Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = mycotoxin biomonitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2182 KB  
Article
Nixtamalization of Maize to Reduce Mycotoxin Exposure: A Human Biomonitoring Intervention Study in Soweto, South Africa
by Elias Maris, Palesa Ndlangamandla, Oluwasola A. Adelusi, Oluwakamisi F. Akinmoladun, Julianah O. Odukoya, Richard T. Fagbohun, Samson A. Oyeyinka, Palesa Sekhejane, Roger Pero-Gascon, Marthe De Boevre, Siska Croubels, Patrick B. Njobeh and Sarah De Saeger
Toxins 2025, 17(11), 527; https://doi.org/10.3390/toxins17110527 - 26 Oct 2025
Viewed by 769
Abstract
Mycotoxin contamination is a global threat to food safety and human health, especially in regions facing food insecurity, such as Sub-Saharan Africa. This intervention study evaluates the effectiveness of nixtamalization, a traditional alkaline cooking method, in reducing mycotoxin levels in maize and corresponding [...] Read more.
Mycotoxin contamination is a global threat to food safety and human health, especially in regions facing food insecurity, such as Sub-Saharan Africa. This intervention study evaluates the effectiveness of nixtamalization, a traditional alkaline cooking method, in reducing mycotoxin levels in maize and corresponding urinary biomarkers of exposure. Forty adult healthy volunteers from an informal settlement in Kliptown, Soweto (South Africa), were randomly assigned to consume control maize or visibly moldy maize subjected to nixtamalization. Nixtamalization achieved a reduction in fumonisin B3 and deoxynivalenol (DON) to unquantifiable or undetectable levels in maize, while reducing fumonisin B1 (FB1), fumonisin B2, and zearalenone (ZEN) by 95%, 95%, and 89%, respectively. Aflatoxin B1 was unquantifiable before and eliminated after treatment. Biomarker analysis revealed that after consumption of either control or nixtamalized maize, urinary levels of FB1, ZEN, and its metabolites α- and β-zearalenol (α- and β-ZEL) did not show significant differences between groups (p > 0.05). DON and tenuazonic acid levels were not affected by the intervention (p > 0.05), with urinary detection frequencies remaining above 90%. These results demonstrate nixtamalization effectively lowers mycotoxin levels in maize, resulting in exposure levels comparable to control maize, and highlight human biomonitoring as a sensitive tool for evaluating food safety interventions. Full article
(This article belongs to the Special Issue Mycotoxins in Food and Feeds: Human Health and Animal Nutrition)
Show Figures

Figure 1

21 pages, 394 KB  
Article
Urinary Biomonitoring of Mycotoxins in Spanish Adults: Predictors of Exposure and Health Risk Evaluation
by Borja Peris-Camarasa, Clara Coscollà, Pablo Dualde and Olga Pardo
Toxics 2025, 13(10), 856; https://doi.org/10.3390/toxics13100856 - 10 Oct 2025
Cited by 1 | Viewed by 506
Abstract
Mycotoxins are toxic secondary metabolites produced by fungi, frequently present in food and representing significant health hazards. Exposure occurs through the consumption of contaminated foods or animal-derived products from livestock fed with contaminated feed. This study evaluated internal exposure to twelve mycotoxins in [...] Read more.
Mycotoxins are toxic secondary metabolites produced by fungi, frequently present in food and representing significant health hazards. Exposure occurs through the consumption of contaminated foods or animal-derived products from livestock fed with contaminated feed. This study evaluated internal exposure to twelve mycotoxins in 492 first-morning urine samples from adults, aged 18–65 years, in the Valencian Community, Spain. Samples were analysed using a “dilute-and-shoot” approach followed by UHPLC-MS/MS. Aflatoxins (AFs) were the most frequently detected, with a geometric mean (GM) of 1.17 ng/mL and a 95th percentile (P95) of 6.04 ng/mL. Alternariol (AOH), present in 63% of samples, showed high concentrations (GM: 0.98 ng/mL; P95: 4.74 ng/mL). Emerging mycotoxins such as alternariol monomethyl ether (AME), citrinin (CIT), and sterigmatocystin (STER) were also considered due to their potential health impacts. Exposure levels correlated with variables including sex, age, annual income, smoking status, and recent consumption of meat and cereals. Probable daily intakes (PDIs) were estimated from urinary concentrations to support risk assessment. Hazard Quotients (HQs), Margins of Exposure (MOEs), the Hazard Index (HI) and the total Margin of Exposure (MOET) were calculated to evaluate the risk associated with mycotoxin exposure. Findings suggest that potential health risks cannot be excluded. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

