Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = mutant prevention concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3139 KiB  
Article
Distinctive Effects of Fullerene C60 and Fullerenol C60(OH)24 Nanoparticles on Histological, Molecular and Behavioral Hallmarks of Alzheimer’s Disease in APPswe/PS1E9 Mice
by Sholpan Askarova, Kseniia Sitdikova, Aliya Kassenova, Kirill Chaprov, Evgeniy Svirin, Andrey Tsoy, Johannes de Munter, Anna Gorlova, Aleksandr Litavrin, Aleksei Deikin, Andrey Nedorubov, Nurbol Appazov, Allan Kalueff, Anton Chernopiatko and Tatyana Strekalova
Antioxidants 2025, 14(7), 834; https://doi.org/10.3390/antiox14070834 - 8 Jul 2025
Viewed by 655
Abstract
Fullerenes and fullerenols exhibit antioxidant and anti-inflammatory properties, making them promising candidates for Alzheimer’s disease (AD) therapy. Unlike conventional anti-inflammatory drugs, these compounds have multitargeted effects, including their ability to inhibit amyloid fibril formation. However, few studies have explored their efficacy in high-validity [...] Read more.
Fullerenes and fullerenols exhibit antioxidant and anti-inflammatory properties, making them promising candidates for Alzheimer’s disease (AD) therapy. Unlike conventional anti-inflammatory drugs, these compounds have multitargeted effects, including their ability to inhibit amyloid fibril formation. However, few studies have explored their efficacy in high-validity AD models. Female APPswe/PS1E9 (APP/PS1) mice and their wild-type (WT) littermates were orally administered with fullerene C60 (0.1 mg/kg/day) or fullerenol C60(OH)24 (0.15 mg/kg/day) for 10 months starting at 2 months of age. Behavioral assessments were performed at 12 months of age. Amyloid plaque density and size were analyzed in the brain regions using Congo red staining. The expression of genes related to inflammation and plasticity was examined, and an in vitro assay was used to test the toxicity of fullerenol and its effect on amyloid β peptide 42 (Aβ42)-induced reactive oxygen species (ROS) production. Fullerenol reduced the maximum plaque size in the cortex and hippocampus, decreased the small plaque density in the hippocampus and thalamus, and prevented an increase in glial fibrillary acidic protein (GFAP) positive cell density in the mutants. Both treatments improved cognitive and emotional behaviors and reduced Il1β and increased Sirt1 expression. In vitro, fullerenol was non-toxic across a range of concentrations and reduced Aβ42-induced ROS production in brain endothelial cells and astrocytes. Long-term administration of fullerene or fullerenol improved behavioral and molecular markers of AD in APP/PS1 mice, with fullerenol showing additional benefits in reducing amyloid burden. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

14 pages, 3662 KiB  
Article
A Study on the Temperature-Dependent Behavior of Small Heat Shock Proteins from Methanogens
by Nina Kurokawa, Mima Ogawa, Rio Midorikawa, Arisa Kanno, Wakaba Naka, Keiichi Noguchi, Ken Morishima, Rintaro Inoue, Masaaki Sugiyama and Masafumi Yohda
Int. J. Mol. Sci. 2025, 26(12), 5748; https://doi.org/10.3390/ijms26125748 - 16 Jun 2025
Viewed by 286
Abstract
Small heat shock proteins (sHsps) are ubiquitous low-molecular-weight chaperones that prevent protein aggregation under cellular stress conditions. In the absence of stress, they assemble into large oligomers. In response to stress, such as elevated temperatures, they undergo conformational changes that expose hydrophobic surfaces, [...] Read more.
Small heat shock proteins (sHsps) are ubiquitous low-molecular-weight chaperones that prevent protein aggregation under cellular stress conditions. In the absence of stress, they assemble into large oligomers. In response to stress, such as elevated temperatures, they undergo conformational changes that expose hydrophobic surfaces, allowing them to interact with denatured proteins. At heat shock temperatures in bacteria, large sHsp oligomers disassemble into smaller oligomeric forms. Methanogens are a diverse group of microorganisms, ranging from thermophilic to psychrophilic and halophilic species. Accordingly, their sHsps exhibit markedly different temperature dependencies based on their optimal growth temperatures. In this study, we characterized sHsps from both hyperthermophilic and mesophilic methanogens to investigate the mechanisms underlying their temperature-dependent behavior. Using analytical ultracentrifugation, we observed the dissociation of sHsps from a mesophilic methanogen into dimers. The dissociation equilibrium of these oligomers was found to be dependent not only on temperature but also on protein concentration. Furthermore, by generating various mutants, we identified the specific amino acid residues responsible for the temperature dependency observed. The C-terminal region containing the IXI/V motif and the α-crystallin domain were found to be the primary determinants of oligomer stability and its temperature dependence. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Japan)
Show Figures

