Fiber-Optic Pressure Sensors: Recent Advances in Sensing Mechanisms, Fabrication Technologies, and Multidisciplinary Applications
Abstract
1. Introduction
2. Sensing Mechanism of Optical Fiber Pressure Sensors
2.1. Fiber Bragg Grating Pressure Sensor
2.1.1. FBG Pressure Sensor
2.1.2. LPFG Pressure Sensor
2.1.3. TFBG Pressure Sensor
2.2. Optical Fiber Interferometric Pressure Sensor
2.2.1. Fabry–Pérot Interferometer (FPI) Pressure Sensors

2.2.2. Mach–Zehnder Interferometer (MZI) Pressure Sensors
2.2.3. Michelson Interferometer (MI) Pressure Sensors

2.2.4. Sagnac Interferometer (SI) Pressure Sensors
2.3. Optical Fiber Vernier Effect Pressure Sensor

3. Materials of Fiber Pressure Sensors
3.1. Fiber Bragg Grating Pressure Sensor Materials
| Cladding Material | Refractive Index | Wavelength | Reference |
|---|---|---|---|
| NaNO3 | 1.58–1.336 | 632.8 nm | [78] |
| LiTaO3 | 2.176–2.180 | 633 nm | [78] |
| LiNbO3 | 2.29–2.20 | 633 nm | [78] |
| Potassium dihydrogen phosphate (KDP) | 1.51–1.47 | 633 nm | [78] |
| TOPAS cyclic olefin copolymer | 1.525 | 1550 nm | [80] |

3.2. Optical Fiber Interferometric Pressure Sensor Materials
| Material | Primary Function | Sensitivity | Test Range | Reference |
|---|---|---|---|---|
| Silica | Transmitting optical signals | 9.48 pm/kPa | 0~200 kPa | [86] |
| 11 nm/kPa | 0~100 kPa | [87] | ||
| 12.4 nm/kPa | 6.9~48.3 kPa | [88] | ||
| 3.4 nm/kPa | 0~1 MPa | [89] | ||
| Polymer | Detecting and transmitting pressure signals | 100 pm/kPa | 100~175 kPa | [90] |
| 52.143 nm/Mpa | 0.1~0.7 Mpa | [91] | ||
| 20.63 nm/MPa | 0~2 MPa | [92] | ||
| 395 pm/kPa | 0~30 kPa | [93] | ||
| Graphene | Enhance specific sensitivity | 39.4 nm/kPa | 0~50 kPa | [94] |
| Metal | Construct an interference cavity | 1.6 nm/kPa | 0~50 psi | [95] |
| 19.5 nm/kPa | 0~100 kPa | [96] |

4. Manufacturing Technology of Optical Fiber Pressure Sensors
4.1. Manufacturing Method of Fiber Grating Pressure Sensor
4.2. Manufacturing Method of Optical Fiber Interference Pressure Sensor
5. Application of Optical Fiber Pressure Sensors
5.1. Biomedical Field
5.2. Industrial and Energy Field
5.3. Environment and Ocean Field
5.4. Aerospace and Defense Field
5.5. Consumer Electronics and Smart Wearables Field
6. Current Challenges and Trends
6.1. Current Challenges
6.2. Future Development Trends
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marques, C.A.F.; Pospori, A.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D.J. Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings. IEEE Sens. J. 2016, 16, 6122–6129. [Google Scholar] [CrossRef]
- Poeggel, S.; Tosi, D.; Duraibabu, D.; Leen, G.; McGrath, D.; Lewis, E. Optical fibre pressure sensors in medical applications. Sensors 2015, 15, 17115–17148. [Google Scholar] [CrossRef]
- Johny, J.; Amos, S.; Prabhu, R. Optical Fibre-Based Sensors for Oil and Gas Applications. Sensors 2021, 21, 6047. [Google Scholar] [CrossRef]
- Eaton, W.P.; Smith, J.H. Micromachined pressure sensors: Review and recent developments. Smart Mater. Struct. 1997, 6, 530. [Google Scholar] [CrossRef]
- Li, X.; Liu, Q.; Pang, S.; Xu, K.; Tang, H.; Sun, C. High-temperature piezoresistive pressure sensor based on implantation of oxygen into silicon wafer. Sens. Actuators A Phys. 2012, 179, 277–282. [Google Scholar] [CrossRef]
- Yuan, W.; Ren, S.; Deng, J.; Qiao, D. A review of silicon micromachined resonant pressure sensor. J. Mech. Eng 2013, 49, 2–9. [Google Scholar] [CrossRef]
- Chen, D.; Cao, M.; Wang, J.; Jiao, H.; Zhang, J. Fabrication and wafer-level vacuum packaging of MEMS resonant pressure sensor. Opt. Precis. Eng 2014, 22, 1235–1242. [Google Scholar] [CrossRef]
