Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (769)

Search Parameters:
Keywords = multimodal distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 61965 KB  
Article
The Cercal Sensilla of the Praying Mantis Hierodula patellifera and Statilia maculata: A New Partition Based on the Cerci Ultrastructure
by Yang Wang, Xiaoqun Ding, Huan Li and Yang Liu
Insects 2025, 16(11), 1093; https://doi.org/10.3390/insects16111093 (registering DOI) - 24 Oct 2025
Abstract
Cerci function as crucial sensory organs in insects, featuring a diverse array of sensilla on their surface, analogous to those found on antennae. Using scanning electron microscopy (SEM), we characterized the ultrastructure and distribution of cercal sensilla in Hierodula patellifera (H. patellifera [...] Read more.
Cerci function as crucial sensory organs in insects, featuring a diverse array of sensilla on their surface, analogous to those found on antennae. Using scanning electron microscopy (SEM), we characterized the ultrastructure and distribution of cercal sensilla in Hierodula patellifera (H. patellifera) and Statilia maculata (S. maculata). Results show that the cerci of H. patellifera and S. maculata are highly similar, with main differences observed in the number of cercal articles and the length of cerci. The cerci of both species and sexes are composed of multiple cylindrical articles, and there is variation in the number of types of sensilla on their surface articles within sex and individuals. Females possess more cercal articles than males, and their cerci are generally longer than those of males. In both sexes of these praying mantises, four types of cercal sensilla were identified: sensilla filiformia (Sf), sensilla chaetica (Sc), sensilla campaniformia (Sca) and cuticular pore (CP), with sensilla chaetica further classified into two subtypes (ScI, ScII). Sc are widely distributed over the entire cerci, while Sf are distributed in a circular pattern on the cercal articles. While the overall distribution patterns of cercal sensilla were conserved between the sexes, significant sexual dimorphism was observed in the morphological parameters of the sensory hairs, including their quantity, length, and basal diameter. Based on distinct sensilla arrangements on the cerci, we propose a novel zoning of the cerci into four parts (I–IV), which reflects a functional gradient specialized for reproductive roles: the proximal region is enriched with robust mechanoreceptors likely involved in mating and oviposition, the central region serves as a multimodal hub for integrating courtship and mating cues, and the distal region is simplified for close-range substrate assessment. These findings highlight the adaptive evolution of cercal sensilla in relation to reproductive behaviors and provide a morphological basis for future studies on mantis phylogeny and sensory ecology. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