Figure 1

25 pages, 2451 KiB  
Article
Age-Related Increases in PDE11A4 Protein Expression Trigger Liquid–Liquid Phase Separation (LLPS) of the Enzyme That Can Be Reversed by PDE11A4 Small Molecule Inhibitors
by Elvis Amurrio, Janvi H. Patel, Marie Danaher, Madison Goodwin, Porschderek Kargbo, Eliska Klimentova, Sonia Lin and Michy P. Kelly
Cells 2025, 14(12), 897; https://doi.org/10.3390/cells14120897 - 13 Jun 2025
Viewed by 1003
Abstract
PDE11A is a little-studied phosphodiesterase sub-family that breaks down cAMP/cGMP, with the PDE11A4 isoform enriched in the memory-related hippocampal formation. Age-related increases in PDE11A expression occur in human and rodent hippocampus and cause age-related cognitive decline of social memories. Interestingly, age-related increases in [...] Read more.
PDE11A is a little-studied phosphodiesterase sub-family that breaks down cAMP/cGMP, with the PDE11A4 isoform enriched in the memory-related hippocampal formation. Age-related increases in PDE11A expression occur in human and rodent hippocampus and cause age-related cognitive decline of social memories. Interestingly, age-related increases in PDE11A4 protein ectopically accumulate in spherical clusters that group together in the brain to form linear filamentous patterns termed “PDE11A4 ghost axons”. The biophysical/physiochemical mechanisms underlying this age-related clustering are not known. Here, we determine if age-related clustering of PDE11A4 reflects liquid–liquid phase separation (LLPS; biomolecular condensation), and if PDE11A inhibitors can reverse this LLPS. We show human and mouse PDE11A4 exhibit several LLPS-promoting sequence features, including intrinsically disordered regions, non-covalent pi–pi interactions, and prion-like domains that were particularly enriched in the N-terminal regulatory region. Further, multiple bioinformatic tools predict PDE11A4 undergoes LLPS. Consistent with these predictions, aging-like PDE11A4 clusters in HT22 hippocampal neuronal cells were membraneless spherical droplets that progressively fuse over time in a concentration-dependent manner. Deletion of the N-terminal intrinsically disordered region prevented PDE11A4 LLPS despite equal protein expression between WT and mutant constructs. 1,6-hexanediol, along with tadalafil and BC11-38 that inhibit PDE11A4, reversed PDE11A4 LLPS in HT22 hippocampal neuronal cells. Interestingly, PDE11A4 inhibitors reverse PDE11A4 LLPS independently of increasing cAMP/cGMP levels via catalytic inhibition. Importantly, orally dosed tadalafil reduced PDE11A4 ghost axons in old mouse ventral hippocampus by 50%. Thus, PDE11A4 exhibits the four defining criteria of LLPS, and PDE11A inhibitors reverse this age-related phenotype both in vitro and in vivo. Full article
Show Figures