- Liang, H.; Wang, J.; Zhang, L.; Liu, J.; Wang, S. Review of Optical Fiber Sensors for Temperature, Salinity, and Pressure Sensing and Measurement in Seawater. Sensors 2022, 22, 5363. [Google Scholar] [CrossRef]
- Sheng, H.-J.; Fu, M.-Y.; Chen, T.-C.; Liu, W.-F.; Bor, S.-S. A lateral pressure sensor using a fiber Bragg grating. IEEE Photonics Technol. Lett. 2004, 16, 1146–1148. [Google Scholar] [CrossRef]
- Miliou, A. In-Fiber Interferometric-Based Sensors: Overview and Recent Advances. Photonics 2021, 8, 265. [Google Scholar] [CrossRef]
- Bucaro, J.A.; Dardy, H.D.; Carome, E.F. Fiber-optic hydrophone. J. Acoust. Soc. Am. 1977, 62, 1302–1304. [Google Scholar] [CrossRef]
- Fields, J.; Cole, J. Fiber microbend acoustic sensor. Appl. Opt. 1980, 19, 3265_3261–3267. [Google Scholar] [CrossRef]
- Xue, P.S.; Liu, Q.; Lu, S.C.; Xia, Y.W.; Wu, Q.; Fu, Y.Q. A review of microstructured optical fibers for sensing applications. Opt. Fiber Technol. 2023, 77, 103277. [Google Scholar] [CrossRef]
- De, M.; Gangopadhyay, T.K.; Singh, V.K. Prospects of Photonic Crystal Fiber as Physical Sensor: An Overview. Sensors 2019, 19, 464. [Google Scholar] [CrossRef]
- Peng, W.; Qi, B.; Pickrell, G.R.; Wang, A. Investigation on cubic zirconia-based fiber optic pressure sensor for high temperature application. In Proceedings of the 2nd IEEE International Conference on Sensors, Toronto, ON, Canada, 22–24 October 2003; pp. 713–717. [Google Scholar]
- Guo, J.; Liu, X.; Jiang, N.; Yetisen, A.K.; Yuk, H.; Yang, C.; Khademhosseini, A.; Zhao, X.; Yun, S.-H. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers. Adv. Mater. 2016, 28, 10244–10249. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, M.; Rajan, G.; Semenova, Y.; Farrell, G. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials. Sensors 2016, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Liao, C.R.; Wang, D.N. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Opt. Lett. 2010, 35, 1007–1009. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Xu, B.J.; Xu, X.Z.; Liao, C.R.; Wang, Y.P. Review of Femtosecond-Laser-Inscribed Fiber Bragg Gratings: Fabrication Technologies and Sensing Applications. Photonic Sens. 2021, 11, 203–226. [Google Scholar] [CrossRef]
- Jáuregui-Vázquez, D.; Estudillo-Ayala, J.M.; Rojas-Laguna, R.; Vargas-Rodríguez, E.; Sierra-Hernández, J.M.; Hernández-García, J.C.; Mata-Chávez, R.I. An All Fiber Intrinsic Fabry-Perot Interferometer Based on an Air-Microcavity. Sensors 2013, 13, 6355–6364. [Google Scholar] [CrossRef]
- He, Y.; Liu, J.; Luo, M.; Shi, H. Progress on the Microcavity Lasers Based on Microstructured Optical Fiber. Electronics 2023, 12, 1761. [Google Scholar] [CrossRef]
- Bednarska, K.; Sobotka, P.; Woliński, T.R.; Zakręcka, O.; Pomianek, W.; Nocoń, A.; Lesiak, P. Hybrid Fiber Optic Sensor Systems in Structural Health Monitoring in Aircraft Structures. Materials 2020, 13, 2249. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.I.; Vurek, G.G. Fiber-Optic Sensors for Biomedical Applications. Science 1984, 224, 123–127. [Google Scholar] [CrossRef]
- Lo Presti, D.; Massaroni, C.; Leitao, C.S.J.; Domingues, M.D.; Sypabekova, M.; Barrera, D.; Floris, I.; Massari, L.; Oddo, C.M.; Sales, S.; et al. Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review. IEEE Access 2020, 8, 156863–156888. [Google Scholar] [CrossRef]
- Allwood, G.; Wild, G.; Hinckley, S. Fiber Bragg Grating Sensors for Mainstream Industrial Processes. Electronics 2017, 6, 92. [Google Scholar] [CrossRef]
- Choi, K.N.; Juarez, J.C.; Taylor, H.F. Distributed fiber optic pressure/seismic sensor for low-cost monitoring of long perimeters. In Proceedings of the Unattended Ground Sensor Technologies and Applications V, Orlando, FL, USA, 21–25 April 2003; pp. 134–141. [Google Scholar]
