Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (169)

Search Parameters:
Keywords = multimodal travel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5417 KiB  
Article
SE-TFF: Adaptive Tourism-Flow Forecasting Under Sparse and Heterogeneous Data via Multi-Scale SE-Net
by Jinyuan Zhang, Tao Cui and Peng He
Appl. Sci. 2025, 15(15), 8189; https://doi.org/10.3390/app15158189 - 23 Jul 2025
Viewed by 41
Abstract
Accurate and timely forecasting of cross-regional tourist flows is essential for sustainable destination management, yet existing models struggle with sparse data, complex spatiotemporal interactions, and limited interpretability. This paper presents SE-TFF, a multi-scale tourism-flow forecasting framework that couples a Squeeze-and-Excitation (SE) network with [...] Read more.
Accurate and timely forecasting of cross-regional tourist flows is essential for sustainable destination management, yet existing models struggle with sparse data, complex spatiotemporal interactions, and limited interpretability. This paper presents SE-TFF, a multi-scale tourism-flow forecasting framework that couples a Squeeze-and-Excitation (SE) network with reinforcement-driven optimization to adaptively re-weight environmental, economic, and social features. A benchmark dataset of 17.8 million records from 64 countries and 743 cities (2016–2024) is compiled from the Open Travel Data repository in github (OPTD) for training and validation. SE-TFF introduces (i) a multi-channel SE module for fine-grained feature selection under heterogeneous conditions, (ii) a Top-K attention filter to preserve salient context in highly sparse matrices, and (iii) a Double-DQN layer that dynamically balances prediction objectives. Experimental results show SE-TFF attains 56.5% MAE and 65.6% RMSE reductions over the best baseline (ARIMAX) at 20% sparsity, with 0.92 × 103 average MAE across multi-task outputs. SHAP analysis ranks climate anomalies, tourism revenue, and employment as dominant predictors. These gains demonstrate SE-TFF’s ability to deliver real-time, interpretable forecasts for data-limited destinations. Future work will incorporate real-time social media signals and larger multimodal datasets to enhance generalizability. Full article
Show Figures

Figure 1

29 pages, 5923 KiB  
Article
Activity Spaces in Multimodal Transportation Networks: A Nonlinear and Spatial Analysis Perspective
by Kuang Guo, Rui Tang, Haixiao Pan, Dongming Zhang, Yang Liu and Zhuangbin Shi
ISPRS Int. J. Geo-Inf. 2025, 14(8), 281; https://doi.org/10.3390/ijgi14080281 - 22 Jul 2025
Viewed by 215
Abstract
Activity space offers a valuable perspective for analyzing urban travel behavior and evaluating the performance of transportation systems in increasingly complex urban environments. However, the research on measuring activity spaces in multimodal transportation contexts remains limited. This study investigates multimodal transportation activity spaces [...] Read more.
Activity space offers a valuable perspective for analyzing urban travel behavior and evaluating the performance of transportation systems in increasingly complex urban environments. However, the research on measuring activity spaces in multimodal transportation contexts remains limited. This study investigates multimodal transportation activity spaces in Hangzhou using 2023 smart card data. Multimodal travel chains are extracted, and residents’ activity spaces are quantified using 95% confidence ellipses. By applying the XGBoost and GeoShapley models, this study reveals the nonlinear effects and geospatial heterogeneity in how built environment and socioeconomic factors influence activity spaces. The key findings show that the distance to the nearest metro station, commercial POIs, and GDP significantly shape activity spaces through nonlinear relationships. Moreover, the interaction between the distance to the nearest metro station and geographical location generates pronounced geospatial effects. The results highlight the importance of multimodal integration in urban transport planning and provide empirical insights for enhancing system efficiency and sustainability. Full article
Show Figures