Figure 1

25 pages, 5557 KiB  
Article
Evaluation of the Effects of the Quaternary Ammonium Silane K21 on Zebrafish Viability, Toxicity, Growth, and Development
by Surendra K. Rajpurohit, Devan Anmol S. Manhiani, Ashwin Ajith, Pragya Rajpurohit, Simran Hotwani, Sai Nasanally, Arsha Sreekumar, Keshu Bhat, Aiden Van Derhei, Rohan Pasi, Arishia Mishra, Kirk Kimmerling and Clifton M. Carey
Biomedicines 2025, 13(6), 1267; https://doi.org/10.3390/biomedicines13061267 - 22 May 2025
Viewed by 3507
Abstract
Background: The FDA-cleared antimicrobial quaternary ammonium silane K21 is recognized for its antimicrobial properties. This study explored potential applications of the K21 molecule in human health protection, disease prevention, and treatment using the zebrafish model. Method: A multi-dimensional approach was utilized [...] Read more.
Background: The FDA-cleared antimicrobial quaternary ammonium silane K21 is recognized for its antimicrobial properties. This study explored potential applications of the K21 molecule in human health protection, disease prevention, and treatment using the zebrafish model. Method: A multi-dimensional approach was utilized to assess the toxicity, tolerance, and optimal dosage of K21 through serial dilutions at various concentrations. Acute and chronic exposure studies were performed at different developmental stages (embryonic, larval, juvenile, and adult) to evaluate its efficacy and toxicity in wild-type (WT), Casper (transparent skin mutant), and transgenic zebrafish lines. Results: Significant weight gain was observed in the F1 generation following K21 treatment, a trend that continued into the F2 and F3 generations. The effects of K21 on lipopolysaccharide-induced inflammation were also examined in Casper NFkB:GFP transgenic lines. Treatment with K21 reduced inflammation, indicating anti-inflammatory properties. Improved hatching rates, accelerated larval development, an increased adult mass, and modest reductions in embryonic motility (less than 20%) suggested positive developmental influences. Single-cell RNA sequencing further validated the biological impacts of K21, revealing the potential activation of a novel pathway that accelerates zebrafish growth. Summary and Conclusions: These findings position K21 as a promising candidate for biomedical applications and aquaculture, warranting further investigation into its underlying molecular mechanisms. Our additional study on the effect of K21 on the artemia (brine shrimp) hatching process provide strong evidence of better hatching ratio of 90% for brine shrimp in the group with K21 drug treatment as compared to 70% in the group without the K21 drug at 24 h of treatment; the K21 drug helps the early hatching process, as observed the 90% hatching rate in 20 h K21 treatment group hatching while in the group without K21, only 40% of brine shrimps hatched. Full article
(This article belongs to the Special Issue Advances in Novel Drug Discovery, Synthesis, and Evaluation)
Show Figures

Figure 1

17 pages, 268 KiB  
Article
Effects of Comparative Killing by Pradofloxacin and Seven Other Antimicrobials Against Varying Bacterial Densities of Swine Isolates of Pasteurella multocida
by Joseph M. Blondeau and Shantelle D. Fitch
Microorganisms 2025, 13(2), 221; https://doi.org/10.3390/microorganisms13020221 - 21 Jan 2025
Viewed by 913
Abstract
Bacterial killing is important for recovering from infection. Pasteurella multocida is a key bacterial pathogen causing swine respiratory disease and is associated with substantial mortality. Antimicrobial therapy remains an important therapeutic intervention for treating infected animals. Pradofloxacin (fluoroquinolone) is the most recently approved [...] Read more.