33 pages, 953 KB  
Review
Aflatoxin Exposure in Immunocompromised Patients: Current State and Future Perspectives
by Temitope R. Fagbohun, Queenta Ngum Nji, Viola O. Okechukwu, Oluwasola A. Adelusi, Lungani A. Nyathi, Patience Awong and Patrick B. Njobeh
Toxins 2025, 17(8), 414; https://doi.org/10.3390/toxins17080414 - 16 Aug 2025
Viewed by 3209
Abstract
Aflatoxins (AFs), harmful secondary metabolites produced by the genus Aspergillus, particularly Aspergillus flavus and Aspergillus parasiticus, are one of the best-known potent mycotoxins, posing a significant risk to public health. The primary type, especially aflatoxin B1 (AFB1), is [...] Read more.
Aflatoxins (AFs), harmful secondary metabolites produced by the genus Aspergillus, particularly Aspergillus flavus and Aspergillus parasiticus, are one of the best-known potent mycotoxins, posing a significant risk to public health. The primary type, especially aflatoxin B1 (AFB1), is a potent carcinogen associated with liver cancer, immunosuppression, and other health problems. Environmental factors such as high temperatures, humidity, and inadequate storage conditions promote the formation of aflatoxin in staple foods such as maize, peanuts, and rice. Immunocompromised individuals, including those with HIV/AIDS, hepatitis, cancer, or diabetes, are at increased risk due to their reduced detoxification capacity and weakened immune defenses. Chronic exposure to AF in these populations exacerbates liver damage, infection rates, and disease progression, particularly in developing countries and moderate-income populations where food safety regulations are inadequate and reliance on contaminated staple foods is widespread. Biomarkers such as aflatoxin-albumin complexes, urinary aflatoxin M1, and aflatoxin (AF) DNA adducts provide valuable insights but remain underutilized in resource-limited settings. Despite the globally recognized health risk posed by AF, research focused on monitoring human exposure remains limited, particularly among immunocompromised individuals. This dynamic emphasizes the need for targeted studies and interventions to address the particular risks faced by immunocompromised individuals. This review provides an up-to-date overview of AF exposure in immunocompromised populations, including individuals with cancer, hepatitis, diabetes, malnutrition, pregnant women, and the elderly. It also highlights exposure pathways, biomarkers, and biomonitoring strategies, while emphasizing the need for targeted interventions, advanced diagnostics, and policy frameworks to mitigate health risks in these vulnerable groups. Addressing these gaps is crucial to reducing the health burden and developing public health strategies in high-risk regions. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

13 pages, 686 KB  
Article
Development and Validation of an HPLC-MS/MS Method for Quantifying Deoxynivalenol and Zearalenone Biomarkers in Dried Porcine Blood Spots
by Isadora Fabris Laber, Cristina Tonial Simões, Cristiane Rosa da Silva, Luara Medianeira de Lima Schlösser, Janine Alves Sarturi, Luriane Medianeira Carossi Leal, Renê Valmor Theobald and Carlos Augusto Mallmann
Chemosensors 2025, 13(8), 296; https://doi.org/10.3390/chemosensors13080296 - 9 Aug 2025
Viewed by 1148
Abstract
Deoxynivalenol (DON) and zearalenone (ZEN) are common mycotoxins in animal feeds, and their metabolites can be detected in exposed animals. Traditional methods focus on mycotoxin detection in feed, whereas biomarker-based approaches are used for evaluating individual exposure. This study aimed to develop and [...] Read more.
Deoxynivalenol (DON) and zearalenone (ZEN) are common mycotoxins in animal feeds, and their metabolites can be detected in exposed animals. Traditional methods focus on mycotoxin detection in feed, whereas biomarker-based approaches are used for evaluating individual exposure. This study aimed to develop and validate a multi-analyte method for the detection of biomarkers of ZEN, DON, and their metabolites α-zearalanol (α-ZAL), zearalanone (ZAN), deepoxy-DON (DOM-1), and 3-acetyl-DON (3-ADON) in swine using dried blood spots (DBSs) on qualitative filter paper. Analysis was performed using high-performance liquid chromatography–tandem mass spectrometry. Blank blood samples from three male pigs were fortified with 20, 40, and 60 μg/L of each analyte. Aliquots of 40 μL were spotted onto filter paper and then extracted and analyzed. Method validation included evaluating limits of detection and quantification, linearity, matrix effects, recovery, repeatability, intermediate precision, and selectivity. All analytes were detectable in DBS. Also, ZEN, ZAN, DON, and DOM-1 met all validation criteria, with recovery values of 89.10%, 79.79%, 101.50%, and 79.50%, respectively. Both α-ZAL and 3-ADON showed lower recoveries (74.66% and 58.66%). The method was successfully validated for simultaneous analysis of ZEN, ZAN, DON, and DOM-1 in swine DBS, offering a practical and minimally invasive tool for biomonitoring mycotoxin exposure. Full article
Show Figures