Figure 1

21 pages, 2699 KiB  
Article
Urban Sustainability of Quito Through Its Food System: Spatial and Social Interactions
by María Magdalena Benalcázar Jarrín, Diana Patricia Zuleta Mediavilla, Ramon Rispoli and Daniele Rocchio
Sustainability 2025, 17(14), 6613; https://doi.org/10.3390/su17146613 - 19 Jul 2025
Viewed by 276
Abstract
This study explores the spatial and social implications of urban food systems in Quito, Ecuador, focusing on how food access inequalities reflect and reinforce broader urban disparities. The research addresses a critical problem in contemporary urbanization: the disconnection between food provisioning and spatial [...] Read more.
This study explores the spatial and social implications of urban food systems in Quito, Ecuador, focusing on how food access inequalities reflect and reinforce broader urban disparities. The research addresses a critical problem in contemporary urbanization: the disconnection between food provisioning and spatial equity in rapidly growing cities. The objective is to assess and map disparities in food accessibility using a mixed-methods approach that includes field observation, participatory mapping, value chain analysis, and statistical modeling. Five traditional and emerging food markets were studied in diverse districts across the city. A synthetic accessibility function F(x) was constructed to model food access levels, integrating variables such as income, infrastructure, transport availability, and travel time. These variables were subjected to Principal Component Analysis (PCA) and hierarchical clustering to generate three typologies of territorial vulnerability. The results reveal that peripheral areas exhibit lower F(x) values and weaker integration with the formal food system, leading to higher consumer costs and limited fresh food options. In contrast, central districts benefit from multimodal infrastructure and greater diversity of supply. This study concludes that food systems should be treated as critical urban infrastructure. Integrating food equity into land use and mobility planning is essential to promote inclusive, sustainable, and resilient urban development. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

24 pages, 1040 KiB  
Article
The Role of Visual Cues in Online Reviews: How Image Complexity Shapes Review Helpfulness
by Yongjie Chu, Xinru Liu and Cengceng Liu
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 181; https://doi.org/10.3390/jtaer20030181 - 15 Jul 2025
Viewed by 353
Abstract
Online reviews play a critical role in shaping consumer decisions and providing valuable insights to enhance the products and services for businesses. As visual content becomes increasingly prevalent in reviews, it is essential to understand how image complexity influences review helpfulness. Despite the [...] Read more.
Online reviews play a critical role in shaping consumer decisions and providing valuable insights to enhance the products and services for businesses. As visual content becomes increasingly prevalent in reviews, it is essential to understand how image complexity influences review helpfulness. Despite the growing importance of images, the impact of color diversity and texture homogeneity on review helpfulness remains underexplored. Grounded in Information Diagnosticity Theory and Dual Coding Theory, this study investigates the relationship between image complexity and review helpfulness, as well as the moderating role of review text readability. Using a large-scale dataset from the hotel and travel sectors, the findings reveal that color diversity has a positive effect on review helpfulness, while texture homogeneity follows an inverted U-shaped relationship with helpfulness. Furthermore, text readability strengthens the positive impact of texture homogeneity, making moderately homogeneous images more effective when paired with clear and well-structured text. Heterogeneity analysis demonstrates that these effects vary across product categories. The results advance the understanding of multimodal information processing in online reviews, providing actionable guidance for platforms and businesses to refine the review systems. Full article
(This article belongs to the Section e-Commerce Analytics)
Show Figures

Figure 1

17 pages, 2430 KiB  
Article
Multimodal Navigation and Virtual Companion System: A Wearable Device Assisting Blind People in Independent Travel
by Jingjing Xu, Caiyi Wang, Yancheng Li, Xuantuo Huang, Meina Zhao, Zhuoqun Shen, Yiding Liu, Yuxin Wan, Fengrong Sun, Jianhua Zhang and Shengyong Xu
Sensors 2025, 25(13), 4223; https://doi.org/10.3390/s25134223 - 6 Jul 2025
Viewed by 368
Abstract
Visual impairment or even loss seriously affects quality of life. Benefited by the rapid development of sound/laser detection, Global Positioning System (GPS)/Beidou positioning, machine vision and other technologies, the quality of life of blind people is expected to be improved through visual substitution [...] Read more.
Visual impairment or even loss seriously affects quality of life. Benefited by the rapid development of sound/laser detection, Global Positioning System (GPS)/Beidou positioning, machine vision and other technologies, the quality of life of blind people is expected to be improved through visual substitution technology. The existing visual substitution devices still have limitations in terms of safety, robustness, and ease of operation. The remote companion system developed here fully utilizes multimodal navigation and remote communication technologies, and the positioning and interaction functions of commercial mobile phones. Together with the accumulated judgment of backend personnel, it can provide real-time, safe, and reliable navigation services for blind people, helping them complete daily activities such as independent travel, circulation, and shopping. The practical results show that the system not only has strong operability and is easy to use, but also can provide users with a strong sense of security and companionship, making it suitable for promotion. In the future, this system can also be promoted for other vulnerable groups such as the elderly. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