Bacterial killing is important for recovering from infection. Pasteurella multocida is a key bacterial pathogen causing swine respiratory disease and is associated with substantial mortality. Antimicrobial therapy remains an important therapeutic intervention for treating infected animals. Pradofloxacin (fluoroquinolone) is the most recently approved antimicrobial agent for treating pigs with swine respiratory disease. We compared in vitro killing of swine P. multocida strains by pradofloxacin in comparison to ceftiofur, enrofloxacin, florfenicol, marbofloxacin, tildipirosin, tilmicosin, and tulathromycin over a range of bacterial densities and four clinically relevant drug concentrations. Pradofloxacin killed 92–96.9% of cells across 106–108 cfu/mL densities at the mutant prevention drug concentration following 2–24 h of drug exposure, 96.9–98.9% of cells across 106–109 cfu/mL at the maximum serum drug concentration following 30 min of drug exposure, increasing to 99.9–100% kill following 12–24 h of drug exposure. At the maximum tissue drug concentration and against bacterial densities of 106–109 cfu/mL, pradofloxacin killed 91.3–99.8% of cells following 2 h of drug exposure, which increased to 99.9–100% kill following 12–24 h of drug exposure. Pradofloxacin was rapidly bactericidal across a range of bacterial densities and at clinically relevant drug concentrations. Pradofloxacin will be an important antibiotic for treating pigs with swine respiratory disease and where clinically indicated. Full article
(This article belongs to the Special Issue Advances in Veterinary Microbiology)
19 pages, 1793 KiB  
Article
Cyclic Peptide MV6, an Aminoglycoside Efficacy Enhancer Against Acinetobacter baumannii
by Natalia Roson-Calero, Jimmy Lucas, María A. Gomis-Font, Roger de Pedro-Jové, Antonio Oliver, Clara Ballesté-Delpierre and Jordi Vila
Antibiotics 2024, 13(12), 1147; https://doi.org/10.3390/antibiotics13121147 - 1 Dec 2024
Cited by 3 | Viewed by 1517 | Correction
Abstract
Background/Objectives: Acinetobacter baumannii is a globally emerging pathogen with widespread antimicrobial resistance driven by multiple mechanisms, such as altered expression of efflux pumps like AdeABC, placing it as a priority for research. Driven by the lack of new treatments, alternative approaches are [...] Read more.
Background/Objectives: Acinetobacter baumannii is a globally emerging pathogen with widespread antimicrobial resistance driven by multiple mechanisms, such as altered expression of efflux pumps like AdeABC, placing it as a priority for research. Driven by the lack of new treatments, alternative approaches are being explored to combat its infections, among which efficacy-enhancing adjuvants can be found. This study presents and characterizes MV6, a synthetic cyclic peptide that boosts aminoglycoside efficacy. Methods: MV6’s activity was assessed through antimicrobial susceptibility testing in combination with different antibiotic classes against A. baumannii strains characterized by PCR and RT-qPCR. PAβN served as a reference efflux pump inhibitor. Synergy was evaluated using checkerboard assays, and spontaneous mutants were generated with netilmicin with/without MV6 (100 mg/L). Whole-genome sequencing and variant calling analysis were then performed. Results: MV6 presented low antimicrobial activity in A. baumannii with MICs higher than 2048 mg/L. MV6 showed a better boosting effect for aminoglycosides, especially netilmicin, exceeding that of PAβN. Checkerboard assays confirmed a strong synergy between netilmicin and MV6, and a significant correlation was found between netilmicin MIC and adeB overexpression, which was mitigated by the presence of MV6. MV6 reduced, by 16-fold, the mutant prevention concentration of netilmicin. Mutations in a TetR-family regulator and ABC-binding proteins were found in both groups, suggesting a direct or indirect implication of these proteins in the resistance acquisition process. Conclusions: MV6 lacks intrinsic antimicrobial activity, minimizing selective pressure, yet enhances netilmicin’s effectiveness except for strain 210, which lacks the AdeABC efflux pump. Resistant mutants indicate specific aminoglycoside resistance mechanisms involving efflux pump mutations, suggesting synergistic interactions. Further research, including transcriptomic analysis, is essential to elucidate MV6’s role in enhancing netilmicin efficacy and its resistance mechanisms. Full article
Show Figures