31 pages, 9003 KB  
Article
Spatial Network Heterogeneity of Land Use Carbon Emissions and Ecosystem Services in Chang-Zhu-Tan Urban Agglomeration
by Fanmin Liu, Xianchao Zhao and Mengjie Wang
Land 2025, 14(11), 2119; https://doi.org/10.3390/land14112119 (registering DOI) - 24 Oct 2025
Abstract
Urban agglomerations are key to balancing carbon emissions (CEs) and ecosystem services (ESs), yet structural imbalances exist between LUCE and ESs due to the lack of standardized frameworks and clear governance strategies. This study investigates the relationship between LUCE and ESs in the [...] Read more.
Urban agglomerations are key to balancing carbon emissions (CEs) and ecosystem services (ESs), yet structural imbalances exist between LUCE and ESs due to the lack of standardized frameworks and clear governance strategies. This study investigates the relationship between LUCE and ESs in the Chang-Zhu-Tan urban agglomeration using multi-source data from 2010 to 2023. The study aims to address three main research questions: (1) How do LUCE and ES networks evolve over time? (2) What factors drive their heterogeneity? (3) How do urbanization and ecological restoration impact LUCE and ES network dynamics? To answer these, we apply centrality metrics and develop heterogeneity indices to evaluate connectivity, accessibility, and driving factors. The findings show that both LUCE and ES networks exhibit corridor-like structures, with asymmetric node distributions. The LUCE-Network’s degree centrality increased from 0.16 to 0.29, while the ES-Network’s rose from 0.16 to 0.23. Heterogeneity was initially positive but turned negative by 2023, indicating a shift from LUCE dominance to an increased emphasis on ES. This transition was influenced by urbanization, land use changes, and ecological restoration efforts. Notably, the proportion of built-up land (X11) grew from 0.0187 in 2010 to 0.1500 in 2023, intensifying the disparity between LUCE and ESs. Similarly, urbanization (X7) surged to 0.1558 in 2023, increasing CEs and the demand for ESs. A collaborative pathway is proposed to address these challenges, involving controlled urban development, restoration of green spaces, and prioritizing multimodal transport and energy efficiency. This framework offers actionable diagnostics for improving low-carbon and ecological governance in urban agglomerations. Full article
18 pages, 3445 KB  
Article
Underwater Objective Detection Algorithm Based on YOLOv8-Improved Multimodality Image Fusion Technology
by Yage Qie, Chao Fang, Jinghua Huang, Donghao Wu and Jian Jiang
Machines 2025, 13(11), 982; https://doi.org/10.3390/machines13110982 (registering DOI) - 24 Oct 2025
Abstract
The field of underwater robotics is experiencing rapid growth, wherein accurate object detection constitutes a fundamental component. Given the prevalence of false alarms and omission errors caused by intricate subaquatic conditions and substantial image noise, this study introduces an enhanced detection framework that [...] Read more.
The field of underwater robotics is experiencing rapid growth, wherein accurate object detection constitutes a fundamental component. Given the prevalence of false alarms and omission errors caused by intricate subaquatic conditions and substantial image noise, this study introduces an enhanced detection framework that combines the YOLOv8 architecture with multimodal visual fusion methodology. To solve the problem of degraded detection performance of the model in complex environments like those with low illumination, features from Visible Light Image are fused with the Thermal Distribution Features exhibited by Infrared Image, thereby yielding more comprehensive image information. Furthermore, to precisely focus on crucial target regions and information, a Multi-Scale Cross-Axis Attention Mechanism (MSCA) is introduced, which significantly enhances Detection Accuracy. Finally, to meet the lightweight requirement of the model, an Efficient Shared Convolution Head (ESC_Head) is designed. The experimental findings reveal that the YOLOv8-FUSED framework attains a mean average precision (mAP) of 82.1%, marking an 8.7% enhancement compared to the baseline YOLOv8 architecture. The proposed approach also exhibits superior detection capabilities relative to existing techniques while simultaneously satisfying the critical requirement for real-time underwater object detection. Moreover, the proposed system successfully meets the essential criteria for real-time detection of underwater objects. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

23 pages, 6498 KB  
Article
A Cross-Modal Deep Feature Fusion Framework Based on Ensemble Learning for Land Use Classification
by Xiaohuan Wu, Houji Qi, Keli Wang, Yikun Liu and Yang Wang
ISPRS Int. J. Geo-Inf. 2025, 14(11), 411; https://doi.org/10.3390/ijgi14110411 - 23 Oct 2025
Viewed by 184
Abstract
Land use classification based on multi-modal data fusion has gained significant attention due to its potential to capture the complex characteristics of urban environments. However, effectively extracting and integrating discriminative features derived from heterogeneous geospatial data remain challenging. This study proposes an ensemble [...] Read more.
Land use classification based on multi-modal data fusion has gained significant attention due to its potential to capture the complex characteristics of urban environments. However, effectively extracting and integrating discriminative features derived from heterogeneous geospatial data remain challenging. This study proposes an ensemble learning framework for land use classification by fusing cross-modal deep features from both physical and socioeconomic perspectives. Specifically, the framework utilizes the Masked Autoencoder (MAE) to extract global spatial dependencies from remote sensing imagery and applies long short-term memory (LSTM) networks to model spatial distribution patterns of points of interest (POIs) based on type co-occurrence. Furthermore, we employ inter-modal contrastive learning to enhance the representation of physical and socioeconomic features. To verify the superiority of the ensemble learning framework, we apply it to map the land use distribution of Bejing. By coupling various physical and socioeconomic features, the framework achieves an average accuracy of 84.33 %, surpassing several comparative baseline methods. Furthermore, the framework demonstrates comparable performance when applied to a Shenzhen dataset, confirming its robustness and generalizability. The findings highlight the importance of fully extracting and effectively integrating multi-source deep features in land use classification, providing a robust solution for urban planning and sustainable development. Full article
Show Figures