Figure 1

21 pages, 1623 KB  
Article
Derivation of Human Toxicokinetic Parameters and Chemical-Specific Adjustment Factor of Citrinin Through a Human Intervention Trial and Hierarchical Bayesian Population Modeling
by Lia Visintin, Camilla Martino, Sarah De Saeger, Eugenio Alladio, Marthe De Boevre and Weihsueh A. Chiu
Toxins 2025, 17(8), 382; https://doi.org/10.3390/toxins17080382 - 31 Jul 2025
Viewed by 932
Abstract
Background: Citrinin (CIT) is a mycotoxin produced by various fungi contaminating stored cereals and fruits. While biomonitoring and food occurrence data indicate widespread exposure, its public health risks remain unclear due to the lack of human toxicokinetic (TK) data. Methods: A UHPLC-MS/MS method [...] Read more.
Background: Citrinin (CIT) is a mycotoxin produced by various fungi contaminating stored cereals and fruits. While biomonitoring and food occurrence data indicate widespread exposure, its public health risks remain unclear due to the lack of human toxicokinetic (TK) data. Methods: A UHPLC-MS/MS method was validated for CIT quantification in capillary blood (VAMS Mitra® tips), feces, and urine obtaining LLOQs ≤ 0.05 ng/mL. A human TK study was conducted following a single oral bolus of 200 ng/kg bw CIT. Individual capillary blood (VAMS Mitra® tips), feces, and urine samples were collected for 48 h after exposure. Samples were analyzed to determine CIT’s TK profile. Results: TK modeling was performed using a multi-compartmental structure with a hierarchical Bayesian population approach, allowing robust parameter estimation despite the lack of standards for CIT metabolites. Conclusions: The derived TK parameters align with preliminary human data and significantly advance CIT exposure assessment via biomonitoring. A human inter-individual toxicokinetic variability (HKAF) of 1.92 was calculated based on the derived AUC, indicating that EFSA’s current default uncertainty factor for TK variability is adequately protective for at least 95% of the population. Full article
(This article belongs to the Special Issue Mycotoxins in Food and Feeds: Human Health and Animal Nutrition)
Show Figures