- Jayawickrema, U.; Herath, H.; Hettiarachchi, N.; Sooriyaarachchi, H.; Epaarachchi, J. Fibre-optic sensor and deep learning-based structural health monitoring systems for civil structures: A review. Measurement 2022, 199, 111543. [Google Scholar] [CrossRef]
- Xu, M.; Reekie, L.; Chow, Y.; Dakin, J.P. Optical in-fibre grating high pressure sensor. Electron. Lett. 1993, 29, 398–399. [Google Scholar] [CrossRef]
- Nellen, P.M.; Mauron, P.; Frank, A.; Sennhauser, U.; Bohnert, K.; Pequignot, P.; Bodor, P.; Brändle, H. Reliability of fiber Bragg grating based sensors for downhole applications. Sens. Actuators A Phys. 2003, 103, 364–376. [Google Scholar] [CrossRef]
- Jiang, Q.; Du, H.; Hu, D.; Yang, M. Hydraulic pressure sensor based on fiber Bragg grating. Opt. Eng. 2011, 50, 064401. [Google Scholar] [CrossRef]
- Her, S.-C.; Weng, S.-Z. Fiber Bragg grating pressure sensor integrated with epoxy diaphragm. Sensors 2021, 21, 3199. [Google Scholar] [CrossRef]
- Hill, K.O.; Fujii, Y.; Johnson, D.C.; Kawasaki, B.S. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 1978, 32, 647–649. [Google Scholar] [CrossRef]
- Socorro Leránoz, A.; Santano, D.; Del Villar, I.; Matias, I. Trends in the design of wavelength-based optical fibre biosensors (2008–2018). Biosens. Bioelectron. X 2019, 1, 100015. [Google Scholar] [CrossRef]
- Xu, S.; Li, X.; Wang, T.; Wang, X.; Liu, H. Fiber Bragg grating pressure sensors: A review. Opt. Eng. 2023, 62, 010902. [Google Scholar] [CrossRef]
- Qiao, X.; Shao, Z.; Bao, W.; Rong, Q. Fiber Bragg Grating Sensors for the Oil Industry. Sensors 2017, 17, 429. [Google Scholar] [CrossRef]
- Xue, Z.-K.; Guo, Q.; Liu, S.-R.; Pan, X.-P.; Chen, C.; Yu, Y.-S. Fiber bragg grating temperature and pressure sensor for oil and gas well. Chin. Opt. 2021, 14, 1224–1230. [Google Scholar] [CrossRef]
- Vengsarkar, A.M.; Lemaire, P.J.; Judkins, J.B.; Bhatia, V.; Erdogan, T.; Sipe, J.E. Long-period fiber gratings as band-rejection filters. J. Light. Technol. 1996, 14, 58–65. [Google Scholar] [CrossRef]
- Davis, D.; Gaylord, T.; Glytsis, E.; Kosinski, S.; Mettler, S.; Vengsarkar, A. Long-period fibre grating fabrication with focused CO2 laser pulses. Electron. Lett. 1998, 34, 302–303. [Google Scholar] [CrossRef]
- Davis, D.; Gaylord, T.; Glytsis, E.; Mettler, S. CO2 laser-induced long-period fibre gratings: Spectral characteristics, cladding modes and polarisation independence. Electron. Lett. 1998, 34, 1416–1417. [Google Scholar] [CrossRef]
- Rao, Y.J.; Wang, Y.P.; Ran, Z.L.; Zhu, T. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses. J. Light. Technol. 2003, 21, 1320–1327. [Google Scholar] [CrossRef]
- Tang, J.; Yin, G.; Liu, S.; Zhong, X.; Liao, C.; Li, Z.; Wang, Q.; Zhao, J.; Yang, K.; Wang, Y. Gas Pressure Sensor Based on CO2-Laser-Induced Long-Period Fiber Grating in Air-Core Photonic Bandgap Fiber. IEEE Photonics J. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Tsutsumi, Y.; Ohashi, M.; Miyoshi, Y.; Kubota, H. Optical Gas Pressure Sensor with Long Period Fiber Grating Fabricated with Heat-shrinkable Tube. In Proceedings of the Asia Communications and Photonics Conference (ACP), Wuhan, China, 2–5 November 2016. [Google Scholar]
- Hu, C.J.; Guo, X.S.; Jiang, C.; Gao, J.W.; Li, L.; Deng, L.F.; Jiang, W.B.; Liu, C.N.; Sun, S.M. Long-period fiber grating based on micro-holes-filled PDMS for temperature and pressure measurement. Infrared Phys. Technol. 2024, 136, 105065. [Google Scholar] [CrossRef]
- Meltz, G.; Morey, W.; Glenn, W. In-fiber Bragg grating tap. In Proceedings of the Optical Fiber Communication Conference, San Francisco, CA, USA, 22–26 January 1990; p. TUG1. [Google Scholar]
- Chehura, E.; James, S.W.; Tatam, R.P. Temperature and strain discrimination using a single tilted fibre Bragg grating. Opt. Commun. 2007, 275, 344–347. [Google Scholar] [CrossRef]