Figure 1

25 pages, 3034 KB  
Article
Distributional CNN-LSTM, KDE, and Copula Approaches for Multimodal Multivariate Data: Assessing Conditional Treatment Effects
by Jong-Min Kim
Analytics 2025, 4(4), 29; https://doi.org/10.3390/analytics4040029 - 21 Oct 2025
Viewed by 172
Abstract
We introduce a distributional CNN-LSTM framework for probabilistic multivariate modeling and heterogeneous treatment effect (HTE) estimation. The model jointly captures complex dependencies among multiple outcomes and enables precise estimation of individual-level conditional average treatment effects (CATEs). In simulation studies with multivariate Gaussian mixtures, [...] Read more.
We introduce a distributional CNN-LSTM framework for probabilistic multivariate modeling and heterogeneous treatment effect (HTE) estimation. The model jointly captures complex dependencies among multiple outcomes and enables precise estimation of individual-level conditional average treatment effects (CATEs). In simulation studies with multivariate Gaussian mixtures, the CNN-LSTM demonstrates robust density estimation and strong CATE recovery, particularly as mixture complexity increases, while classical methods such as Kernel Density Estimation (KDE) and Gaussian Copulas may achieve higher log-likelihood or coverage in simpler scenarios. On real-world datasets, including Iris and Criteo Uplift, the CNN-LSTM achieves the lowest CATE RMSE, confirming its practical utility for individualized prediction, although KDE and Gaussian Copula approaches may perform better on global likelihood or coverage metrics. These results indicate that the CNN-LSTM can be trained efficiently on moderate-sized datasets while maintaining stable predictive performance. Overall, the framework is particularly valuable in applications requiring accurate individual-level effect estimation and handling of multimodal heterogeneity—such as personalized medicine, economic policy evaluation, and environmental risk assessment—with its primary strength being superior CATE recovery under complex outcome distributions, even when likelihood-based metrics favor simpler baselines. Full article
Show Figures

Figure 1

22 pages, 2953 KB  
Article
Probabilistic Sampling Networks for Hybrid Structure Planning in Semi-Structured Environments
by Xiancheng Ji, Jianjun Yi and Lin Su
Sensors 2025, 25(20), 6476; https://doi.org/10.3390/s25206476 - 20 Oct 2025
Viewed by 160
Abstract
The advancement of adaptable industrial robots in intelligent manufacturing is hindered by the inefficiency of traditional motion planning methods in high-dimensional spaces. Therefore, a Dempster–Shafer evidence theory-based hybrid motion planner is proposed, in which a probabilistic sampling network (PSNet) and an enhanced artificial [...] Read more.
The advancement of adaptable industrial robots in intelligent manufacturing is hindered by the inefficiency of traditional motion planning methods in high-dimensional spaces. Therefore, a Dempster–Shafer evidence theory-based hybrid motion planner is proposed, in which a probabilistic sampling network (PSNet) and an enhanced artificial potential field (EAPF) cooperate with each other to improve the planning performance. The PSNet architecture comprises two modules: a motion planning module (MPM) and a fusion sampling module (FSM). The MPM utilizes sensor data alongside the robot’s current and target configurations to recursively generate diverse multimodal distributions of the next configuration. Based on the distribution information, the FSM was used as a decision-maker to ultimately generate globally connectable paths. Moreover, the FSM is equipped to correct collision path points caused by network inaccuracies through Gaussian resampling. Simultaneously, an augmented artificial potential field with a dynamic rotational field is deployed to repair local paths when worst-case collision scenarios occur. This collaborative strategy harmoniously unites the complementary strengths of both components, thereby enhancing the overall resilience and adaptability of the motion planning system. Experiments were conducted in various environments. The results demonstrate that the proposed method can quickly find directly connectable paths in diverse environments while reliably avoiding sudden obstacles. Full article
(This article belongs to the Special Issue Advanced Robotic Manipulators and Control Applications)
Show Figures