Figure 1

14 pages, 309 KB  
Article
Biomonitoring Pilot Surveys of Zearalenone in Breastmilk and the Urine of Children in Central Portugal
by Sofia Duarte, Inês Duarte, Myrella Duarte, Ana Paiva, Ricardo Cabeças, Liliana J. G. Silva, André M. P. T. Pereira, Celeste Lino and Angelina Pena
Toxins 2025, 17(4), 162; https://doi.org/10.3390/toxins17040162 - 25 Mar 2025
Cited by 1 | Viewed by 864
Abstract
Zearalenone (ZEA) is a mycotoxin that acts primarily as an endocrine disruptor. Biomonitoring studies are needed to assess exposure and risk, particularly among vulnerable groups. This study reports two pilot biomonitoring surveys of ZEA in 38 lactating mothers and 42 children (5–12 years [...] Read more.
Zearalenone (ZEA) is a mycotoxin that acts primarily as an endocrine disruptor. Biomonitoring studies are needed to assess exposure and risk, particularly among vulnerable groups. This study reports two pilot biomonitoring surveys of ZEA in 38 lactating mothers and 42 children (5–12 years old). Both were associated with a questionnaire to collect data on the sociodemographics and eating habits of the participants. About 76% of urine samples were contaminated (188.12 ± 235.99 ng/mL), with the hazard quotient reaching 2.36 in the worst-case scenario for younger children. Of the analyzed breastmilk samples, 55.26% were contaminated (158.26 ± 77.50). A statistically significant association between ZEA contamination of breastmilk and the maternal consumption of wholemeal bread, cereal flakes, sausages, smoked meat and pork was found, suggesting that these foods are determinants of higher exposure. The hazard quotient in the worst-case scenario for breastfed babies under 16 weeks was estimated as 0.61. Results confirm frequent exposure to this endocrine disruptor among these two vulnerable groups in central Portugal, showing the need for further studies. Full article
(This article belongs to the Special Issue Mycotoxins—Biomonitoring and Exposure)
18 pages, 1379 KB  
Review
Recent Progress of Mycotoxin in Various Food Products—Human Exposure and Health Risk Assessment
by Kailin Li, Hua Cai, Baozhang Luo, Shenggang Duan, Jingjin Yang, Nan Zhang, Yi He, Aibo Wu and Hong Liu
Foods 2025, 14(5), 865; https://doi.org/10.3390/foods14050865 - 3 Mar 2025
Cited by 10 | Viewed by 4529
Abstract
Mycotoxins, as prevalent contaminants in the food chain, exhibit diverse toxicological effects on both animals and humans. Chronic dietary exposure to mycotoxin-contaminated foods may result in the bioaccumulation of these toxins, posing substantial public health risks. This review systematically examines the contamination patterns [...] Read more.
Mycotoxins, as prevalent contaminants in the food chain, exhibit diverse toxicological effects on both animals and humans. Chronic dietary exposure to mycotoxin-contaminated foods may result in the bioaccumulation of these toxins, posing substantial public health risks. This review systematically examines the contamination patterns of mycotoxins across major food categories, including cereals and related products, animal-derived foods, fruits, and medical food materials. Furthermore, we critically evaluated two methodological frameworks for assessing mycotoxin exposure risks: (1) dietary exposure models integrating contamination levels and consumption data and (2) human biomonitoring approaches quantifying mycotoxin biomarkers in biological samples. A key contribution lies in the stratified analysis of exposure disparities among population subgroups (adults, teenagers, children, and infants). Additionally, we summarize current research on the relationship between human mycotoxin biomonitoring and associated health impacts, with a particular emphasis on vulnerable groups such as pregnant women and infants. By elucidating the challenges inherent in existing studies, this synthesis provides a roadmap for advancing risk characterization and evidence-based food safety interventions. Full article
(This article belongs to the Special Issue Fusarium Species and Their Mycotoxins in Cereal Food)
Show Figures

Figure 1

16 pages, 2389 KB  
Article
Deoxynivalenol and Alternaria Toxin Exposure and Health Effects Assessment of Pregnant Shanghai Women
by Kailin Li, Baozhang Luo, Hua Cai, Renjie Qi, Zhenni Zhu, Yi He, Aibo Wu and Hong Liu
Foods 2025, 14(5), 776; https://doi.org/10.3390/foods14050776 - 25 Feb 2025
Cited by 1 | Viewed by 1135
Abstract
Deoxynivalenol (DON) and Alternaria toxins (ATs) are two common types of mycotoxins in food. Although they are physiologically toxic to animals and various cell lines, data related to the exposure risks and health effects in the human population were still limited, especially for [...] Read more.
Deoxynivalenol (DON) and Alternaria toxins (ATs) are two common types of mycotoxins in food. Although they are physiologically toxic to animals and various cell lines, data related to the exposure risks and health effects in the human population were still limited, especially for ATs. In this study, we combined food consumption data and human biomonitoring data of 200 pregnant volunteers from different districts of Shanghai to assess the exposure to DON and ATs. In addition, correlations between food consumption and urinary DON and ATs levels, urine biomarkers, and blood indexes were analyzed by regression analysis. For DON, the exposure assessment of the probable daily intake (PDI) indicated that a portion (37.5%) of all participants exceeded the Tolerable Daily Intake (TDI) proposed for DON. For ATs, the PDI values estimated based on the urinary concentrations indicated that 2–100% of all participants exceeded the threshold of toxicological concern (TTC) values for ATs. In addition, we innovatively found some associations between exposure to ATs and abnormal uric acid and high-density lipoprotein cholesterol indexes by regression analysis. Despite the inevitable uncertainties, these results make an important contribution to the understanding of DON and ATs exposure risks and potential health hazards in the pregnant women population. Full article
(This article belongs to the Special Issue Research on Food Chemical Safety)
Show Figures