- Shao, L.-Y.; Albert, J. Lateral force sensor based on a core-offset tilted fiber Bragg grating. Opt. Commun. 2011, 284, 1855–1858. [Google Scholar] [CrossRef]
- Lee, C.; Taylor, H.F. Interferometric optical fibre sensors using internal mirrors. Electron. Lett. 1988, 24, 193–194. [Google Scholar] [CrossRef]
- Lee, C.E.; Taylor, H.F.; Markus, A.M.; Udd, E. Optical-fiber Fabry–Perot embedded sensor. Opt. Lett. 1989, 14, 1225–1227. [Google Scholar] [CrossRef]
- Zheng, J.; Li, W.; Liu, X. Fast and simple interrogation of extrinsic Fabry–Perot interferometer sensor based on dual-wavelength intensity ratio. Opt. Commun. 2019, 439, 176–180. [Google Scholar] [CrossRef]
- Ma, C.; Wang, N.; Lally, E.; Wang, A. Intrinsic Fabry-Pérot Interferometric (IFPI) Fiber Pressure Sensor; SPIE: Bellingham, WA, USA, 2010; Volume 7677. [Google Scholar]
- Steele, R.; Walker, G. High-sensitivity FSK signal detection with an erbium-doped fiber preamplifier and Fabry-Perot etalon demodulation. IEEE Photonics Technol. Lett. 1990, 2, 753–755. [Google Scholar] [CrossRef]
- Murphy, K.A.; Gunther, M.F.; Vengsarkar, A.M.; Claus, R.O. Fabry–Perot fiber-optic sensors in full-scale fatigue testing on an F-15 aircraft. Appl. Opt. 1992, 31, 431–433. [Google Scholar] [CrossRef]
- Aref, S.H.; Latifi, H.; Zibaii, M.I.; Afshari, M. Fiber optic Fabry–Perot pressure sensor with low sensitivity to temperature changes for downhole application. Opt. Commun. 2007, 269, 322–330. [Google Scholar] [CrossRef]
- Rao, S.M.N. A Miniature Fiber Optic Pressure Sensor for Biomedical Applications; ProQuest: Ann Arbor, MI, USA, 2004. [Google Scholar]
- Wu, D.; Zhu, T.; Deng, M.; Duan, D.-W.; Shi, L.-L.; Yao, J.; Rao, Y.-J. Refractive index sensing based on Mach–Zehnder interferometer formed by three cascaded single-mode fiber tapers. Appl. Opt. 2011, 50, 1548–1553. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Yam, S.S.; Loock, H.-P. Single-mode fiber refractive index sensor based on core-offset attenuators. IEEE Photonics Technol. Lett. 2008, 20, 1387–1389. [Google Scholar] [CrossRef]
- Zhu, T.; Wu, D.; Liu, M.; Duan, D.-W. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers. Sensors 2012, 12, 10430–10449. [Google Scholar] [CrossRef]
- Yuan, L.; Yang, J.; Liu, Z. A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer. IEEE Sens. J. 2008, 8, 1114–1117. [Google Scholar] [CrossRef]
- Lin, H.; Liu, F.; Dai, Y.; Zhou, A. Cascaded Fiber Mach–Zehnder Interferometers for Sensitivity-Enhanced Gas Pressure Measurement. IEEE Sens. J. 2019, 19, 2581–2586. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Lin, H.F.; Zhou, C.M.; Deng, H.C.; Zhou, A.; Yuan, L.B. Cascaded Mach-Zehnder Interferometers with Vernier Effect for Gas Pressure Sensing. IEEE Photonics Technol. Lett. 2019, 31, 591–594. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Li, H.; Xu, M.; Li, J.; Jing, C.; Ding, L.; Gao, Y.; Zhou, A. An ultra-sensitive gas pressure sensor based on tapered fiber coated with PDMS film working at TAP. Opt. Laser Technol. 2022, 151, 107998. [Google Scholar] [CrossRef]
- Freise, A.; Chelkowski, S.; Hild, S.; Del Pozzo, W.; Perreca, A.; Vecchio, A. Triple Michelson interferometer for a third-generation gravitational wave detector. Class. Quantum Gravity 2009, 26, 085012. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, Y.H.; Park, K.S.; Eom, J.B.; Kim, M.J.; Rho, B.S.; Choi, H.Y. Interferometric Fiber Optic Sensors. Sensors 2012, 12, 2467–2486. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Htein, L.; Lee, K.-K.; Lau, K.-T.; Tam, H.-Y. Large dynamic range pressure sensor based on two semicircle-holes microstructured fiber. Sci. Rep. 2018, 8, 65. [Google Scholar] [CrossRef]
