Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = murine excisional wound model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2836 KiB  
Article
The Influence of N-Acetylcysteine-Enriched Hydrogels on Wound Healing in a Murine Model of Type II Diabetes Mellitus
by Albert Stachura, Marcin Sobczak, Karolina Kędra, Michał Kopka, Karolina Kopka and Paweł K. Włodarski
Int. J. Mol. Sci. 2024, 25(18), 9986; https://doi.org/10.3390/ijms25189986 - 16 Sep 2024
Viewed by 2229
Abstract
Diabetes mellitus (DM) severely impairs skin wound healing capacity, yet few treatment options exist to enhance this process. N-acetylcysteine (NAC) is an antioxidant that improves cellular proliferation and enhances wound healing in healthy animals, yet its use in the context of type II [...] Read more.
Diabetes mellitus (DM) severely impairs skin wound healing capacity, yet few treatment options exist to enhance this process. N-acetylcysteine (NAC) is an antioxidant that improves cellular proliferation and enhances wound healing in healthy animals, yet its use in the context of type II DM has not been studied. The aim of our research was to investigate the effect of topically applied NAC-enriched hydrogels on wound healing in a leptin-deficient murine wound model. Four excisional wounds were created on the backs of 20 db/db mice and were subsequently treated with hydrogels containing NAC at concentrations of 5%, 10% and 20% or placebo (control). Healing was monitored for 28 days; photographs of the wounds were taken on every third day. Wound tissues were harvested on days 3, 7, 14 and 28 to undergo histological examinations. Wounds treated with 5% NAC showed improved wound closure speed accompanied by an increased dermal proliferation area on microscopic assessment compared with other groups. Higher concentrations of NAC failed to show a beneficial effect on wound healing. 5% NAC improved early stages of wound healing in a murine model of type II DM by increasing wound closure speed, likely mediated by improved dermal proliferation. Full article
(This article belongs to the Special Issue New Molecular Insights into Scar and Wounds)
Show Figures

Figure 1

17 pages, 2019 KiB  
Review
OxInflammation Affects Transdifferentiation to Myofibroblasts, Prolonging Wound Healing in Diabetes: A Systematic Review
by Leonardo L. Silveira, Mariáurea M. Sarandy, Rômulo D. Novaes, Mônica Morais-Santos and Reggiani V. Gonçalves
Int. J. Mol. Sci. 2024, 25(16), 8992; https://doi.org/10.3390/ijms25168992 - 19 Aug 2024
Cited by 6 | Viewed by 2108
Abstract
Skin wounds, primarily in association with type I diabetes mellitus, are a public health problem generating significant health impacts. Therefore, identifying the main pathways/mechanisms involved in differentiating fibroblasts into myofibroblasts is fundamental to guide research into effective treatments. Adopting the PRISMA guidelines, this [...] Read more.
Skin wounds, primarily in association with type I diabetes mellitus, are a public health problem generating significant health impacts. Therefore, identifying the main pathways/mechanisms involved in differentiating fibroblasts into myofibroblasts is fundamental to guide research into effective treatments. Adopting the PRISMA guidelines, this study aimed to verify the main pathways/mechanisms using diabetic murine models and analyze the advances and limitations of this area. The Medline (PubMed), Scopus, and Web of Science platforms were used for the search. The studies included were limited to those that used diabetic murine models with excisional wounds. Bias analysis and methodological quality assessments were undertaken using the SYRCLE bias risk tool. Eighteen studies were selected. The systematic review results confirm that diabetes impairs the transformation of fibroblasts into myofibroblasts by affecting the expression of several growth factors, most notably transforming growth factor beta (TGF-beta) and NLRP3. Diabetes also compromises pathways such as the SMAD, c-Jun N-terminal kinase, protein kinase C, and nuclear factor kappa beta activating caspase pathways, leading to cell death. Furthermore, diabetes renders the wound environment highly pro-oxidant and inflammatory, which is known as OxInflammation. As a consequence of this OxInflammation, delays in the collagenization process occur. The protocol details for this systematic review were registered with PROSPERO: CRD42021267776. Full article
Show Figures