Graphical abstract

14 pages, 1690 KB  
Article
Metabolomic Profiling of Human Urine Related to Mycotoxin Exposure
by Nuria Dasí-Navarro, Sonia Lombardi, Pilar Vila-Donat, Sabrina Llop, Jesus Vioque, Raquel Soler-Blasco, Ana Esplugues, Lara Manyes and Manuel Lozano
Toxins 2025, 17(2), 75; https://doi.org/10.3390/toxins17020075 - 8 Feb 2025
Cited by 1 | Viewed by 1682
Abstract
Human exposure to mycotoxins is a global concern since several mycotoxins, such as enniatins and aflatoxins, have shown carcinogenic and neurotoxic effects, and the toxicologic mechanisms of most of them still need to be clarified. This study aims to investigate the metabolic pathways [...] Read more.
Human exposure to mycotoxins is a global concern since several mycotoxins, such as enniatins and aflatoxins, have shown carcinogenic and neurotoxic effects, and the toxicologic mechanisms of most of them still need to be clarified. This study aims to investigate the metabolic pathways affected by mycotoxin exposure by evaluating metabolite alterations in urine. The participants were 540 women from the Spanish Childhood and Environment Project (INMA). For metabolite identification, a dilute and shoot extraction, followed by HPLC-Q-TOF-MS identification analysis, was performed. Data were processed using Agilent Mass Hunter Workstation with the METLIN database, Agilent Mass Profiler Professional 10.0, and Metaboanalyst 6.0. Over 2000 metabolites were obtained in each sample after feature extraction, and the most significant metabolites (p-value ≤ 0.05, fold change ≥ 2.0) were considered for pathway analysis. Enrichment analysis and topology showed that the most significantly affected pathway was the biosynthesis of unsaturated fatty acids (adjusted p-value = 0.007), with four metabolomic hits associated: linoleic acid, octadecanoic acid/stearic acid, an arachidonic acid metabolite, and (9Z)-octadecenoic acid/oleic acid. Other related pathways (unadjusted p-value ≤ 0.1) included fatty acid biosynthesis, glycerophospholipid metabolism, and ether lipid metabolism. The present study highlights the importance of metabolomics in increasing knowledge of the toxicity mechanisms and health effects of mycotoxins, especially emerging ones. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

15 pages, 646 KB  
Article
Validation of a UPLC-MS/MS Method for Multi-Matrix Biomonitoring of Alternaria Toxins in Humans
by Lia Visintin, María García Nicolás, Sarah De Saeger and Marthe De Boevre
Toxins 2024, 16(7), 296; https://doi.org/10.3390/toxins16070296 - 28 Jun 2024
Cited by 3 | Viewed by 2202
Abstract
Mycotoxins, natural toxins produced by fungi, contaminate nearly 80% of global food crops. Alternaria mycotoxins, including alternariol (AOH), alternariol monomethylether (AME), and tenuazonic acid (TeA), present a health concern due to their prevalence in various plants and fruits. Exposure to these toxins exceeds [...] Read more.
Mycotoxins, natural toxins produced by fungi, contaminate nearly 80% of global food crops. Alternaria mycotoxins, including alternariol (AOH), alternariol monomethylether (AME), and tenuazonic acid (TeA), present a health concern due to their prevalence in various plants and fruits. Exposure to these toxins exceeds the threshold of toxicological concern in some European populations, especially infants and toddlers. Despite this, regulatory standards for Alternaria toxins remain absent. The lack of toxicokinetic parameters, reference levels, and sensitive detection methods complicates risk assessment and highlights the necessity for advanced biomonitoring (HBM) techniques. This study addresses these challenges by developing and validating ultra-high performance liquid chromatography method coupled with tandem mass spectrometry to quantify AOH, AME, TeA, and their conjugates in multiple biological matrices. The validated method demonstrates robust linearity, precision, recovery (94–111%), and sensitivity across urine (LOD < 0.053 ng/mL), capillary blood (LOD < 0.029 ng/mL), and feces (LOD < 0.424 ng/g), with significantly lower LOD for TeA compared to existing methodologies. The application of minimally invasive microsampling techniques for the blood collection enhances the potential for large-scale HBM studies. These advancements represent a step toward comprehensive HBM and exposure risk assessments for Alternaria toxins, facilitating the generation of data for regulatory authorities. Full article
(This article belongs to the Special Issue Multi Methods for Detecting Natural Toxins)
Show Figures