- Spammer, S.J.; Swart, P.L.; Chtcherbakov, A.A. Merged Sagnac-Michelson interferometer for distributed disturbance detection. J. Light. Technol. 2002, 15, 972–976. [Google Scholar] [CrossRef]
- Dai, M.; Liu, X.; Chen, Z.; Zhao, Y.; Gandhi, M.S.A.; Li, Q.; Fu, H.Y. Compact Mach-Zehnder Interferometer for Practical Vernier Effect Sensing System with High Extinction Ratio. IEEE Photonics J. 2022, 14, 7133306. [Google Scholar] [CrossRef]
- Jauregui-Vazquez, D.; Korterik, J.P.; Offerhaus, H.L.; Rojas-Laguna, R.; Alvarez-Chavez, J.A. Strain optical fiber sensor with modified sensitivity based on the vernier effect. Instrum. Sci. Technol. 2023, 51, 421–434. [Google Scholar] [CrossRef]
- Xu, D.; Gao, H.; Hou, Z.; Zhang, Y.; Tong, X.; Zhang, Y.; Zhang, P.; Shen, J.; Li, C. A High-Sensitivity Fiber-Optic Fabry-Perot Gas Pressure Sensor with Epoxy Resin Adhesive. IEEE Sens. J. 2022, 22, 10551–10558. [Google Scholar] [CrossRef]
- Mumtaz, F.; Roman, M.; Zhang, B.; Abbas, L.G.; Ashraf, M.A.; Dai, Y.; Huang, J. Highly Sensitive Strain Sensor by Utilizing a Tunable Air Reflector and the Vernier Effect. Sensors 2022, 22, 7557. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, S.; Jin, R.B.; Feng, M.Z.; Wu, S.; Zhang, L.; Lu, P.X. All-Optical Demodulation Fiber Acoustic Sensor with Real-Time Controllable Sensitivity Based on Optical Vernier Effect. IEEE Photonics J. 2019, 11, 6801911. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Liu, J.Y.; Wang, Y.; Zhang, Q.H.; Duan, J.L.; Zhang, Z.L.; Huang, X.D.; You, Z.W. Principles and Application of Polyimide Fiber Bragg Gratings for Surface Strain Measurement. Appl. Sci. 2017, 7, 995. [Google Scholar] [CrossRef]
- Leal, A.G.; Frizera, A.; Marques, C. Thermal and Mechanical Analyses of Fiber Bragg Gratings-Embedded Polymer Diaphragms. IEEE Photonics Technol. Lett. 2020, 32, 623–626. [Google Scholar] [CrossRef]
- Dong, N.N.; Wang, S.M.; Jiang, L.; Jiang, Y.; Wang, P.; Zhang, L.C. Pressure and Temperature Sensor Based on Graphene Diaphragm and Fiber Bragg Gratings. IEEE Photonics Technol. Lett. 2018, 30, 431–434. [Google Scholar] [CrossRef]
- Fan, Z.; Zhong, S.; Zhao, K.; Wang, Q.; Li, Y.; Zhang, G.; Ma, G.; Zhao, J.; Yan, H.; Huang, Z.; et al. A hermetic package technique for multi-functional fiber sensors through pressure boundary of energy systems based on glass sealants. Photonics 2024, 11, 792. [Google Scholar] [CrossRef]
- Wen, Q.; Zhu, J.; Gong, S.; Huang, J.; Gu, H.; Zhao, P. Design and synthesis of a packaging polymer enhancing the sensitivity of fiber grating pressure sensor. Prog. Nat. Sci. 2008, 18, 197–200. [Google Scholar] [CrossRef]
- Wakaki, M.; Komachi, Y.; Machida, H.; Kobayashi, H. Fiber-optic polarizer using birefringent crystal as a cladding. Appl. Opt. 1996, 35, 2591–2594. [Google Scholar] [CrossRef]
- Fan, H.; Liu, Y.J.; Wang, D.B.; Hou, S.L. Simultaneous measurement of temperature and strain based on a fiber Bragg grating with cladding made of Electro-optic crystal material. In Proceedings of the 2nd International Conference on Photonics and Optical Engineering (icPOE), Xi’an, China, 14–17 October 2016. [Google Scholar]
- Li, L.-J.; Ma, H.; Zhang, Y.L.; Sui, T.; Lai, Y.Z.; Li, J.; Cao, M.-Y. Simulation of reflection spectrum of FBG with uniaxial anisotropic crystal cladding. Acta Phys. Sin. 2012, 61, 130201. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, X. Theoretical study on electrooptic effect and elasto-optic effect in chirped fiber grating with uniaxial crystal cladding. Guangxue Xuebao (Acta Opt. Sin.) 2005, 25, 1025–1029. [Google Scholar]
