopatra Mara Loza, Carolina Natalia Zanuzzi, Laura Beatriz Andrini, Cecilia Mariana Krmpotic, Alejo Carlos Scarano, Juan Pablo Loureiro, Claudio Gustavo Barbeito and Alfredo Armando Carlini
Animals 2024, 14(23), 3481; https://doi.org/10.3390/ani14233481 - 2 Dec 2024
Cited by 1 | Viewed by 1492
Abstract
Vertebrates’ tongues reflect part of their adaptations to diverse feeding strategies, the types of food items they eat, and the environments where they live. Our contribution was to analyze the macro- and microscopic morphology of the tongues of two porpoise species (Phocoena [...] Read more.
Vertebrates’ tongues reflect part of their adaptations to diverse feeding strategies, the types of food items they eat, and the environments where they live. Our contribution was to analyze the macro- and microscopic morphology of the tongues of two porpoise species (Phocoena dioptrica and Phocoena spinipinnis; juveniles and adults), whose biology is little known. Macroscopic and microscopic studies (conventional histology, scanning electron microscopy, immunohistochemistry, and morphometry) were performed. Differences between juvenile and adult individuals of the same species, as well as between juveniles and adults of both species, were found, probably related to their feeding and/or geographical distribution. In addition, novel aspects related to ontogenetic morphological differences, thermoregulation, and immune system components were described. We found a lingual countercurrent vascular system (periarterial venous retia), only mentioned for mysticetes and Physeter macrocephalus (never for smaller odontocetes). In addition, we identified mechanoreceptors (lamellar corpuscles). Both species showed marginal papillae, but only in P. spinipinnis were small (probably vestigial) taste buds observed. Finally, lingual lymphoid aggregates were found. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

53 pages, 7160 KiB  
Article
New Evidence of the Feeding Behaviors of Coronodon and the Origin of Filter Feeding in Mysticetes (Mammalia: Cetacea) Revisited
by Jonathan H. Geisler, Brian L. Beatty and Robert W. Boessenecker
Diversity 2024, 16(9), 549; https://doi.org/10.3390/d16090549 - 5 Sep 2024
Cited by 1 | Viewed by 3763
Abstract
Coronodon includes species of basal toothed mysticetes that were initially interpreted as engaging in raptorial feeding and dental filtration. Here, the feeding of this extinct genus is revisited based on recently described specimens and species. Associations between tooth position and types of dental [...] Read more.
Coronodon includes species of basal toothed mysticetes that were initially interpreted as engaging in raptorial feeding and dental filtration. Here, the feeding of this extinct genus is revisited based on recently described specimens and species. Associations between tooth position and types of dental wear were tested, and evidence for feeding behaviors was tabulated using scores from 14 craniodental characters, each mapped onto five alternate phylogenetic hypotheses. Individual character states were interpreted as being supportive, neutral, or contradictory evidence to raptorial feeding, suction feeding, baleen filtration, or dental filtration. Wear in Coronodon was found to be significantly more concentrated on mesial teeth, mesial cusps, higher cusps, and upper teeth. Upper teeth also had mesial cusps more worn than distal cusps, inconsistent with predictions of the dental filtration hypothesis. Wear in notches was correlated with wear on neighboring cusps, and side wear was concentrated on occlusal sides, suggesting both were caused by raptorial feeding. These observations raise the possibility that raptorial feeding was the primary, and maybe even the only, mode of feeding for Coronodon. The feeding scores of reconstructed ancestors leading to crown mysticetes typically display a stepwise decrease in raptorial feeding, a stepwise increase in baleen filtration, and, occasionally, an intermediate but weakly supported stage of dental filtration. For most toothed mysticetes, there is little evidence for or against suction feeding. The method we have developed for studying the origin of baleen can be expanded and allows for multiple hypotheses to be tested without undue emphasis on any particular taxon or set of characters. Full article
(This article belongs to the Special Issue Evolution of Crown Cetacea)
Show Figures