40 pages, 3472 KiB  
Review
The Current Development Status of Agricultural Machinery Chassis in Hilly and Mountainous Regions
by Renkai Ding, Xiangyuan Qi, Xuwen Chen, Yixin Mei and Anze Li
Appl. Sci. 2025, 15(13), 7505; https://doi.org/10.3390/app15137505 - 3 Jul 2025
Viewed by 348
Abstract
The scenario adaptability of agricultural machinery chassis in hilly and mountainous regions has become a key area of innovation in modern agricultural equipment development in China. Due to the fragmented nature of farmland, steep terrain (often exceeding 15°), complex topography, and limited suitability [...] Read more.
The scenario adaptability of agricultural machinery chassis in hilly and mountainous regions has become a key area of innovation in modern agricultural equipment development in China. Due to the fragmented nature of farmland, steep terrain (often exceeding 15°), complex topography, and limited suitability for mechanization, traditional agricultural machinery experiences significantly reduced operational efficiency—typically by 30% to 50%—along with poor mobility. These limitations impose serious constraints on grain yield stability and the advancement of agricultural modernization. Therefore, enhancing the scenario-adaptive performance of chassis systems (e.g., slope adaptability ≥ 25°, lateral tilt stability > 30°) is a major research priority for China’s agricultural equipment industry. This paper presents a systematic review of the global development status of agricultural machinery chassis tailored for hilly and mountainous environments. It focuses on three core subsystems—power systems, traveling systems, and leveling systems—and analyzes their technical characteristics, working principles, and scenario-specific adaptability. In alignment with China’s “Dual Carbon” strategy and the unique operational requirements of hilly–mountainous areas (such as high gradients, uneven terrain, and small field sizes), this study proposes three key technological directions for the development of intelligent agricultural machinery chassis: (1) Multi-mode traveling mechanism design: Aimed at improving terrain traversability (ground clearance ≥400 mm, obstacle-crossing height ≥ 250 mm) and traction stability (slip ratio < 15%) across diverse landscapes. (2) Coordinated control algorithm optimization: Designed to ensure stable torque output (fluctuation rate < ±10%) and maintain gradient operation efficiency (e.g., less than 15% efficiency loss on 25° slopes) through power–drive synergy while also optimizing energy management strategies. (3) Intelligent perception system integration: Facilitating high-precision adaptive leveling (accuracy ± 0.5°, response time < 3 s) and enabling terrain-adaptive mechanism optimization to enhance platform stability and operational safety. By establishing these performance benchmarks and focusing on critical technical priorities—including terrain-adaptive mechanism upgrades, energy-drive coordination, and precision leveling—this study provides a clear roadmap for the development of modular and intelligent chassis systems specifically designed for China’s hilly and mountainous regions, thereby addressing current bottlenecks in agricultural mechanization. Full article
Show Figures