- Jahan, M.A.I.; Honnungar, R.V.; Versha, R. Analysis of FBG Sensor for Accurate Pressure Sensing with Improved Sensitivity. In Proceedings of the 7th International Conference of Materials Processing and Characterization (ICMPC), Gokaraju Rangaraju Inst Engn & Technol, Hyderabad, India, 17–19 March 2017; pp. 5452–5458. [Google Scholar]
- Yu, J.M.; Tao, X.M.; Tam, H.Y. Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings. Opt. Lett. 2004, 29, 156–158. [Google Scholar] [CrossRef] [PubMed]
- González-Gallego, M.; Terroba Ramírez, F.; Martínez-Vicente, J.L.; González del Val, M.; López-Cela, J.J.; Frövel, M. Fiber Bragg Gratings Sensor Strain–Optic Behavior with Different Polymeric Coatings Subjected to Transverse Strain. Polymers 2024, 16, 1223. [Google Scholar] [CrossRef]
- Ramalingam, R.; Atrey, M.D. Theoretical analysis and coating thickness determination of a dual layer metal coated FBG sensor for sensitivity enhancement at cryogenic temperatures. IOP Conf. Ser. Mater. Sci. Eng. 2017, 278, 012075. [Google Scholar] [CrossRef]
- Kaur, G.; Kaler, R.S. Sensitivity enhancement of FBG sensor for portlandite monitoring. Opt. Fiber Technol. 2018, 46, 83–87. [Google Scholar] [CrossRef]
- Li, Y.; Liang, S.; Zhu, K.; Qu, Y.; Yang, F. Sensitivity-enhanced optical pressure sensor based on MoS2. Opt. Lett. 2023, 48, 97–100. [Google Scholar] [CrossRef]
- Li, H.; Luo, X.; Zhang, H.; Dong, M.; Zhu, L. All-Silica diaphragm-based optical fiber fabry-perot pressure sensor fabricated by CO2 laser melting capillary end face. Optik 2023, 287, 170994. [Google Scholar] [CrossRef]
- Wang, W.; Wu, N.; Tian, Y.; Niezrecki, C.; Wang, X. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm. Opt. Express 2010, 18, 9006–9014. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Zhao, M.; Li, B.; Ren, Z.; Li, B.; Wei, X. A Compact Optical MEMS Pressure Sensor Based on Fabry–Pérot Interference. Sensors 2022, 22, 1973. [Google Scholar] [CrossRef]
- Donlagic, D.; Cibula, E. All-fiber high-sensitivity pressure sensor with SiO2 diaphragm. Opt. Lett. 2005, 30, 2071–2073. [Google Scholar] [CrossRef]
- Luo, C.; Liu, X.; Liu, J.; Shen, J.; Li, H.; Zhang, S.; Hu, J.; Zhang, Q.; Wang, G.; Huang, M. An optimized PDMS thin film immersed Fabry-Perot fiber optic pressure sensor for sensitivity enhancement. Coatings 2019, 9, 290. [Google Scholar] [CrossRef]
- Wei, X.; Song, X.; Li, C.; Hou, L.; Li, Z.; Li, Y.; Ran, L. Optical fiber gas pressure sensor based on polydimethylsiloxane microcavity. J. Light. Technol. 2021, 39, 2988–2993. [Google Scholar] [CrossRef]
- Fu, D.; Liu, X.; Shang, J.; Sun, W.; Liu, Y. A simple, highly sensitive fiber sensor for simultaneous measurement of pressure and temperature. IEEE Photonics Technol. Lett. 2020, 32, 747–750. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, Y.; Liang, D.; Zhang, Y.; Guo, J.; Lian, S.; Yu, Y.; Du, C.; Ruan, S. Fiber-tip Fabry–Perot cavity pressure sensor with UV-curable polymer film based on suspension curing method. IEEE Sens. J. 2022, 22, 6651–6660. [Google Scholar] [CrossRef]
- Guo, F.; Fink, T.; Han, M.; Koester, L.; Turner, J.; Huang, J. High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm. Opt. Lett. 2012, 37, 1505–1507. [Google Scholar] [CrossRef] [PubMed]
- Ghildiyal, S.; Balasubramaniam, R.; John, J. Diamond turned micro machined metal diaphragm based Fabry Perot pressure sensor. Opt. Laser Technol. 2020, 128, 106243. [Google Scholar] [CrossRef]
- Ma, J.; Jin, W.; Ho, H.L.; Dai, J.Y. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt. Lett. 2012, 37, 2493–2495. [Google Scholar] [CrossRef]
- Wang, Z.G.; Zhang, W.T.; Li, F. Diaphragm-based Fiber Optic Fabry-Perot Hydrophone with Hydrostatic Pressure Compensation. In Proceedings of the 4th Conference on Asia Pacific Optical Sensors (APOS), Wuhan, China, 15–18 October 2013. [Google Scholar]