Figure 1

16 pages, 7282 KiB  
Article
Localized Expression of Olfactory Receptor Genes in the Olfactory Organ of Common Minke Whales
by Ayumi Hirose, Gen Nakamura, Masato Nikaido, Yoshihiro Fujise, Hidehiro Kato and Takushi Kishida
Int. J. Mol. Sci. 2024, 25(7), 3855; https://doi.org/10.3390/ijms25073855 - 29 Mar 2024
Cited by 3 | Viewed by 2148
Abstract
Baleen whales (Mysticeti) possess the necessary anatomical structures and genetic elements for olfaction. Nevertheless, the olfactory receptor gene (OR) repertoire has undergone substantial degeneration in the cetacean lineage following the divergence of the Artiodactyla and Cetacea. The functionality of highly degenerated [...] Read more.
Baleen whales (Mysticeti) possess the necessary anatomical structures and genetic elements for olfaction. Nevertheless, the olfactory receptor gene (OR) repertoire has undergone substantial degeneration in the cetacean lineage following the divergence of the Artiodactyla and Cetacea. The functionality of highly degenerated mysticete ORs within their olfactory epithelium remains unknown. In this study, we extracted total RNA from the nasal mucosae of common minke whales (Balaenoptera acutorostrata) to investigate ORs’ localized expression. All three sections of the mucosae examined in the nasal chamber displayed comparable histological structure. However, the posterior portion of the frontoturbinal region exhibited notably high OR expression. Neither the olfactory bulb nor the external skin exhibited the expression of these genes. Although this species possesses four intact non-class-2 ORs, all the ORs expressed in the nasal mucosae belong to class-2, implying the loss of aversion to specific odorants. These anatomical and genomic analyses suggest that ORs are still responsible for olfaction within the nasal region of baleen whales, enabling them to detect desirable scents such as prey and potential mating partners. Full article
(This article belongs to the Special Issue Molecular Research on Olfactory and Gustatory Receptors)
Show Figures

Graphical abstract

23 pages, 4426 KiB  
Article
Baleen–Plastic Interactions Reveal High Risk to All Filter-Feeding Whales from Clogging, Ingestion, and Entanglement
by Alexander J. Werth, Shirel R. Kahane-Rapport, Jean Potvin, Jeremy A. Goldbogen and Matthew S. Savoca
Oceans 2024, 5(1), 48-70; https://doi.org/10.3390/oceans5010004 - 1 Feb 2024
Cited by 6 | Viewed by 7225
Abstract
Baleen whales are ecosystem sentinels of microplastic pollution. Research indicates that they likely ingest millions of anthropogenic microparticles per day when feeding. Their immense prey consumption and filter-feeding behavior put them at risk. However, the role of baleen, the oral filtering structure of [...] Read more.
Baleen whales are ecosystem sentinels of microplastic pollution. Research indicates that they likely ingest millions of anthropogenic microparticles per day when feeding. Their immense prey consumption and filter-feeding behavior put them at risk. However, the role of baleen, the oral filtering structure of mysticete whales, in this process has not been adequately addressed. Using actual baleen tissue from four whale species (fin, humpback, minke, and North Atlantic right) in flow tank experiments, we tested the capture rate of plastics of varying size, shape, and polymer type, as well as chemical residues leached by degraded plastics, all of which accumulated in the baleen filter. Expanded polystyrene foam was the most readily captured type of plastic, followed by fragments, fibers, nurdles, and spherical microbeads. Nurdle and microbead pellets were captured most readily by right whale baleen, and fragments were captured by humpback baleen. Although not all differences between polymer types were statistically significant, buoyant polymers were most often trapped by baleen. Plastics were captured by baleen sections from all regions of a full baleen rack, but were more readily captured by baleen from dorsal and posterior regions. Baleen–plastic interactions underlie various risks to whales, including filter clogging and damage, which may impede feeding. We posit that plastics pose a higher risk to some whale species due to a combination of factors, including filter porosity, diet, habitat and geographic distribution, and foraging ecology and behavior. Certain whale species in specific marine regions are of the greatest concern due to plastic abundance. It is not feasible to remove all plastic from the sea; most of what is there will continue to break into ever-smaller pieces. We suggest that higher priorities be accorded to lessening humans’ dependence on plastics, restricting entry points of plastics into the ocean, and developing biodegradable alternatives. Full article
(This article belongs to the Special Issue Marine Mammals in a Changing World, 2nd Edition)
Show Figures