Figure 1

22 pages, 2301 KB  
Article
Multi-Modal Dynamic Transit Assignment for Transit Networks Incorporating Bike-Sharing
by Yindong Shen and Zhuang Qian
Future Transp. 2025, 5(4), 148; https://doi.org/10.3390/futuretransp5040148 - 17 Oct 2025
Viewed by 220
Abstract
Traditional multi-modal dynamic transit assignment (DTA) models predominantly focus on bus and rail systems, overlooking the role of bike-sharing in passenger flow distribution. To bridge this gap, a multi-modal dynamic transit assignment model incorporating bike-sharing (MMDTA-BS) is proposed. This model integrates bike-sharing, buses, [...] Read more.
Traditional multi-modal dynamic transit assignment (DTA) models predominantly focus on bus and rail systems, overlooking the role of bike-sharing in passenger flow distribution. To bridge this gap, a multi-modal dynamic transit assignment model incorporating bike-sharing (MMDTA-BS) is proposed. This model integrates bike-sharing, buses, rail services, and walking into a unified framework. Represented by the variational inequality (VI), the MMDTA-BS model is proven to satisfy the multi-modal dynamic transit user equilibrium conditions. To solve the VI formulation, a projection-based approach with dynamic path costing (PA-DPC) is developed. This approach dynamically updates path costs to accelerate convergence. Experiments conducted on real-world networks demonstrate that the PA-DPC approach achieves rapid convergence and outperforms all compared algorithms. The results also reveal that bike-sharing can serve as an effective means for transferring passengers to rail modes and attracting short-haul passengers. Moreover, the model can quantify bike-sharing demand imbalances and offer actionable insights for optimizing bike deployment and urban transit planning. Full article
Show Figures

Figure 1

15 pages, 1977 KB  
Article
Robustness of the Trinormal ROC Surface Model: Formal Assessment via Goodness-of-Fit Testing
by Christos Nakas
Stats 2025, 8(4), 101; https://doi.org/10.3390/stats8040101 - 17 Oct 2025
Viewed by 254
Abstract
Receiver operating characteristic (ROC) surfaces provide a natural extension of ROC curves to three-class diagnostic problems. A key summary index is the volume under the surface (VUS), representing the probability that a randomly chosen observation from each of the three ordered groups is [...] Read more.
Receiver operating characteristic (ROC) surfaces provide a natural extension of ROC curves to three-class diagnostic problems. A key summary index is the volume under the surface (VUS), representing the probability that a randomly chosen observation from each of the three ordered groups is correctly classified. A parametric estimation of VUS typically assumes trinormality of the class distributions. However, a formal method for the verification of this composite assumption has not appeared in the literature. Our approach generalizes the two-class AUC-based GOF test of Zou et al. to the three-class setting by exploiting the parallel structure between empirical and trinormal VUS estimators. We propose a global goodness-of-fit (GOF) test for trinormal ROC models based on the difference between empirical and trinormal parametric estimates of the VUS. To improve stability, a probit transformation is applied and a bootstrap procedure is used to estimate the variance of the difference. The resulting test provides a formal diagnostic for assessing the adequacy of trinormal ROC modeling. Simulation studies illustrate the robustness of the assumption via the empirical size and power of the test under various distributional settings, including skewed and multimodal alternatives. The method’s application to COVID-19 antibody level data demonstrates the practical utility of it. Our findings suggest that the proposed GOF test is simple to implement, computationally feasible for moderate sample sizes, and a useful complement to existing ROC surface methodology. Full article
(This article belongs to the Section Biostatistics)
Show Figures