- Zhao, Y.; Liu, Y. Few-Mode Fiber Long-Period Gratings—From Mode Conversion to High Sensitivity Fiber-Optic Sensing. J. Appl. Sci. 2020, 38, 310–338. [Google Scholar]
- Zhao, X.; Zhao, Y.; Liu, Y.; Liu, Z.; Mou, C.; Shen, L.; Zhang, L.; Luo, J. High-order mode conversion in a few-mode fiber via laser-inscribed long-period gratings at 1.55 µm and 2 µm wavebands. Appl. Opt. 2020, 59, 10688–10694. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, C.; Fu, S.; Shen, L.; Wang, Y.; Qin, Y. Mode converter with C+L band coverage based on the femtosecond laser inscribed long period fiber grating. Opt. Lett. 2021, 46, 3340–3343. [Google Scholar] [CrossRef]
- Fu, C.; Liu, S.; Bai, Z.; He, J.; Liao, C.; Wang, Y.; Li, Z.; Zhang, Y.; Yang, K.; Yu, B.; et al. Orbital Angular Momentum Mode Converter Based on Helical Long Period Fiber Grating Inscribed by Hydrogen–Oxygen Flame. J. Light. Technol. 2018, 36, 1683–1688. [Google Scholar] [CrossRef]
- Li, S.; Mo, Q.; Hu, X.; Du, C.; Wang, J. Controllable all-fiber orbital angular momentum mode converter. Opt. Lett. 2015, 40, 4376–4379. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, L.; Wei, K.; Li, P.; Jiang, B.; Mao, D.; Gao, F.; Mei, T.; Zhang, G.; Zhao, J. High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion. Opt. Lett. 2016, 41, 5082–5085. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhan, X.; Tang, M.; Gan, L.; Shen, L.; Huo, L.; Fu, S.; Tong, W.; Liu, D. Long-period fiber gratings inscribed in few-mode fibers for discriminative determination. Opt. Express 2019, 27, 26307–26316. [Google Scholar] [CrossRef]
- Wang, Y. Review of long period fiber gratings written by CO2 laser. J. Appl. Phys. 2010, 108, 081101. [Google Scholar] [CrossRef]
- Guo, J.; Wang, W.; Zhang, J.; Chen, H.; Chen, R.; Zhao, B.; Xie, X.; Chen, D. Fiber Cladding Waveguide Phase-Shifted FBG Encapsulated in Flexible Material for Estimating Human Blood Pressure. J. Light. Technol. 2025, 43, 3261–3268. [Google Scholar] [CrossRef]
- Wu, J.; Yao, M.; Xiong, F.; Zhang, A.P.; Tam, H.-Y.; Wai, P.K.A. Optical fiber-tip Fabry–Perot interferometric pressure sensor based on an in situ μ-printed air cavity. J. Light. Technol. 2018, 36, 3618–3623. [Google Scholar] [CrossRef]
- Shao, Z.; Wu, Y.; Wang, S.; Zhang, C.; Sun, Z.; Yan, M.; Shang, Y.; Song, E.; Liu, Z. All-sapphire-based fiber-optic pressure sensor for high-temperature applications based on wet etching. Opt. Express 2021, 29, 4139–4146. [Google Scholar] [CrossRef]
- Leitão, C.; Antunes, P.; Pinto, J.; Bastos, J.; André, P. Carotid distension waves acquired with a fiber sensor as an alternative to tonometry for central arterial systolic pressure assessment in young subjects. Measurement 2017, 95, 45–49. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Díaz, C.R.; Marques, C.; Pontes, M.J.; Frizera, A. 3D-printed POF insole: Development and applications of a low-cost, highly customizable device for plantar pressure and ground reaction forces monitoring. Opt. Laser Technol. 2019, 116, 256–264. [Google Scholar] [CrossRef]
- Duraibabu, D.B.; Poeggel, S.; Omerdic, E.; Capocci, R.; Lewis, E.; Newe, T.; Leen, G.; Toal, D.; Dooly, G. An optical fibre depth (pressure) sensor for remote operated vehicles in underwater applications. Sensors 2017, 17, 406. [Google Scholar] [CrossRef]
- Sladen, A.; Rivet, D.; Ampuero, J.P.; De Barros, L.; Hello, Y.; Calbris, G.; Lamare, P. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun. 2019, 10, 5777. [Google Scholar] [CrossRef]
- Li, L.; Sheng, S.; Liu, Y.; Wen, J.; Song, C.; Chen, Z.; Xu, W.; Zhang, Z.; Fan, W.; Chen, C.; et al. Automatic and continuous blood pressure monitoring via an optical-fiber-sensor-assisted smartwatch. PhotoniX 2023, 4, 21. [Google Scholar] [CrossRef]