Figure 1

25 pages, 10430 KiB  
Article
Investigating the Impact of Inter-City Patient Mobility on Local Residents’ Equity in Access to High-Level Healthcare: A Case Study of Beijing
by Zhiqing Li and Zhenbao Wang
ISPRS Int. J. Geo-Inf. 2025, 14(7), 260; https://doi.org/10.3390/ijgi14070260 - 2 Jul 2025
Viewed by 312
Abstract
The equitable allocation of healthcare resources reflects social equity. Previous studies of healthcare accessibility have overlooked the impact of inter-city patient mobility on local residents’ and local residents’ multi-mode travel choices, distorting accessibility calculation outcomes. Taking the area within Beijing’s Sixth Ring Road [...] Read more.
The equitable allocation of healthcare resources reflects social equity. Previous studies of healthcare accessibility have overlooked the impact of inter-city patient mobility on local residents’ and local residents’ multi-mode travel choices, distorting accessibility calculation outcomes. Taking the area within Beijing’s Sixth Ring Road as an example, this study established a Multi-Mode Accessibility Model for Local Residents (MMALR) to tertiary hospitals, using the proportion of non-local patients to adjust hospital supply capacity and considering the various travel mode shares from residential communities to hospitals to calculate the number of potential patients. We compared the changes in geospatial accessibility under different travel modes and employed the Gini coefficient to evaluate the geospatial equity of accessibility for different regions when using different accessibility methods. The results indicate that the spatial distribution of healthcare accessibility via different methods is similar, and it gradually decreases along subway lines from the urban center to the periphery. We found that the equities in access to high-level healthcare for Dongcheng District, Xicheng District, the area between the Third and Fourth Ring Road, and the area between the Fourth and Fifth Ring Road, display different ranking results across different methods, revealing that an unreasonable analysis framework could mislead the placement decisions for new hospitals or the allocation of medical resources. These findings emphasize the impact of inter-city patient mobility and the diversity of travel mode choices on accessibility. Our model can assist stakeholders in more accurately evaluating the accessibility and equity of local residents in terms of tertiary hospitals, which is crucial for cities with abundant medical resources and superior conditions. Our analytical findings provide a scientific basis for the location decisions of tertiary hospitals. Full article
Show Figures

Figure 1

30 pages, 4491 KiB  
Article
IoT-Enabled Adaptive Traffic Management: A Multiagent Framework for Urban Mobility Optimisation
by Ibrahim Mutambik
Sensors 2025, 25(13), 4126; https://doi.org/10.3390/s25134126 - 2 Jul 2025
Cited by 2 | Viewed by 527
Abstract
This study evaluates the potential of IoT-enabled adaptive traffic management systems for mitigating urban congestion, enhancing mobility, and reducing environmental impacts in densely populated cities. Using London as a case study, the research develops a multiagent simulation framework to assess the effectiveness of [...] Read more.
This study evaluates the potential of IoT-enabled adaptive traffic management systems for mitigating urban congestion, enhancing mobility, and reducing environmental impacts in densely populated cities. Using London as a case study, the research develops a multiagent simulation framework to assess the effectiveness of advanced traffic management strategies—including adaptive signal control and dynamic rerouting—under varied traffic scenarios. Unlike conventional models that rely on static or reactive approaches, this framework integrates real-time data from IoT-enabled sensors with predictive analytics to enable proactive adjustments to traffic flows. Distinctively, the study couples this integration with a multiagent simulation environment that models the traffic actors—private vehicles, buses, cyclists, and emergency services—as autonomous, behaviourally dynamic agents responding to real-time conditions. This enables a more nuanced, realistic, and scalable evaluation of urban mobility strategies. The simulation results indicate substantial performance gains, including a 30% reduction in average travel times, a 50% decrease in congestion at major intersections, and a 28% decline in CO2 emissions. These findings underscore the transformative potential of sensor-driven adaptive systems for advancing sustainable urban mobility. The study addresses critical gaps in the existing literature by focusing on scalability, equity, and multimodal inclusivity, particularly through the prioritisation of high-occupancy and essential traffic. Furthermore, it highlights the pivotal role of IoT sensor networks in real-time traffic monitoring, control, and optimisation. By demonstrating a novel and practical application of sensor technologies to traffic systems, the proposed framework makes a significant and timely contribution to the field and offers actionable insights for smart city planning and transportation policy. Full article
(This article belongs to the Special Issue Vehicular Sensing for Improved Urban Mobility: 2nd Edition)
Show Figures