Figure 1

25 pages, 1835 KB  
Article
An Enhanced Moss Growth Optimization Algorithm with Outpost Mechanism and Early Stopping Strategy for Production Optimization in Tight Reservoirs
by Chenglong Wang, Chengqian Tan and Youyou Cheng
Biomimetics 2025, 10(10), 704; https://doi.org/10.3390/biomimetics10100704 - 17 Oct 2025
Viewed by 249
Abstract
Optimization algorithms play a crucial role in solving complex problems in reservoir geology and engineering, particularly those involving highly non-linear, multi-parameter, and high-dimensional systems. In the context of reservoir development, accurate optimization is essential for enhancing hydrocarbon recovery, improving production efficiency, and managing [...] Read more.
Optimization algorithms play a crucial role in solving complex problems in reservoir geology and engineering, particularly those involving highly non-linear, multi-parameter, and high-dimensional systems. In the context of reservoir development, accurate optimization is essential for enhancing hydrocarbon recovery, improving production efficiency, and managing subsurface uncertainties. The Moss Growth Optimization (MGO) algorithm emulates the adaptive growth and reproductive strategies of moss. It provides a robust bio-inspired framework for global optimization. However, MGO often suffers from slow convergence and difficulty in escaping local optima in highly multimodal landscapes. To address these limitations, this paper proposes a novel algorithm called Strategic Moss Growth Optimization (SMGO). SMGO integrates two enhancements: an Outpost Mechanism (OM) and an Early Stopping Strategy (ESS). The OM improves exploitation by guiding individuals through multi-stage local search with Gaussian-distributed exploration around promising regions. This helps refine the search and prevents stagnation in sub-optimal areas. In parallel, the ESS periodically reinitializes the population using a run-and-reset procedure. This diversification allows the algorithm to escape local minima and maintain population diversity. Together, these strategies enable SMGO to accelerate convergence while ensuring solution quality. Its performance is rigorously evaluated on a suite of global optimization benchmarks and compared with state-of-the-art metaheuristics. The results show that SMGO achieves superior or highly competitive outcomes, with clear improvements in accuracy and stability. To demonstrate real-world applicability, SMGO is applied to production optimization in tight reservoirs. The algorithm identifies superior production strategies, leading to significant improvements in projected economic returns. This successful application highlights the robustness and practical value of SMGO. It offers a powerful and reliable optimization tool for complex engineering problems, particularly in strategic resource management for tight reservoir development. Full article
(This article belongs to the Special Issue Advances in Biological and Bio-Inspired Algorithms)
Show Figures