Figure 1

28 pages, 26849 KiB  
Article
Taphonomy of a Mysticete Whale from the Lower Pliocene of the Coast of Cádiz (Spain)
by Giulia Bosio, Ildefonso Bajo-Campos, Alberto Collareta, Sergio Ros-Montoya, Daniel de la Torre, Giovanni Coletti and Giovanni Bianucci
J. Mar. Sci. Eng. 2024, 12(1), 17; https://doi.org/10.3390/jmse12010017 - 20 Dec 2023
Viewed by 3883
Abstract
A fossil mysticete was discovered along the southwestern coast of Spain, occurring in a block detached from the Neogene deposits exposed along a coastal cliff at the locality of Conil de la Frontera (Cádiz, Spain). These deposits range from Pliocene to Pleistocene in [...] Read more.
A fossil mysticete was discovered along the southwestern coast of Spain, occurring in a block detached from the Neogene deposits exposed along a coastal cliff at the locality of Conil de la Frontera (Cádiz, Spain). These deposits range from Pliocene to Pleistocene in age and include shallow-marine, mixed carbonate–siliciclastic sediments, with the whale being found in occurrence of a stratigraphic unconformity marked by Thalassinoides burrows. 87Sr/86Sr analyses on oyster shells associated with the skeleton suggest an Early Pliocene age, in agreement with the age of the lowermost unit cropping out at the study site. The studied cetacean specimen consists of an articulated, almost complete balaenopteroid skeleton exposed in the field dorsal side up; being contained in an upside-down block, however, it is preserved in ventral disposition. Bones exhibit a low degree of preservation of the cortical bone tissue, which locally features shark bite marks and Osedax traces as well as abundant encrustations of barnacles and ostreids. Two shark teeth were also found near the skeleton. Bones have preserved their main histological features, even though they locally exhibit microcracks, dissolution, substitution by Fe oxides, and microborings. Sediment particles and late diagenetic cements fill the medullary cavities. We propose that the whale carcass experienced refloating before sinking to the seafloor and that the skeleton was probably exposed on the seafloor for some time before being eventually buried. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

15 pages, 15091 KiB  
Article
Structured-Light 3D Scanning as a Tool for Creating a Digital Collection of Modern and Fossil Cetacean Skeletons (Natural History Museum, University of Pisa)
by Marco Merella, Simone Farina, Patrizia Scaglia, Gaia Caneve, Giada Bernardini, Alice Pieri, Alberto Collareta and Giovanni Bianucci
Heritage 2023, 6(10), 6762-6776; https://doi.org/10.3390/heritage6100353 - 13 Oct 2023
Cited by 13 | Viewed by 5703
Abstract
The Natural History Museum of the University of Pisa hosts one of the most important osteological collections of cetaceans all over Europe, as well as a conspicuous paleontological collection, including several holotypes of Archaeoceti (archaic whales), Mysticeti (baleen whales), and Odontoceti (toothed whales). [...] Read more.
The Natural History Museum of the University of Pisa hosts one of the most important osteological collections of cetaceans all over Europe, as well as a conspicuous paleontological collection, including several holotypes of Archaeoceti (archaic whales), Mysticeti (baleen whales), and Odontoceti (toothed whales). In order to valorize these collections, we used 3D technologies to digitize the most relevant specimens, create an online archive, and make the resulting models accessible and shareable with the broadest audience possible through social media profiles and internet browsers. Tens of specimens were surface-scanned using a structured-light scanner, and the resulting 3D models were processed for post-production through the 3D software Blender whenever necessary. All the 3D scans were then gathered in the online repository Sketchfab, which was chosen for its user-friendly interface and common usage among museum institutions. The result is a web page that hosts 35 surface scans of extant and extinct cetacean specimens. This Sketchfab account was linked to the social media (Facebook and Instagram) profiles of the MSNUP to increase the visibility of the museum and promote the dissemination of its outstanding collections of modern and fossil cetaceans. The preliminary results of such an effort are encouraging in terms of views and online interactions. Hopefully, this effort of digitization and online archiving will soon extend to other vertebrate collections. Full article
(This article belongs to the Special Issue Museums for Heritage Preservation and Communication)
Show Figures