Figure 1

14 pages, 2953 KiB  
Article
Impact of a High-Fat Diet at a Young Age on Wound Healing in Mice
by Kevin Arnke, Pablo Pfister, Gregory Reid, Mauro Vasella, Tim Ruhl, Ann-Kathrin Seitz, Nicole Lindenblatt, Paolo Cinelli and Bong-Sung Kim
Int. J. Mol. Sci. 2023, 24(24), 17299; https://doi.org/10.3390/ijms242417299 - 9 Dec 2023
Cited by 5 | Viewed by 2689
Abstract
As the prevalence of juvenile-onset obesity rises globally, the multitude of related health consequences gain significant importance. In this context, obesity is associated with impaired cutaneous wound healing. In experimental settings, mice are the most frequently used model for investigating the effect of [...] Read more.
As the prevalence of juvenile-onset obesity rises globally, the multitude of related health consequences gain significant importance. In this context, obesity is associated with impaired cutaneous wound healing. In experimental settings, mice are the most frequently used model for investigating the effect of high-fat diet (HFD) chow on wound healing in wild-type or genetically manipulated animals, e.g., diabetic ob/ob and db/db mice. However, these studies have mainly been performed on adult animals. Thus, in the present study, we introduced a mouse model for a juvenile onset of obesity. We exposed 4-week-old mice to an investigational feeding period of 9 weeks with an HFD compared to a regular diet (RD). At a mouse age of 13 weeks, we performed excisional and incisional wounding and measured the healing rate. Wound healing was examined by serial photographs with daily wound size measurements of the excisional wounds. Histology from incisional wounds was performed to quantify granulation tissue (thickness, quality) and angiogenesis (number of blood vessels per mm2). The expression of extracellular matrix proteins (collagen types I/III/IV, fibronectin 1, elastin), inflammatory cytokines (MIF, MIF-2, IL-6, TNF-α), myofibroblast differentiation (α-SMA) and macrophage polarization (CD11c, CD301b) in the incisional wounds were evaluated by RT-qPCR and by immunohistochemistry. There was a marked delay of wound closure in the HFD group with a decrease in granulation tissue quality and thickness. Additionally, inflammatory cytokines (MIF, IL-6, TNF-α) were significantly up-regulated in HFD- when compared to RD-fed mice measured at day 3. By contrast, MIF-2 and blood vessel expression were significantly reduced in the HFD animals, starting at day 1. No significant changes were observed in macrophage polarization, collagen expression, and levels of TGF-β1 and PDGF-A. Our findings support that an early exposition to HFD resulted in juvenile obesity in mice with impaired wound repair mechanisms, which may be used as a murine model for obesity-related studies in the future. Full article
Show Figures

Figure 1

15 pages, 2771 KiB  
Article
Effect of Chitosan-Diosgenin Combination on Wound Healing
by Lubomir Petrov, Olya Stoilova, Georgi Pramatarov, Hristiyana Kanzova, Elina Tsvetanova, Madlena Andreeva, Almira Georgieva, Dimitrinka Atanasova, Stanislav Philipov and Albena Alexandrova
Int. J. Mol. Sci. 2023, 24(5), 5049; https://doi.org/10.3390/ijms24055049 - 6 Mar 2023
Cited by 8 | Viewed by 2810
Abstract
The difficult-to-heal wounds continue to be a problem for modern medicine. Chitosan and diosgenin possess anti-inflammatory and antioxidant effects making them relevant substances for wound treatment. That is why this work aimed to study the effect of the combined application of chitosan and [...] Read more.
The difficult-to-heal wounds continue to be a problem for modern medicine. Chitosan and diosgenin possess anti-inflammatory and antioxidant effects making them relevant substances for wound treatment. That is why this work aimed to study the effect of the combined application of chitosan and diosgenin on a mouse skin wound model. For the purpose, wounds (6 mm diameter) were made on mice’s backs and were treated for 9 days with one of the following: 50% ethanol (control), polyethylene glycol (PEG) in 50% ethanol, chitosan and PEG in 50% ethanol (Chs), diosgenin and PEG in 50% ethanol (Dg) and chitosan, diosgenin and PEG in 50% ethanol (ChsDg). Before the first treatment and on the 3rd, 6th and 9th days, the wounds were photographed and their area was determined. On the 9th day, animals were euthanized and wounds’ tissues were excised for histological analysis. In addition, the lipid peroxidation (LPO), protein oxidation (POx) and total glutathione (tGSH) levels were measured. The results showed that ChsDg had the most pronounced overall effect on wound area reduction, followed by Chs and PEG. Moreover, the application of ChsDg maintained high levels of tGSH in wound tissues, compared to other substances. It was shown that all tested substances, except ethanol, reduced POx comparable to intact skin levels. Therefore, the combined application of chitosan and diosgenin is a very promising and effective medication for wound healing. Full article
Show Figures

Figure 1

15 pages, 4389 KiB  
Article
Wound Healing Modulation through the Local Application of Powder Collagen-Derived Treatments in an Excisional Cutaneous Murine Model
by Selma Benito-Martínez, Bárbara Pérez-Köhler, Marta Rodríguez, Jesús María Izco, José Ignacio Recalde and Gemma Pascual
Biomedicines 2022, 10(5), 960; https://doi.org/10.3390/biomedicines10050960 - 21 Apr 2022
Cited by 15 | Viewed by 6256
Abstract
Wound healing includes dynamic processes grouped into three overlapping phases: inflammatory, proliferative, and maturation/remodeling. Collagen is a critical component of a healing wound and, due to its properties, is of great interest in regenerative medicine. This preclinical study was designed to compare the [...] Read more.
Wound healing includes dynamic processes grouped into three overlapping phases: inflammatory, proliferative, and maturation/remodeling. Collagen is a critical component of a healing wound and, due to its properties, is of great interest in regenerative medicine. This preclinical study was designed to compare the effects of a new collagen-based hydrolysate powder on wound repair to a commercial non-hydrolysate product, in a murine model of cutaneous healing. Circular excisional defects were created on the dorsal skin of Wistar rats (n = 36). Three study groups were established according to the treatment administered. Animals were euthanized after 7 and 18 days. Morphometric and morphological studies were performed to evaluate the healing process. The new collagen treatment led to the smallest open wound area throughout most of the study. After seven days, wound morphometry, contraction, and epithelialization were similar in all groups. Treated animals showed reduced granulation tissue formation and fewer inflammatory cells, and induction of vasculature with respect to untreated animals. After 18 days, animals treated with the new collagen treatment showed accelerated wound closure, significantly increased epithelialization, and more organized repair tissue. Our findings suggest that the new collagen treatment, compared to the untreated control group, produces significantly faster wound closure and, at the same time, promotes a slight progression of the reparative process compared with the rest of the groups. Full article
Show Figures