Figure 1

22 pages, 2027 KB  
Article
Agri-DSSA: A Dual Self-Supervised Attention Framework for Multisource Crop Health Analysis Using Hyperspectral and Image-Based Benchmarks
by Fatema A. Albalooshi
AgriEngineering 2025, 7(10), 350; https://doi.org/10.3390/agriengineering7100350 - 17 Oct 2025
Viewed by 227
Abstract
Recent advances in hyperspectral imaging (HSI) and multimodal deep learning have opened new opportunities for crop health analysis; however, most existing models remain limited by dataset scope, lack of interpretability, and weak cross-domain generalization. To overcome these limitations, this study introduces Agri-DSSA, a [...] Read more.
Recent advances in hyperspectral imaging (HSI) and multimodal deep learning have opened new opportunities for crop health analysis; however, most existing models remain limited by dataset scope, lack of interpretability, and weak cross-domain generalization. To overcome these limitations, this study introduces Agri-DSSA, a novel Dual Self-Supervised Attention (DSSA) framework that simultaneously models spectral and spatial dependencies through two complementary self-attention branches. The proposed architecture enables robust and interpretable feature learning across heterogeneous data sources, facilitating the estimation of spectral proxies of chlorophyll content, plant vigor, and disease stress indicators rather than direct physiological measurements. Experiments were performed on seven publicly available benchmark datasets encompassing diverse spectral and visual domains: three hyperspectral datasets (Indian Pines with 16 classes and 10,366 labeled samples; Pavia University with 9 classes and 42,776 samples; and Kennedy Space Center with 13 classes and 5211 samples), two plant disease datasets (PlantVillage with 54,000 labeled leaf images covering 38 diseases across 14 crop species, and the New Plant Diseases dataset with over 30,000 field images captured under natural conditions), and two chlorophyll content datasets (the Global Leaf Chlorophyll Content Dataset (GLCC), derived from MERIS and OLCI satellite data between 2003–2020, and the Leaf Chlorophyll Content Dataset for Crops, which includes paired spectrophotometric and multispectral measurements collected from multiple crop species). To ensure statistical rigor and spatial independence, a block-based spatial cross-validation scheme was employed across five independent runs with fixed random seeds. Model performance was evaluated using R2, RMSE, F1-score, AUC-ROC, and AUC-PR, each reported as mean ± standard deviation with 95% confidence intervals. Results show that Agri-DSSA consistently outperforms baseline models (PLSR, RF, 3D-CNN, and HybridSN), achieving up to R2=0.86 for chlorophyll content estimation and F1-scores above 0.95 for plant disease detection. The attention distributions highlight physiologically meaningful spectral regions (550–710 nm) associated with chlorophyll absorption, confirming the interpretability of the model’s learned representations. This study serves as a methodological foundation for UAV-based and field-deployable crop monitoring systems. By unifying hyperspectral, chlorophyll, and visual disease datasets, Agri-DSSA provides an interpretable and generalizable framework for proxy-based vegetation stress estimation. Future work will extend the model to real UAV campaigns and in-field spectrophotometric validation to achieve full agronomic reliability. Full article
Show Figures

Figure 1

15 pages, 2694 KB  
Article
Seismic Facies Recognition Based on Multimodal Network with Knowledge Graph
by Binpeng Yan, Mutian Li, Rui Pan and Jiaqi Zhao
Appl. Sci. 2025, 15(20), 11087; https://doi.org/10.3390/app152011087 - 16 Oct 2025
Viewed by 153
Abstract
Seismic facies recognition constitutes a fundamental task in seismic data interpretation, playing an essential role in characterizing subsurface geological structures, sedimentary environments, and hydrocarbon reservoir distributions. Conventional approaches primarily depend on expert interpretation, which often introduces substantial subjectivity and operational inefficiency. Although deep [...] Read more.
Seismic facies recognition constitutes a fundamental task in seismic data interpretation, playing an essential role in characterizing subsurface geological structures, sedimentary environments, and hydrocarbon reservoir distributions. Conventional approaches primarily depend on expert interpretation, which often introduces substantial subjectivity and operational inefficiency. Although deep learning-based methods have been introduced, most rely solely on unimodal data—namely, seismic images—and encounter challenges such as limited annotated samples and inadequate generalization capability. To overcome these limitations, this study proposes a multimodal seismic facies recognition framework named GAT-UKAN, which integrates a U-shaped Kolmogorov–Arnold Network (U-KAN) with a Graph Attention Network (GAT). This model is designed to accept dual-modality inputs. By fusing visual features with knowledge embeddings at intermediate network layers, the model achieves knowledge-guided feature refinement. This approach effectively mitigates issues related to limited samples and poor generalization inherent in single-modality frameworks. Experiments were conducted on the F3 block dataset from the North Sea. A knowledge graph comprising 47 entities and 12 relation types was constructed to incorporate expert knowledge. The results indicate that GAT-UKAN achieved a Pixel Accuracy of 89.7% and a Mean Intersection over Union of 70.6%, surpassing the performance of both U-Net and U-KAN. Furthermore, the model was transferred to the Parihaka field in New Zealand via transfer learning. After fine-tuning, the predictions exhibited strong alignment with seismic profiles, demonstrating the model’s robustness under complex geological conditions. Although the proposed model demonstrates excellent performance in accuracy and robustness, it has so far been validated only on 2D seismic profiles. Its capability to characterize continuous 3D geological features therefore remains limited. Full article
Show Figures