Graphical abstract

19 pages, 878 KB  
Article
Assessment of Mycotoxin Exposure and Associated Risk in Pregnant Dutch Women: The Human Biomonitoring Approach
by Hannah P. McKeon, Marloes A. A. Schepens, Annick D. van den Brand, Marjolein H. de Jong, Marleen M. H. J. van Gelder, Marijn L. Hesselink, Marta M. Sopel and Marcel J. B. Mengelers
Toxins 2024, 16(6), 278; https://doi.org/10.3390/toxins16060278 - 18 Jun 2024
Cited by 3 | Viewed by 2970
Abstract
Mycotoxins are toxic secondary metabolites produced by various fungi that can contaminate food crops, which, in turn, may lead to human exposure. Chronic exposure to mycotoxins can cause adverse health effects including reproductive and developmental toxicity. Pregnant women and their foetuses present a [...] Read more.
Mycotoxins are toxic secondary metabolites produced by various fungi that can contaminate food crops, which, in turn, may lead to human exposure. Chronic exposure to mycotoxins can cause adverse health effects including reproductive and developmental toxicity. Pregnant women and their foetuses present a vulnerable group for exposure to mycotoxins that can cross the placenta. Human biomonitoring of mycotoxins provides a real-life approach to estimate internal exposure. In this pilot study, 24-h urine samples from 36 pregnant Dutch women were analysed for aflatoxin M1 (AFM1), total deoxynivalenol (DON), de-epoxy-deoxynivalenol (DOM-1), total zearalenone (ZEN), total α-zearalenol (α-ZEL), total β-zearalenol (β-ZEL) and total zearalanone (ZAN), where ‘total’ refers to mycotoxins and their conjugated forms. Serum samples from these women were analysed for fumonisin B1 (FB1) and ochratoxin A (OTA). All samples were measured using liquid chromatography–tandem mass spectrometry (LC-MS/MS). The most prevalent mycotoxins were total DON, total ZEN and OTA, with a detection frequency of 100%. DOM-1, total α-ZEL and total β-ZEL were detected but to a lesser extent, while AFM1, total ZAN and FB1 were undetected. Median concentrations were 4.75 μg total DON/L, 0.0350 μg DOM-1/L, 0.0413 μg total ZEN/L, 0.0379 μg total α-ZEL/L, 0.0189 μg total β-ZEL/L, and 0.121 μg OTA/L. The calculated median concentration for total ZEN and its metabolites was 0.105 μg/L. Based on two separate risk assessment approaches, total DON exposure in this group was considered to be of low concern. Similarly, exposure to total ZEN and its metabolites in this group was of low concern. For OTA, the risk of non-neoplastic effects was of low concern based on exposure in this group, and the risk of neoplastic effects was of low concern in the majority of participants in this group. The findings of this pilot study confirm the presence of mycotoxins in the urine and serum of pregnant Dutch women, with total DON, total ZEN, and OTA most frequently detected. Exposure to all measured mycotoxins was considered to be of low concern in this group, except for exposure to OTA, which was of low concern for the majority of participants. The study’s findings offer valuable insights but should be confirmed using a larger and more diverse sample of the Dutch general population. Full article
(This article belongs to the Special Issue Mycotoxins: Risk Assessment, Biomonitoring and Toxicology)
Show Figures