Figure 1

14 pages, 2195 KiB  
Review
Tattoo Skin Disease in Cetacea: A Review, with New Cases for the Northeast Pacific
by Marie-Françoise Van Bressem, Koen Van Waerebeek and Pádraig J. Duignan
Animals 2022, 12(24), 3581; https://doi.org/10.3390/ani12243581 - 18 Dec 2022
Cited by 8 | Viewed by 3932
Abstract
Tattoo skin disease (TSD) is a poxviral dermatopathy diagnosed in cetaceans. We review the literature on TSD aetiology, clinical characteristics, pathology and epidemiology and evaluate immune responses against the virus. In addition, necropsy reports for fifty-five harbour porpoises (Phocoena phocoena), twenty-two [...] Read more.
Tattoo skin disease (TSD) is a poxviral dermatopathy diagnosed in cetaceans. We review the literature on TSD aetiology, clinical characteristics, pathology and epidemiology and evaluate immune responses against the virus. In addition, necropsy reports for fifty-five harbour porpoises (Phocoena phocoena), twenty-two Delphinidae and four Kogiidae stranded in northern California in 2018–2021 were checked for diagnostic tattoo lesions. TSD occurs in the Mediterranean, North and Barents Seas, as well as in the Atlantic, eastern Pacific and Indian Oceans in at least 21 cetacean species, with varying prevalence. Two cetacean poxvirus (CePV) clades are recognised: CePV-1 in odontocetes and CePV-2 in mysticetes. CePV-1 isolates were recovered from six Delphinidae and one Phocoenidae in the Americas, Europe and Hong Kong. Strains from Delphinidae are closely related. Among Phocoenidae, poxviruses were sampled only in harbour porpoises around the British Isles. CePV-2 isolates were obtained from southern right whales (Eubalaena australis) and a bowhead whale (Balaena mysticetus). In healthy animals, an immune response develops over time, with young calves protected by maternal immunity. Salinity and sea surface temperature do not seem to influence TSD prevalence in free-ranging cetaceans. High concentrations of immunotoxic halogenated organochlorines may cause a more severe clinical disease. Substitution and loss of genes involved in anti-viral immunity may favour CePV entry, replication and persistence in the epidermis. Off California, Delphinidae were less often (26.3%) affected by TSD than harbour porpoises (43.6%). Male porpoises were significantly more prone (58.1%) to show clinical disease than females (25%). Among males, TSD affected a high proportion of juveniles and subadults. TSD was not detected in the Kogiidae. Full article
(This article belongs to the Special Issue Frontiers in Marine Mammal Health and Immunity)
Show Figures

Figure 1

20 pages, 3323 KiB  
Article
Fin Whale (Balaenoptera physalus) Mortality along the Italian Coast between 1624 and 2021
by Valerio Manfrini, Nino Pierantonio, Alessandro Giuliani, Federico De Pascalis, Nicola Maio and Annalaura Mancia
Animals 2022, 12(22), 3111; https://doi.org/10.3390/ani12223111 - 10 Nov 2022
Cited by 6 | Viewed by 3503
Abstract
The Mediterranean Sea hosts a population of fin whale (Balaenoptera physalus), the only species of Mysticete regularly occurring in the basin. Observed and inferred mortality suggests that the population is likely declining. Accordingly, understanding the causes of mortality and assessing the [...] Read more.
The Mediterranean Sea hosts a population of fin whale (Balaenoptera physalus), the only species of Mysticete regularly occurring in the basin. Observed and inferred mortality suggests that the population is likely declining. Accordingly, understanding the causes of mortality and assessing the health status is pivotal to the survival of this endangered population. While such studies are inherently difficult for a highly roaming species with a pelagic distribution, mortality events provide the opportunity to investigate biological and epidemiological traits linked to these events, and evaluate the footprint of human activity, especially when long-term data series exist. We present a comprehensive spatial–temporal overview of fin whale mortality events along the Italian coast encompassing four centuries (1624–2021). Time series analysis was used to highlight structural changes in the evolution of mortality through time, while spatial–temporal patterns in the distribution of mortality events were assessed through emerging hot spot analysis methods. Recent mortality events (1964–2021) were further explored to evaluate, where possible, the primary causes of mortality and to identify anthropogenic threats of conservation concerns. This long-term survey offers the basis for an understanding of the health status of this B. physalus population and provides much-needed information for developing an effective management and conservation plan for the species in the region. Full article
(This article belongs to the Special Issue Frontiers in Marine Mammal Health and Immunity)
Show Figures