Figure 1

38 pages, 8603 KB  
Review
Fiber-Optic Pressure Sensors: Recent Advances in Sensing Mechanisms, Fabrication Technologies, and Multidisciplinary Applications
by Yihang Wang, Botong Chen, Guirong Wu, Chenyang Xue and Libo Gao
Sensors 2025, 25(20), 6336; https://doi.org/10.3390/s25206336 - 14 Oct 2025
Viewed by 656
Abstract
Fiber-optic sensing (FOS) technology has emerged as a cutting-edge research focus in the sensor field due to its miniaturized structure, high sensitivity, and remarkable electromagnetic interference immunity. Compared with conventional sensing technologies, FOS demonstrates superior capabilities in distributed detection and multi-parameter multiplexing, thereby [...] Read more.
Fiber-optic sensing (FOS) technology has emerged as a cutting-edge research focus in the sensor field due to its miniaturized structure, high sensitivity, and remarkable electromagnetic interference immunity. Compared with conventional sensing technologies, FOS demonstrates superior capabilities in distributed detection and multi-parameter multiplexing, thereby accelerating its applications across biomedical, industrial, and aerospace fields. This paper conducts a systematic analysis of the sensing mechanisms in fiber-optic pressure sensors, with a particular focus on the performance optimization effects of fiber structures and materials, while elucidating their application characteristics in different sensing scenarios. This review further examines current manufacturing technologies for fiber-optic pressure sensors, covering key processes including fiber processing and packaging. Regarding practical applications, the multifunctional characteristics of fiber-optic pressure sensors are thoroughly investigated in various fields, including biomedical monitoring, industrial and energy monitoring, and wearable devices, as well as aerospace monitoring. Furthermore, current challenges are discussed regarding performance degradation in extreme environments and multi-parameter cross-sensitivity issues, while future research directions are proposed, encompassing the integration and exploration of novel structures and materials. By synthesizing recent advancements and development trends, this review serves as a critical reference bridging the gap between research and practical applications, accelerating the advancement of fiber-optic pressure sensors. Full article
Show Figures

Figure 1

24 pages, 1535 KB  
Article
Enhanced Distributed Multimodal Federated Learning Framework for Privacy-Preserving IoMT Applications: E-DMFL
by Dagmawit Tadesse Aga and Madhuri Siddula
Electronics 2025, 14(20), 4024; https://doi.org/10.3390/electronics14204024 - 14 Oct 2025
Viewed by 386
Abstract
The rapid growth of Internet of Medical Things (IoMT) devices offers promising avenues for real-time, personalized healthcare while also introducing critical challenges related to data privacy, device heterogeneity, and deployment scalability. This paper presents E-DMFL (Enhanced Distributed Multimodal Federated Learning), an Enhanced Distributed [...] Read more.
The rapid growth of Internet of Medical Things (IoMT) devices offers promising avenues for real-time, personalized healthcare while also introducing critical challenges related to data privacy, device heterogeneity, and deployment scalability. This paper presents E-DMFL (Enhanced Distributed Multimodal Federated Learning), an Enhanced Distributed Multimodal Federated Learning framework designed to address these issues. Our approach combines systems analysis principles with intelligent model design, integrating PyTorch-based modular orchestration and TensorFlow-style data pipelines to enable multimodal edge-based training. E-DMFL incorporates gated attention fusion, differential privacy, Shapley-value-based modality selection, and peer-to-peer communication to facilitate secure and adaptive learning in non-IID environments. We evaluate the framework using the EarSAVAS dataset, which includes synchronized audio and motion signals from ear-worn sensors. E-DMFL achieves a test accuracy of 92.0% in just six communication rounds. The framework also supports energy-efficient and real-time deployment through quantization-aware training and battery-aware scheduling. These results demonstrate the potential of combining systems-level design with federated learning (FL) innovations to support practical, privacy-aware IoMT applications. Full article
Show Figures