Figure 1

10 pages, 261 KiB  
Article
Comparison of the Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and 7 Other Antimicrobial Agents Tested Against Swine Isolates of Actinobacillus pleuropneumoniae and Pasteurella multocida
by Joseph M. Blondeau and Shantelle D. Fitch
Molecules 2024, 29(22), 5448; https://doi.org/10.3390/molecules29225448 - 19 Nov 2024
Cited by 2 | Viewed by 1410
Abstract
Pradofloxacin is a dual targeting, bactericidal fluoroquinolone recently approved for treating bacteria causing swine respiratory disease. Currently, an abundance of in vitro data does not exist for pradofloxacin. We determined the minimum inhibitory concentration (MIC) and mutant prevention concentrations (MPC) of pradofloxacin compared [...] Read more.
Pradofloxacin is a dual targeting, bactericidal fluoroquinolone recently approved for treating bacteria causing swine respiratory disease. Currently, an abundance of in vitro data does not exist for pradofloxacin. We determined the minimum inhibitory concentration (MIC) and mutant prevention concentrations (MPC) of pradofloxacin compared to ceftiofur, enrofloxacin, florfenicol, marbofloxacin, tildipirosin, tilmicosin and tulathromycin against swine isolates of Actinobacillus pleuropneumoniae and Pasteurella multocida. Overall, pradofloxacin had the lowest MIC and MPC values as compared to the other agents tested. For example, pradofloxacin MIC values for 50%, 90% and 100% of A. pleuropneumoniae strains were ≤0.016 µg/mL, ≤0.016 µg/mL and ≤0.016 µg/mL and for P. multocida were ≤0.016 µg/mL, ≤0.016 µg/mL and 0.031 µg/mL, respectively. The MPC values for 50%, 90% and 100% of A. pleuropneumoniae strains were 0.031 µg/mL, 0.063 µg/mL and 0.125 µg/mL and for P. multocida were ≤0.016 µg/mL, 0.031 µg/mL and 0.0.063 µg/mL, respectively. By MPC testing, all strains were at or below the susceptibility breakpoint. Based on MPC testing, pradofloxacin appears to have a low likelihood for resistance selection. This study represents the most comprehensive in vitro comparison of the above noted drugs and the first report for pradofloxacin and tildipirosin. Full article
14 pages, 885 KiB  
Article
Bleeding Events Associated with Rivaroxaban Therapy in Naive Patients with Nonvalvular Atrial Fibrillation: A Longitudinal Study from a Genetic Perspective with INR Follow-Up
by Nur Ul Ain, Niaz Ali, Abid Ullah, Shakir Ullah and Shujaat Ahmad
Medicina 2024, 60(10), 1712; https://doi.org/10.3390/medicina60101712 - 18 Oct 2024
Cited by 1 | Viewed by 1574
Abstract
Background and Objectives: Rivaroxaban is a direct-acting anticoagulant used to prevent stroke in patients with atrial fibrillation. Rivaroxaban is a substrate for P-glycoprotein, which is encoded by the ABCB1 gene. Rivaroxaban is also metabolized by the CYP3A5 gene. Therefore, the current study [...] Read more.
Background and Objectives: Rivaroxaban is a direct-acting anticoagulant used to prevent stroke in patients with atrial fibrillation. Rivaroxaban is a substrate for P-glycoprotein, which is encoded by the ABCB1 gene. Rivaroxaban is also metabolized by the CYP3A5 gene. Therefore, the current study is carried out to study the effects of polymorphisms in the ABCB1 and CYP3A5 genes, which may affect the plasma levels of rivaroxaban, with subsequent clinical outcomes (bleeding events) associated with the therapy. Materials and Methods: The study was conducted on 66 naive patients with atrial fibrillation treated with rivaroxaban. Blood samples of rivaroxaban were taken at 3 h and after 1 month following the administration of the drug to measure plasma levels. The blood level of rivaroxaban was measured with an HPLC-UV detector. Sanger sequencing was used to find polymorphisms in the targeted genes. Coagulation parameters were measured at 3 h and after 1 month of administration of rivaroxaban. Frequencies of bleeding events were recorded throughout the one-month course of drug therapy. Results: The heterozygous and homozygous mutant genotypes of ABCB1 (rs2032582, rs1045642, rs1128503, and rs4148738) and CYP3A5 (rs776746) showed lower plasma concentrations as compared to the wild-type genotype. ABCB1 (rs2032582, rs1045642, rs1128503, and rs4148738) and CYP3A5 (rs776746) gene polymorphisms had a statistically significant impact on the plasma concentration of rivaroxaban among the heterozygous and homozygous mutant genotypes compared to the wild-type genotype. The heterozygous variant of ABCB1 and homozygous variant of CYP3A5 suffered more events of bleeding. Conclusions: It was concluded that ABCB1 (rs2032582, rs1045642, rs1128503, and rs4148738) and CYP3A5 (rs776746) gene polymorphisms had a significant impact on the plasma levels of rivaroxaban in patients treated for atrial fibrillation on day three as well as after one month of the therapy. The lowest plasma levels were observed in patients with a homozygous variant of ABCB1 (rs2032582, rs1045642, or rs4148738) along with the CYP3A5*1/*3 allele. The heterozygous variant of ABCB1 SNPs and homozygous variant of CYP3A5 SNPs suffered more events of bleeding. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