Graphical abstract

23 pages, 7994 KiB  
Article
Ionizing Radiation Mediates Dose Dependent Effects Affecting the Healing Kinetics of Wounds Created on Acute and Late Irradiated Skin
by Candice Diaz, Cindy J. Hayward, Meryem Safoine, Caroline Paquette, Josée Langevin, Josée Galarneau, Valérie Théberge, Jean Ruel, Louis Archambault and Julie Fradette
Surgeries 2021, 2(1), 35-57; https://doi.org/10.3390/surgeries2010004 - 28 Jan 2021
Cited by 6 | Viewed by 5501
Abstract
Radiotherapy for cancer treatment is often associated with skin damage that can lead to incapacitating hard-to-heal wounds. No permanent curative treatment has been identified for radiodermatitis. This study provides a detailed characterization of the dose-dependent impact of ionizing radiation on skin cells (45, [...] Read more.
Radiotherapy for cancer treatment is often associated with skin damage that can lead to incapacitating hard-to-heal wounds. No permanent curative treatment has been identified for radiodermatitis. This study provides a detailed characterization of the dose-dependent impact of ionizing radiation on skin cells (45, 60, or 80 grays). We evaluated both early and late effects on murine dorsal skin with a focus on the healing process after two types of surgical challenge. The irradiated skin showed moderate to severe damage increasing with the dose. Four weeks after irradiation, the epidermis featured increased proliferation status while the dermis was hypovascular with abundant α-SMA intracellular expression. Excisional wounds created on these tissues exhibited delayed global wound closure. To assess potential long-lasting side effects of irradiation, radiodermatitis features were followed until macroscopic healing was notable (over 8 to 22 weeks depending on the dose), at which time incisional wounds were made. Severity scores and biomechanical analyses of the scar tissues revealed that seemingly healed irradiated skin still displayed altered functionality. Our detailed investigation of both the acute and chronic repercussions of radiotherapy on skin healing provides a relevant new in vivo model that will instruct future studies evaluating the efficacy of new treatments for radiodermatitis. Full article
Show Figures

Figure 1

16 pages, 4389 KiB  
Article
Sphingosine-1-Phosphate Facilitates Skin Wound Healing by Increasing Angiogenesis and Inflammatory Cell Recruitment with Less Scar Formation
by Masayo Aoki, Hiroaki Aoki, Partha Mukhopadhyay, Takuya Tsuge, Hirofumi Yamamoto, Noriko M. Matsumoto, Eri Toyohara, Yuri Okubo, Rei Ogawa and Kazuaki Takabe
Int. J. Mol. Sci. 2019, 20(14), 3381; https://doi.org/10.3390/ijms20143381 - 10 Jul 2019
Cited by 39 | Viewed by 6615
Abstract
Wound healing starts with the recruitment of inflammatory cells that secrete wound-related factors. This step is followed by fibroblast activation and tissue construction. Sphingosine-1-phosphate (S1P) is a lipid mediator that promotes angiogenesis, cell proliferation, and attracts immune cells. We investigated the roles of [...] Read more.
Wound healing starts with the recruitment of inflammatory cells that secrete wound-related factors. This step is followed by fibroblast activation and tissue construction. Sphingosine-1-phosphate (S1P) is a lipid mediator that promotes angiogenesis, cell proliferation, and attracts immune cells. We investigated the roles of S1P in skin wound healing by altering the expression of its biogenic enzyme, sphingosine kinase-1 (SphK1). The murine excisional wound splinting model was used. Sphingosine kinase-1 (SphK1) was highly expressed in murine wounds and that SphK1−/− mice exhibit delayed wound closure along with less angiogenesis and inflammatory cell recruitment. Nanoparticle-mediated topical SphK1 overexpression accelerated wound closure, which associated with increased angiogenesis, inflammatory cell recruitment, and various wound-related factors. The SphK1 overexpression also led to less scarring, and the interaction between transforming growth factor (TGF)-β1 and S1P receptor-2 (S1PR2) signaling is likely to play a key role. In summary, SphK1 play important roles to strengthen immunity, and contributes early wound healing with suppressed scarring. S1P can be a novel therapeutic molecule with anti-scarring effect in surgical, trauma, and chronic wound management. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration: Mechanisms, Signaling)
Show Figures

Graphical abstract

Back to TopTop