Figure 1

40 pages, 13781 KiB  
Review
Skeletal Transformations and the Origin of Baleen Whales (Mammalia, Cetacea, Mysticeti): A Study on Evolutionary Patterns
by Michelangelo Bisconti and Giorgio Carnevale
Diversity 2022, 14(3), 221; https://doi.org/10.3390/d14030221 - 18 Mar 2022
Cited by 11 | Viewed by 8549
Abstract
A review of the morphological patterns exhibited by all the main radiations of mysticete (baleen whale) cetaceans provided a broad assessment of the fundamental morphological transformations that occurred in the transition to the Mysticeti clade. Skull and postcranial characters were illustrated, described and [...] Read more.
A review of the morphological patterns exhibited by all the main radiations of mysticete (baleen whale) cetaceans provided a broad assessment of the fundamental morphological transformations that occurred in the transition to the Mysticeti clade. Skull and postcranial characters were illustrated, described and compared, and their distribution was mapped on a combined phylogeny in the search for morphological support for the principal mysticete clades (i.e., Mysticeti, Chaeomysticeti and Balaenomorpha). In particular, characters of the skull (rostrum, vertex, temporal fossa, tympanic bulla and dentary) and the postcranial appendicular skeleton (scapula, humerus, radius and ulna) were all involved at different degrees in the process of morphological transformations leading to the modern-day mysticetes. Apart from a few typical characteristics of the rostrum that were already present in the earliest-diverging mysticetes (presence of lateral process of the maxilla, presence of multiple dorsal infraorbital foramina, thin lateral border of maxilla and presence of mesorostral groove), most of the other anatomical districts were unaffected by the transition so the earliest mysticetes show a number of archaeocete characters in the tympanic bulla, dentary and skull roof. The analysis of the whole dataset supported the hypothesis that the origin and evolution of mysticetes constituted a step-wise process and that the bauplan of the modern-day mysticetes was fully assembled at the level of the common ancestor of all Balaenomorpha. Full article
(This article belongs to the Special Issue Evolution of Crown Cetacea)
Show Figures

Figure 1

7 pages, 1380 KiB  
Communication
Humpback Whale Instigates Object Play with a Lion’s Mane Jellyfish
by Brendan D. Shea and Austin J. Gallagher
Oceans 2021, 2(2), 386-392; https://doi.org/10.3390/oceans2020022 - 24 May 2021
Cited by 3 | Viewed by 9679
Abstract
Cetaceans are well-known for their intelligence, charismatic nature, and curiosity. Many species, particularly odontocetes, are known to investigate and manipulate novel objects they encounter. Yet, disentangling the drivers of these behaviors and distinguishing between those that are simply playful and those which serve [...] Read more.
Cetaceans are well-known for their intelligence, charismatic nature, and curiosity. Many species, particularly odontocetes, are known to investigate and manipulate novel objects they encounter. Yet, disentangling the drivers of these behaviors and distinguishing between those that are simply playful and those which serve a specific function remains challenging due to a lack of direct observations and detailed descriptions of behaviors. This is particularly true for mysticetes such as humpback whales (Megaptera novaeangliae), as records of object use are far less common than in odontocetes. Here, we present evidence of novel object use from a first of its kind encounter between an individual humpback whale and a large lion’s mane jellyfish (Cyanea capillata) in the coastal waters off New England. We detail the interaction and discuss possible drivers for the behavior, with a focus on cetacean innovation, ectoparasite removal, and wound healing. Full article
Show Figures

Figure 1

Back to TopTop