13 pages, 1948 KiB  
Article
Aclarubicin Reduces the Nuclear Mobility of Human DNA Topoisomerase IIβ
by Keiko Morotomi-Yano and Ken-ichi Yano
Int. J. Mol. Sci. 2024, 25(19), 10681; https://doi.org/10.3390/ijms251910681 - 3 Oct 2024
Cited by 1 | Viewed by 1062
Abstract
DNA topoisomerase II (TOP2) is an enzyme that resolves DNA topological problems arising in various nuclear processes, such as transcription. Aclarubicin, a member of the anthracyclines, is known to prevent the association of TOP2 with DNA, inhibiting the early step of TOP2 catalytic [...] Read more.
DNA topoisomerase II (TOP2) is an enzyme that resolves DNA topological problems arising in various nuclear processes, such as transcription. Aclarubicin, a member of the anthracyclines, is known to prevent the association of TOP2 with DNA, inhibiting the early step of TOP2 catalytic reactions. During our research on the subnuclear distribution of human TOP2B, we found that aclarubicin affects the mobility of TOP2B in the nucleus. FRAP analysis demonstrated that aclarubicin decreased the nuclear mobility of EGFP-tagged TOP2B in a concentration-dependent manner. Aclarubicin exerted its inhibitory effects independently of TOP2B enzymatic activities: TOP2B mutants defective for either ATPase or topoisomerase activity also exhibited reduced nuclear mobility in the presence of aclarubicin. Immunofluorescence analysis showed that aclarubicin antagonized the induction of DNA damage by etoposide. Although the prevention of the TOP2-DNA association is generally considered a primary action of aclarubicin in TOP2 inhibition, our findings highlight a previously unanticipated effect of aclarubicin on TOP2B in the cellular environment. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 4132 KiB  
Review
In Vitro Resistance-Predicting Studies and In Vitro Resistance-Related Parameters—A Hit-to-Lead Perspective
by Joanna Krajewska, Stefan Tyski and Agnieszka E. Laudy
Pharmaceuticals 2024, 17(8), 1068; https://doi.org/10.3390/ph17081068 - 15 Aug 2024
Cited by 2 | Viewed by 1876
Abstract
Despite the urgent need for new antibiotics, very few innovative antibiotics have recently entered clinics or clinical trials. To provide a constant supply of new drug candidates optimized in terms of their potential to select for resistance in natural settings, in vitro resistance-predicting [...] Read more.
Despite the urgent need for new antibiotics, very few innovative antibiotics have recently entered clinics or clinical trials. To provide a constant supply of new drug candidates optimized in terms of their potential to select for resistance in natural settings, in vitro resistance-predicting studies need to be improved and scaled up. In this review, the following in vitro parameters are presented: frequency of spontaneous mutant selection (FSMS), mutant prevention concentration (MPC), dominant mutant prevention concentration (MPC-D), inferior-mutant prevention concentration (MPC-F), and minimal selective concentration (MSC). The utility of various adaptive laboratory evolution (ALE) approaches (serial transfer, continuous culture, and evolution in spatiotemporal microenvironments) for comparing hits in terms of the level and time required for multistep resistance to emerge is discussed. We also consider how the hit-to-lead stage can benefit from high-throughput ALE setups based on robotic workstations, do-it-yourself (DIY) continuous cultivation systems, microbial evolution and growth arena (MEGA) plates, soft agar gradient evolution (SAGE) plates, microfluidic chips, or microdroplet technology. Finally, approaches for evaluating the fitness of in vitro-generated resistant mutants are presented. This review aims to draw attention to newly emerged ideas on how to improve the in vitro forecasting of the potential of compounds to select for resistance in natural settings. Full article
(This article belongs to the Special Issue Development of Antibacterial Drugs to Combat Drug-Resistant Bacteria)
Show Figures

Figure 1

18 pages, 5325 KiB  
Article
A New Convenient Method to Assess Antibiotic Resistance and Antimicrobial Efficacy against Pathogenic Clostridioides difficile Biofilms
by Lingjun Xu, Bijay Gurung, Chris Gu, Shaohua Wang and Tingyue Gu
Antibiotics 2024, 13(8), 728; https://doi.org/10.3390/antibiotics13080728 - 3 Aug 2024
Cited by 1 | Viewed by 1925
Abstract
Clostridioides difficile is a widely distributed anaerobic pathogen. C. difficile infection is a serious problem in healthcare. Its biofilms have been found to exhibit biocorrosivity, albeit very little, but sufficient for it to correlate with biofilm growth/health. This work demonstrated the use of [...] Read more.
Clostridioides difficile is a widely distributed anaerobic pathogen. C. difficile infection is a serious problem in healthcare. Its biofilms have been found to exhibit biocorrosivity, albeit very little, but sufficient for it to correlate with biofilm growth/health. This work demonstrated the use of a disposable electrochemical biofilm test kit using two solid-state electrodes (a 304 stainless steel working electrode, and a graphite counter electrode, which also served as the reference electrode) in a 10 mL serum vial. It was found that the C. difficile 630∆erm Adp-4 mutant had a minimum inhibitory concentration (MIC) for vancomycin twice that of the 630∆erm wild type strain in biofilm prevention (2 ppm vs. 1 ppm by mass) on 304 stainless steel. Glutaraldehyde, a commonly used hospital disinfectant, was found ineffective at 2% (w/w) for the prevention of C. difficile 630∆erm wild type biofilm formation, while tetrakis(hydroxymethyl)phosphonium sulfate (THPS) disinfectant was very effective at 100 ppm for both biofilm prevention and biofilm killing. These antimicrobial efficacy data were consistent with sessile cell count and biofilm imaging results. Furthermore, the test kit provided additional transient biocide treatment information. It showed that vancomycin killed C. difficile 630∆erm wild type biofilms in 2 d, while THPS only required minutes. Full article
Show Figures