Figure 1

19 pages, 3347 KB  
Article
High-Coverage UHPLC-MS/MS Analysis of 67 Mycotoxins in Plasma for Male Infertility Exposure Studies
by Xiao Ning, Lulu Wang, Jia-Sheng Wang, Jian Ji, Shaoming Jin, Jiadi Sun, Yongli Ye, Shenghui Mei, Yinzhi Zhang, Jin Cao and Xiulan Sun
Toxics 2024, 12(6), 395; https://doi.org/10.3390/toxics12060395 - 28 May 2024
Cited by 9 | Viewed by 2331
Abstract
Mycotoxins are a class of exogenous metabolites that are major contributors to foodborne diseases and pose a potential threat to human health. However, little attention has been paid to trace mycotoxin co-exposure situations in vivo. To address this, we devised a novel analytical [...] Read more.
Mycotoxins are a class of exogenous metabolites that are major contributors to foodborne diseases and pose a potential threat to human health. However, little attention has been paid to trace mycotoxin co-exposure situations in vivo. To address this, we devised a novel analytical strategy, both highly sensitive and comprehensive, for quantifying 67 mycotoxins in human plasma samples. This method employs isotope dilution mass spectrometry (IDMS) for approximately 40% of the analytes and utilizes internal standard quantification for the rest. The mycotoxins were classified into three categories according to their physicochemical properties, facilitating the optimization of extraction and detection parameters to improve analytical performance. The lowest limits of detection and quantitation were 0.001–0.5 μg/L and 0.002–1 μg/L, respectively, the intra-day precision ranged from 1.8% to 11.9% RSD, and the intra-day trueness ranged from 82.7–116.6% for all mycotoxins except Ecl, DH-LYS, PCA, and EnA (66.4–129.8%), showing good analytical performance of the method for biomonitoring. A total of 40 mycotoxins (including 24 emerging mycotoxins) were detected in 184 plasma samples (89 from infertile males and 95 from healthy males) using the proposed method, emphasizing the widespread exposure of humans to both traditional and emerging mycotoxins. The most frequently detected mycotoxins were ochratoxin A, ochratoxin B, enniatin B, and citrinin. The incidence of exposure to multiple mycotoxins was significantly higher in infertile males than in healthy subjects, particularly levels of ochratoxin A, ochratoxin B, and citrinin, which were significantly increased. It is necessary to carry out more extensive biological monitoring to provide data support for further study of the relationship between mycotoxins and male infertility. Full article
(This article belongs to the Special Issue State-of-the-Art Environmental Chemicals Exposomics and Metabolomics)
Show Figures

Figure 1

13 pages, 1176 KB  
Article
Frequent Dietary Multi-Mycotoxin Exposure in UK Children and Its Association with Dietary Intake
by Praosiri Charusalaipong, Margaret-Jane Gordon, Louise Cantlay, Nicosha De Souza, Graham W. Horgan, Ruth Bates and Silvia W. Gratz
Toxins 2024, 16(6), 251; https://doi.org/10.3390/toxins16060251 - 28 May 2024
Cited by 6 | Viewed by 2316
Abstract
Mycotoxins are potent fungal toxins that frequently contaminate agricultural crops and foods. Mycotoxin exposure is frequently reported in humans, and children are known to be particularly at risk of exceeding safe levels of exposure. Urinary biomonitoring is used to assess overall dietary exposure [...] Read more.
Mycotoxins are potent fungal toxins that frequently contaminate agricultural crops and foods. Mycotoxin exposure is frequently reported in humans, and children are known to be particularly at risk of exceeding safe levels of exposure. Urinary biomonitoring is used to assess overall dietary exposure to multiple mycotoxins. This study aims to quantify multi-mycotoxin exposure in UK children and to identify major food groups contributing to exposure. Four repeat urine samples were collected from 29 children (13 boys and 16 girls, aged 2.4–6.8 years), and food diaries were recorded to assess their exposure to eleven mycotoxins. Urine samples (n = 114) were hydrolysed with β-glucuronidase, enriched through immunoaffinity columns and analysed by LC-MS/MS for deoxynivalenol (DON), nivalenol (NIV), T-2/HT-2 toxins, zearalenone (ZEN), ochratoxin A (OTA) and aflatoxins. Food diaries were analysed using WinDiet software, and the daily intake of high-risk foods for mycotoxin contamination summarised. The most prevalent mycotoxins found in urine samples were DON (95.6% of all samples), OTA (88.6%), HT-2 toxin (53.5%), ZEN (48.2%) and NIV (26.3%). Intake of total cereal-based foods was strongly positively associated with urinary levels of DON and T-2/HT-2 and oat intake with urinary T-2/HT-2. Average daily mycotoxin excretion ranged from 12.10 µg/d (DON) to 0.03 µg/d (OTA), and co-exposure to three or more mycotoxins was found in 66% of samples. Comparing mycotoxin intake estimates to tolerable daily intakes (TDI) demonstrates frequent TDI exceedances (DON 34.2% of all samples, T-2/HT-2 14.9%, NIV 4.4% and ZEN 5.2%). OTA was frequently detected at low levels. When mean daily OTA intake was compared to the reference value for non-neoplastic lesions, the resulting Margin of Exposure (MoE) of 65 was narrow, indicating a health concern. In conclusion, this study demonstrates frequent exposure of UK children to multiple mycotoxins at levels high enough to pose a health concern if exposure is continuous. Full article
(This article belongs to the Special Issue Human Biomonitoring and Risk Assessment of Mycotoxins)
Show Figures