Figure 1

30 pages, 23104 KB  
Article
MSAFNet: Multi-Modal Marine Aquaculture Segmentation via Spatial–Frequency Adaptive Fusion
by Guolong Wu and Yimin Lu
Remote Sens. 2025, 17(20), 3425; https://doi.org/10.3390/rs17203425 - 13 Oct 2025
Viewed by 432
Abstract
Accurate mapping of marine aquaculture areas is critical for environmental management and sustainable development for marine ecosystem protection and sustainable resource utilization. However, remote sensing imagery based on single-sensor modalities has inherent limitations when extracting aquaculture zones in complex marine environments. To address [...] Read more.
Accurate mapping of marine aquaculture areas is critical for environmental management and sustainable development for marine ecosystem protection and sustainable resource utilization. However, remote sensing imagery based on single-sensor modalities has inherent limitations when extracting aquaculture zones in complex marine environments. To address this challenge, we constructed a multi-modal dataset from five Chinese coastal regions using cloud detection methods and developed Multi-modal Spatial–Frequency Adaptive Fusion Network (MSAFNet) for optical-radar data fusion. MSAFNet employs a dual-path architecture utilizing a Multi-scale Dual-path Feature Module (MDFM) that combines CNN and Transformer capabilities to extract multi-scale features. Additionally, it implements a Dynamic Frequency Domain Adaptive Fusion Module (DFAFM) to achieve deep integration of multi-modal features in both spatial and frequency domains, effectively leveraging the complementary advantages of different sensor data. Results demonstrate that MSAFNet achieves 76.93% mean intersection over union (mIoU), 86.96% mean F1 score (mF1), and 93.26% mean Kappa coefficient (mKappa) in extracting floating raft aquaculture (FRA) and cage aquaculture (CA), significantly outperforming existing methods. Applied to China’s coastal waters, the model generated 2020 nearshore aquaculture distribution maps, demonstrating its generalization capability and practical value in complex marine environments. This approach provides reliable technical support for marine resource management and ecological monitoring. Full article
Show Figures

Figure 1

21 pages, 3148 KB  
Article
A Novel Multimodal Hand Gesture Recognition Model Using Combined Approach of Inter-Frame Motion and Shared Attention Weights
by Xiaorui Zhang, Shuaitong Li, Xianglong Zeng, Peisen Lu and Wei Sun
Computers 2025, 14(10), 432; https://doi.org/10.3390/computers14100432 - 13 Oct 2025
Viewed by 321
Abstract
Dynamic hand gesture recognition based on computer vision aims at enabling computers to understand the semantic meaning conveyed by hand gestures in videos. Existing methods predominately rely on spatiotemporal attention mechanisms to extract hand motion features in a large spatiotemporal scope. However, they [...] Read more.
Dynamic hand gesture recognition based on computer vision aims at enabling computers to understand the semantic meaning conveyed by hand gestures in videos. Existing methods predominately rely on spatiotemporal attention mechanisms to extract hand motion features in a large spatiotemporal scope. However, they cannot accurately focus on the moving hand region for hand feature extraction because frame sequences contain a substantial amount of redundant information. Although multimodal techniques can extract a wider variety of hand features, they are less successful at utilizing information interactions between various modalities for accurate feature extraction. To address these challenges, this study proposes a multimodal hand gesture recognition model combining inter-frame motion and shared attention weights. By jointly using an inter-frame motion attention (IFMA) mechanism and adaptive down-sampling (ADS), the spatiotemporal search scope can be effectively narrowed down to the hand-related regions based on the characteristic of hands exhibiting obvious movements. The proposed inter-modal attention weight (IMAW) loss enables RGB and Depth modalities to share attention, allowing each to adjust its distribution based on the other. Experimental results on the EgoGesture, NVGesture, and Jester datasets demonstrate the superiority of our proposed model over existing state-of-the-art methods in terms of hand motion feature extraction and hand gesture recognition accuracy. Full article
(This article belongs to the Special Issue Multimodal Pattern Recognition of Social Signals in HCI (2nd Edition))
Show Figures

Figure 1

Back to TopTop