Figure 1

20 pages, 1652 KiB  
Article
Analysis of Spatiotemporal Characteristics of Intercity Travelers Within Urban Agglomeration Based on Trip Chain and K-Prototypes Algorithm
by Shuai Yu, Yuqing Liu and Song Hu
Appl. Syst. Innov. 2025, 8(4), 88; https://doi.org/10.3390/asi8040088 - 26 Jun 2025
Viewed by 401
Abstract
In the rapid process of urbanization, urban agglomerations have become a key driving factor for regional development and spatial reorganization. The formation and development of urban agglomerations rely on communication between cities. However, the spatiotemporal characteristics of intercity travelers are not fully grasped [...] Read more.
In the rapid process of urbanization, urban agglomerations have become a key driving factor for regional development and spatial reorganization. The formation and development of urban agglomerations rely on communication between cities. However, the spatiotemporal characteristics of intercity travelers are not fully grasped throughout the entire trip chain. This study proposes a spatiotemporal analysis method for intercity travel in urban agglomerations by constructing origin-to-destination (OD) trip chains using smartphone data, with the Beijing–Tianjin–Hebei urban agglomeration as a case study. The study employed Cramer’s V and Spearman correlation coefficients for multivariate feature selection, identifying 12 key variables from an initial set of 20. Then, optimal cluster configuration was determined via silhouette analysis. Finally, the K-prototypes algorithm was applied to cluster 161,797 intercity trip chains across six transportation corridors in 2019 and 2021, facilitating a comparative spatiotemporal analysis of travel patterns. Results show the following: (1) Intercity travelers are predominantly males aged 19–35, with significantly higher weekday volumes; (2) Modal split exhibits significant spatial heterogeneity—the metro predominates in Beijing while road transport prevails elsewhere; (3) Departure hubs’ waiting times increased significantly in 2021 relative to 2019 baselines; (4) Increased metro mileage correlates positively with extended intra-city travel distances. The results substantially contribute to transportation planning, particularly in optimizing multimodal hub operations and infrastructure investment allocation. Full article
Show Figures

Figure 1

18 pages, 2781 KiB  
Article
Enhancing the Resilience of Intercity Transit System by Integrated Multimodal Emergency Dispatching and Passenger Assignment
by Xiaoyou Wang, Jiahe Tian and Enze Liu
Sustainability 2025, 17(13), 5717; https://doi.org/10.3390/su17135717 - 21 Jun 2025
Viewed by 283
Abstract
After the disruption of intercity railways, in order to effectively enhance system resilience and improve the sustainability of the intercity transit system, this paper studies the emergency response problem of multimodal collaboration based on the intercity multimodal transit system. Considering the constraints of [...] Read more.
After the disruption of intercity railways, in order to effectively enhance system resilience and improve the sustainability of the intercity transit system, this paper studies the emergency response problem of multimodal collaboration based on the intercity multimodal transit system. Considering the constraints of the disrupted network structure, multimodal emergency resources, dynamic passenger demand, and passenger participation willingness, a bi-level optimization model is established for maximizing system resilience and minimizing the deviation of passengers’ desired arrival time. This paper integrally determines the transit capacity, timetable, and passenger quantity on each line of each mode. A hybrid genetic and ant colony algorithm is designed to solve the problem. Taking the regional disruption of the Beijing–Tianjin–Hebei intercity railway network as a case study, the research results show that 59% of demand can be met with a single attempt and 70% of the arrival time is within the planned period. Based on this resilience-enhancement strategy, the imbalance between travel demand and transit capacity can be sustainably alleviated after railway disruption. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