Figure 1

38 pages, 4239 KB  
Review
Monitoring Mycotoxin Exposure in Food-Producing Animals (Cattle, Pig, Poultry, and Sheep)
by Borja Muñoz-Solano, Elena Lizarraga Pérez and Elena González-Peñas
Toxins 2024, 16(5), 218; https://doi.org/10.3390/toxins16050218 - 9 May 2024
Cited by 22 | Viewed by 5750
Abstract
Food-producing animals are exposed to mycotoxins through ingestion, inhalation, or dermal contact with contaminated materials. This exposure can lead to serious consequences for animal health, affects the cost and quality of livestock production, and can even impact human health through foods of animal [...] Read more.
Food-producing animals are exposed to mycotoxins through ingestion, inhalation, or dermal contact with contaminated materials. This exposure can lead to serious consequences for animal health, affects the cost and quality of livestock production, and can even impact human health through foods of animal origin. Therefore, controlling mycotoxin exposure in animals is of utmost importance. A systematic literature search was conducted in this study to retrieve the results of monitoring exposure to mycotoxins in food-producing animals over the last five years (2019–2023), considering both external exposure (analysis of feed) and internal exposure (analysis of biomarkers in biological matrices). The most commonly used analytical technique for both approaches is LC-MS/MS due to its capability for multidetection. Several mycotoxins, especially those that are regulated (ochratoxin A, zearalenone, deoxynivalenol, aflatoxins, fumonisins, T-2, and HT-2), along with some emerging mycotoxins (sterigmatocystin, nivalenol, beauvericin, enniantins among others), were studied in 13,818 feed samples worldwide and were typically detected at low levels, although they occasionally exceeded regulatory levels. The occurrence of multiple exposure is widespread. Regarding animal biomonitoring, the primary objective of the studies retrieved was to study mycotoxin metabolism after toxin administration. Some compounds have been suggested as biomarkers of exposure in the plasma, urine, and feces of animal species such as pigs and poultry. However, further research is required, including many other mycotoxins and animal species, such as cattle and sheep. Full article
(This article belongs to the Special Issue Mycotoxins: Risk Assessment, Biomonitoring and Toxicology)
Show Figures

Graphical abstract

13 pages, 501 KB  
Article
Human Biomonitoring Guidance Values for Deoxynivalenol Derived under the European Human Biomonitoring Initiative (HBM4EU)
by Marcel J. B. Mengelers, Annick D. van den Brand, Shensheng Zhao, Rudolf Hoogenveen and Eva Ougier
Toxins 2024, 16(3), 139; https://doi.org/10.3390/toxins16030139 - 7 Mar 2024
Cited by 6 | Viewed by 2426
Abstract
The mycotoxin deoxynivalenol (DON) was one of the priority substances in the European Joint Human Biomonitoring Initiative (HBM4EU) project. In this study, to better interpret the actual internal exposure of DON in the general population and safeguard public health, human biomonitoring guidance values [...] Read more.
The mycotoxin deoxynivalenol (DON) was one of the priority substances in the European Joint Human Biomonitoring Initiative (HBM4EU) project. In this study, to better interpret the actual internal exposure of DON in the general population and safeguard public health, human biomonitoring guidance values of DON for the general population (HBM-GVGenPop) were derived. The HBM-GVGenPop of DON was based on either the total DON (DON and its glucuronides) or DON’s main metabolite (DON-15-GlcA) levels in 24-h urine samples, resulting in a HBM-GVGenPop of 0.023 µg/mL for the total DON or a HBM-GVGenPop of 0.020 µg/mL for DON-15-GlcA. The use of 24-h urine samples is recommended based on the fact that DON and its metabolites have a short elimination half-life (T1/2), and 95% of the cumulative amount was excreted within 12 h after DON intake. The T1/2 for DON, DON-15-GlcA, and total DON were estimated to be 2.55 h, 2.95 h, and 2.95 h, respectively. Therefore, a 24-h urine sample reflects almost all of the DON exposure from the previous day, and this type of sample was considered for the derivation of a HBM-GVGenPop for DON. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

Back to TopTop