Figure 1

13 pages, 988 KiB  
Article
In Vitro Antibacterial Activities of Fosfomycin against Escherichia coli Isolates from Canine Urinary Tract Infection
by Nattha Jariyapamornkoon, Suphachai Nuanualsuwan and Nipattra Suanpairintr
Animals 2024, 14(13), 1916; https://doi.org/10.3390/ani14131916 - 28 Jun 2024
Cited by 3 | Viewed by 1332
Abstract
Fosfomycin is a bactericidal drug recommended as an alternative treatment for canine bacterial cystitis, particularly in cases involving multidrug-resistant (MDR) infections when no other options are available. In this study, minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) of fosfomycin were determined [...] Read more.
Fosfomycin is a bactericidal drug recommended as an alternative treatment for canine bacterial cystitis, particularly in cases involving multidrug-resistant (MDR) infections when no other options are available. In this study, minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) of fosfomycin were determined against 79 clinical E. coli isolates using the agar dilution method. The susceptibility rate of E. coli to fosfomycin was 86.06%, with MIC50 and MIC90 values of 4 mg/L and 96 mg/L, respectively. MPC50 and MPC90 values were 64 mg/L and 192 mg/L. Using pharmacokinetic (PK) data from dogs given a single 80 mg/kg oral dose of fosfomycin, the area under the curve per MIC50 (AUC0–24/MIC50) was 85.79 with time above MIC50 (T > MIC50) exceeding 50%. In urine, the AUC0–24/MIC50 was 10,694.78, and the AUC0–24/MPC90 was 222.81, with T > MPC90 extending beyond 24 h. Therefore, fosfomycin exhibited significant antibacterial activity against canine uropathogenic E. coli, including MDR strains, at concentrations below the susceptible MIC breakpoint. However, the high MPC values, especially the MPC90, indicate the critical importance of performing susceptibility testing for fosfomycin and maintaining ongoing resistance monitoring. Full article
Show Figures

Figure 1

14 pages, 2655 KiB  
Article
Comparative In Vitro Killing by Pradofloxacin in Comparison to Ceftiofur, Enrofloxacin, Florfenicol, Marbofloxacin, Tildipirosin, Tilmicosin and Tulathromycin against Bovine Respiratory Bacterial Pathogens
by Joseph M. Blondeau and Shantelle D. Fitch
Microorganisms 2024, 12(5), 996; https://doi.org/10.3390/microorganisms12050996 - 15 May 2024
Cited by 2 | Viewed by 1736
Abstract
Pradofloxacin is the newest of the veterinary fluoroquinolones to be approved for use in animals—initially companion animals and most recently food animals. It has a broad spectrum of in vitro activity, working actively against Gram-positive/negative, atypical and some anaerobic microorganisms. It simultaneously targets [...] Read more.
Pradofloxacin is the newest of the veterinary fluoroquinolones to be approved for use in animals—initially companion animals and most recently food animals. It has a broad spectrum of in vitro activity, working actively against Gram-positive/negative, atypical and some anaerobic microorganisms. It simultaneously targets DNA gyrase (topoisomerase type II) and topoisomerase type IV, suggesting a lower propensity to select for antimicrobial resistance. The purpose of this study was to determine the rate and extent of bacterial killing by pradofloxacin against bovine strains of Mannheimia haemolytica and Pasteurella multocida, in comparison with several other agents (ceftiofur, enrofloxacin, florfenicol, marbofloxacin, tildipirosin, tilmicosin and tulathromycin) using four clinically relevant drug concentrations: minimum inhibitory and mutant prevention drug concentration, maximum serum and maximum tissue drug concentrations. At the maximum serum and tissue drug concentrations, pradofloxacin killed 99.99% of M. haemolytica cells following 5 min of drug exposure (versus growth to 76% kill rate for the other agents) and 94.1–98.6% of P. multocida following 60–120 min of drug exposure (versus growth to 98.6% kill rate for the other agents). Statistically significant differences in kill rates were seen between the various drugs tested depending on drug concentration and time of sampling after drug exposure. Full article
(This article belongs to the Special Issue Bacterial Infections and Antibiotic Resistance in Veterinary Medicine)
Show Figures