22 pages, 2442 KiB  
Article
A Microcirculation Optimization Model for Public Transportation Networks in Low-Density Areas Considering Equity—A Case of Lanzhou
by Liyun Wang, Minan Yang, Xin Li and Yongsheng Qian
Sustainability 2025, 17(13), 5679; https://doi.org/10.3390/su17135679 - 20 Jun 2025
Viewed by 303
Abstract
With the increase in urban–rural disparities in China, rural public transportation systems in low-density areas face unique challenges, especially in the contexts of sparse population, complex topography, and uneven resource allocation; research on public transportation in low-density areas has had less attention compared [...] Read more.
With the increase in urban–rural disparities in China, rural public transportation systems in low-density areas face unique challenges, especially in the contexts of sparse population, complex topography, and uneven resource allocation; research on public transportation in low-density areas has had less attention compared to high-density urban areas. Therefore, how to solve the dilemma of public transportation service provision in low-density rural areas due to sparse population and long travel distances has become an urgent problem. In this paper, a dynamic optimization model based on a two-layer planning framework was constructed. The upper layer optimized the topology of multimodal transportation nodes through the Floyd shortest path algorithm to generate a composite network of trunk roads and feeder routes; the lower layer adopted an improved Logit discrete choice model, integrating the heterogeneous utility parameters, such as time cost, economic cost, and comfort, to simulate and realize the equilibrium allocation of stochastic users. It was found that the dynamic game mechanism based on the “path optimization–fairness measurement” can optimize the travel time, mode, route, and bus stop selection of rural residents. At the same time, the mechanism can realize the fair distribution of rural transportation network subjects (people–vehicles–roads). This provides a dynamic, multi-scenario macro policy reference basis for the optimization of a rural transportation network layout. Full article
Show Figures

Figure 1

13 pages, 4169 KiB  
Article
Application of Multimodal AI to Aid Scene Perception for the Visually Impaired
by Piotr Skulimowski
Appl. Sci. 2025, 15(12), 6442; https://doi.org/10.3390/app15126442 - 7 Jun 2025
Viewed by 724
Abstract
In this paper, the use of generative multimodal models for image analysis is proposed, with the goal of determining the selection of parameters for 3D scene segmentation algorithms in systems designed to assist blind individuals in navigation. AI algorithms enable scene type detection, [...] Read more.
In this paper, the use of generative multimodal models for image analysis is proposed, with the goal of determining the selection of parameters for 3D scene segmentation algorithms in systems designed to assist blind individuals in navigation. AI algorithms enable scene type detection, lighting condition assessment, and determination of whether a scene can be used to obtain parameters necessary for system initialization, such as the orientation of imaging sensors relative to the ground. Additionally, the effectiveness of extracting selected scene parameters using four multimodal models is evaluated, and the results are compared to annotations made by a human. The obtained results highlight the potential of utilizing such models to enhance the functionality of systems belonging to the Electronics Travel Aid group, particularly in terms of parameter selection for scene segmentation algorithms and scene presentation to visually impaired individuals. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

20 pages, 2562 KiB  
Article
A New Agent-Based Model to Simulate Demand-Responsive Transit in Small-Sized Cities
by Giovanni Calabrò
Sustainability 2025, 17(12), 5279; https://doi.org/10.3390/su17125279 - 7 Jun 2025
Cited by 1 | Viewed by 501
Abstract
Innovative demand-responsive transport services are spreading in most urban areas, allowing dynamic matching between demand and supply and enabling travellers to request shared rides in real-time via mobile applications. They are used both as an alternative to public transport and as an access/egress [...] Read more.
Innovative demand-responsive transport services are spreading in most urban areas, allowing dynamic matching between demand and supply and enabling travellers to request shared rides in real-time via mobile applications. They are used both as an alternative to public transport and as an access/egress leg to mass transit stations, i.e., acting as a feeder service. In low-demand areas and small-sized cities, it is often difficult to provide effective and cost-efficient public transport, thus resulting in an extensive use of private vehicles. Using an agent-based modelling approach, this study compares the performance of fixed-route transit (FRT) and demand-responsive transit (DRT), where optional stops can be activated on demand. The aim is to identify the conditions allowing DRT to become more advantageous than FRT in small-sized cities, both for travellers and the transport operator. A real-time matching algorithm identifies optimal trip chains (i.e., public transport lines; pick-up, drop-off and transfer stops; and time windows) for travel requests, dynamically updating vehicles’ routes and schedules. The model is applied to the city of Caltanissetta, Italy, where a transit service with six FRT urban lines is currently operating. Travel patterns were reconstructed from thousands of travel requests collected by a Mobility-as-a-Service platform within one-year. The main findings demonstrate the benefits of DRT in providing a higher quality of service, reducing riding times for passengers, and enhancing service efficiency without burdening operating costs. The DRT reduced the vehicle-kilometres travelled by up to 5% compared to FRT while decreasing passenger ride times by approximately 10%. An economic analysis showed reductions in operator unit costs of up to 3.4% for low-demand rates, confirming the advantages of flexible operations in small-sized cities. Full article
(This article belongs to the Special Issue Sustainable Transportation Engineering and Mobility Safety Management)
Show Figures