- Xue, X.; Han, X.; Li, L.; Min, L.; You, D.; Guo, T. Real-time monitoring of human breathing using wearable tilted fiber grating curvature sensors. J. Light. Technol. 2022, 41, 4531–4539. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Díaz, C.R.; Leitão, C.; Pontes, M.J.; Marques, C.; Frizera, A. Polymer optical fiber-based sensor for simultaneous measurement of breath and heart rate under dynamic movements. Opt. Laser Technol. 2019, 109, 429–436. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, S.; Wang, D.; Guo, Y.; Wu, L. FBG-based sensitivity structure based on flexure hinge and its application for pipeline pressure detection. Materials 2022, 15, 5661. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Zhang, F.-X.; Zhao, Q.-C.; Che, C.-R. Real-time monitoring of pressure and temperature of oil well using a carbon-coated and bellow-packaged optical fiber sensor. Opt. Fiber Technol. 2021, 67, 102703. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Q.-l.; Zhang, Y.-n. Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor. Measurement 2019, 148, 106792. [Google Scholar] [CrossRef]
- Li, W.; Liang, T.; Jia, P.; Lei, C.; Hong, Y.; Li, Y.; Yao, Z.; Liu, W.; Xiong, J. Fiber-optic Fabry–Perot pressure sensor based on sapphire direct bonding for high-temperature applications. Appl. Opt. 2019, 58, 1662–1666. [Google Scholar] [CrossRef]
- Cui, Y.; Jiang, Y.; Zhang, Y.; Feng, X.; Hu, J.; Jiang, L. Sapphire optical fiber high-temperature vibration sensor. Opt. Express 2022, 30, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Pissadakis, S.; Kanellos, G.T.; Tsiokos, D.; Papaioannou, G. Fiber Optic-Based Pressure Sensing Surface for Skin Health Management in Prosthetic and Rehabilitation Interventions. In Biomedical Engineering—Technical Applications in Medicine; Hudak, R., Penhaker, M., Majernik, J., Eds.; IntechOpen: London, UK, 2012. [Google Scholar]
- Maeda, M.; Kadokura, M.; Aoki, R.; Komatsu, N.; Kawakami, M.; Koyama, Y.; Watanabe, K.; Nishiyama, M. A Fiber-Optic Non-Invasive Swallowing Assessment Device Based on a Wearable Pressure Sensor. Sensors 2023, 23, 2355. [Google Scholar] [CrossRef] [PubMed]










| Parameter | Typical Range | Significance |
|---|---|---|
| Pressure Range | 0–100 MPa | Determines the application domain (biomedical, industrial, aerospace) |
| Sensitivity | 1–50 pm/kPa | Affects the accuracy in detecting small pressure changes |
| Resolution | 0.01–1 kPa | Critical for detecting subtle variations in pressure |
| Response Time | 1–100 ms | Important for real-time monitoring |
| Dynamic Range | 40–80 dB | Needed for broad pressure variations |
| Operating Temperature | −40–2500 °C | For aerospace and harsh environments |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, B.; Wu, G.; Xue, C.; Gao, L. Fiber-Optic Pressure Sensors: Recent Advances in Sensing Mechanisms, Fabrication Technologies, and Multidisciplinary Applications. Sensors 2025, 25, 6336. https://doi.org/10.3390/s25206336
Wang Y, Chen B, Wu G, Xue C, Gao L. Fiber-Optic Pressure Sensors: Recent Advances in Sensing Mechanisms, Fabrication Technologies, and Multidisciplinary Applications. Sensors. 2025; 25(20):6336. https://doi.org/10.3390/s25206336
Chicago/Turabian StyleWang, Yihang, Botong Chen, Guirong Wu, Chenyang Xue, and Libo Gao. 2025. "Fiber-Optic Pressure Sensors: Recent Advances in Sensing Mechanisms, Fabrication Technologies, and Multidisciplinary Applications" Sensors 25, no. 20: 6336. https://doi.org/10.3390/s25206336
APA StyleWang, Y., Chen, B., Wu, G., Xue, C., & Gao, L. (2025). Fiber-Optic Pressure Sensors: Recent Advances in Sensing Mechanisms, Fabrication Technologies, and Multidisciplinary Applications. Sensors, 25(20), 6336. https://doi.org/10.3390/s25206336