Figure 1

10 pages, 252 KiB  
Article
Comparative Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and Seven Other Antimicrobial Agents Tested against Bovine Isolates of Mannheimia haemolytica and Pasteurella multocida
by Joseph M. Blondeau and Shantelle D. Fitch
Pathogens 2024, 13(5), 399; https://doi.org/10.3390/pathogens13050399 - 9 May 2024
Cited by 1 | Viewed by 1984
Abstract
Pradofloxacin—a dual-targeting fluoroquinolone—is the most recent approved for use in food animals. Minimum inhibitory and mutant prevention concentration values were determined for pradofloxacin, ceftiofur, enrofloxacin, florfenicol, marbofloxacin, tildipirosin, tilmicosin, and tulathromycin. For M. haemolytica strains, MIC50/90/100 values were ≤0.016/≤0.016/≤0.016 and MPC50/90/100 [...] Read more.
Pradofloxacin—a dual-targeting fluoroquinolone—is the most recent approved for use in food animals. Minimum inhibitory and mutant prevention concentration values were determined for pradofloxacin, ceftiofur, enrofloxacin, florfenicol, marbofloxacin, tildipirosin, tilmicosin, and tulathromycin. For M. haemolytica strains, MIC50/90/100 values were ≤0.016/≤0.016/≤0.016 and MPC50/90/100 values were 0.031/0.063/0.063; for P. multocida strains, the MIC50/90/100 values ≤0.016/≤0.016/0.031 and MPC50/90/100 ≤ 0.016/0.031/0.063 for pradofloxacin. The pradofloxacin Cmax/MIC90 and Cmax/MPC90 values for M. haemolytica and P. multocida strains, respectively, were 212.5 and 53.9 and 212.5 and 109.7. Similarly, AUC24/MIC90 and AUC24/MPC90 for M. haemolytica were 825 and 209.5, and for P. multocida, they were 825 and 425.8. Pradofloxacin would exceed the mutant selection window for >12–16 h. Pradofloxacin appears to have a low likelihood for resistance selection against key bovine respiratory disease bacterial pathogens based on low MIC and MPC values. Full article
(This article belongs to the Section Bacterial Pathogens)
17 pages, 4261 KiB  
Article
A Humanized and Viable Animal Model for Congenital Adrenal Hyperplasia–CYP21A2-R484Q Mutant Mouse
by Shamini Ramkumar Thirumalasetty, Tina Schubert, Ronald Naumann, Ilka Reichardt, Marie-Luise Rohm, Dana Landgraf, Florian Gembardt, Mirko Peitzsch, Michaela F. Hartmann, Mihail Sarov, Stefan A. Wudy, Nicole Reisch, Angela Huebner and Katrin Koehler
Int. J. Mol. Sci. 2024, 25(10), 5062; https://doi.org/10.3390/ijms25105062 - 7 May 2024
Cited by 2 | Viewed by 2950
Abstract
Congenital Adrenal Hyperplasia (CAH) is an autosomal recessive disorder impairing cortisol synthesis due to reduced enzymatic activity. This leads to persistent adrenocortical overstimulation and the accumulation of precursors before the blocked enzymatic step. The predominant form of CAH arises from mutations in CYP21A2 [...] Read more.
Congenital Adrenal Hyperplasia (CAH) is an autosomal recessive disorder impairing cortisol synthesis due to reduced enzymatic activity. This leads to persistent adrenocortical overstimulation and the accumulation of precursors before the blocked enzymatic step. The predominant form of CAH arises from mutations in CYP21A2, causing 21-hydroxylase deficiency (21-OHD). Despite emerging treatment options for CAH, it is not always possible to physiologically replace cortisol levels and counteract hyperandrogenism. Moreover, there is a notable absence of an effective in vivo model for pre-clinical testing. In this work, we developed an animal model for CAH with the clinically relevant point mutation p.R484Q in the previously humanized CYP21A2 mouse strain. Mutant mice showed hyperplastic adrenals and exhibited reduced levels of corticosterone and 11-deoxycorticosterone and an increase in progesterone. Female mutants presented with higher aldosterone concentrations, but blood pressure remained similar between wildtype and mutant mice in both sexes. Male mutant mice have normal fertility with a typical testicular appearance, whereas female mutants are infertile, exhibit an abnormal ovarian structure, and remain in a consistent diestrus phase. Conclusively, we show that the animal model has the potential to contribute to testing new treatment options and to prevent comorbidities that result from hormone-related derangements and treatment-related side effects in CAH patients. Full article
(This article belongs to the Special Issue Molecular Aspects of Adrenal Diseases and Carcinoma)
Show Figures

Graphical abstract

Back to TopTop