Figure 1

20 pages, 1163 KiB  
Article
A User-Centered Theoretical Model for Future Urban Transit Systems
by Gerald B. Imbugwa, Tom Gilb and Manuel Mazzara
Future Transp. 2025, 5(2), 62; https://doi.org/10.3390/futuretransp5020062 - 3 Jun 2025
Viewed by 305
Abstract
Growing populations and environmental issues are a burden for urban transport systems. Current research fails to offer multimodal integrated solutions maximizing time, cost, emissions, and satisfaction. We introduce the first optimization model integrating carpooling with micro-mobility for multi-leg routing in dynamic urban conditions [...] Read more.
Growing populations and environmental issues are a burden for urban transport systems. Current research fails to offer multimodal integrated solutions maximizing time, cost, emissions, and satisfaction. We introduce the first optimization model integrating carpooling with micro-mobility for multi-leg routing in dynamic urban conditions (peak, weather, accidents). In synthetically generated data calibrated with real-world trends, our framework performs up to 25% shorter travel times, 30% reduced peak-hour emissions, and sub-second computation for 40-node networks over single-mode baselines. The model’s scenario-aware flexibility and policy-controllable weights (λ1 to λ4) offer planners a scalable solution for sustainable mobility. The paper’s primary contribution is its integrated optimization framework integrating carpooling, micro-mobility, and multi-leg routing in dynamic urban conditions, an absent component in prior single-mode or static models. Our scenario-based analysis demonstrates up to 30% travel time and emissions reduction over stand-alone mobility solutions. Full article
(This article belongs to the Special Issue Feature Papers in Future Transportation)
Show Figures

Figure 1

23 pages, 6077 KiB  
Article
UAV Path Planning Using a State Transition Simulated Annealing Algorithm Based on Integrated Destruction Operators and Backward Learning Strategies
by Jianping Liu, Xiaoxia Han, Fengyi Liu, Jinde Wu and Wenjie Zhang
Appl. Sci. 2025, 15(11), 6064; https://doi.org/10.3390/app15116064 - 28 May 2025
Viewed by 366
Abstract
This study introduces a state transition simulated annealing algorithm that incorporates integrated destruction operators and backward learning strategies (DRSTASA) to address complex challenges in UAV path planning within multidimensional environments. UAV path planning is a critical optimization problem that requires smooth flight paths, [...] Read more.
This study introduces a state transition simulated annealing algorithm that incorporates integrated destruction operators and backward learning strategies (DRSTASA) to address complex challenges in UAV path planning within multidimensional environments. UAV path planning is a critical optimization problem that requires smooth flight paths, obstacle avoidance, moderate angle changes, and minimized flight distance to conserve fuel and reduce travel time. Traditional algorithms often become trapped in local optima, preventing them from finding globally optimal solutions. DRSTASA improves global search capabilities by initializing the population with Latin hypercube sampling, combined with destruction operators and backward learning strategies. Testing on 23 benchmark functions demonstrates that the algorithm outperforms both traditional and advanced metaheuristic algorithms in solving single and multimodal problems. Furthermore, in eight engineering design optimization scenarios, DRSTASA exhibits superior performance compared to the STASA and SNS algorithms, highlighting the significant advantages of this method. DRSTASA is also successfully applied to UAV path planning, identifying optimal paths and proving the practical value of the algorithm. Full article
Show Figures

Figure 1

Back to TopTop