Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = multilayered antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 (registering DOI) - 1 Aug 2025
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

31 pages, 18320 KiB  
Article
Penetrating Radar on Unmanned Aerial Vehicle for the Inspection of Civilian Infrastructure: System Design, Modeling, and Analysis
by Jorge Luis Alva Alarcon, Yan Rockee Zhang, Hernan Suarez, Anas Amaireh and Kegan Reynolds
Aerospace 2025, 12(8), 686; https://doi.org/10.3390/aerospace12080686 (registering DOI) - 31 Jul 2025
Abstract
The increasing demand for noninvasive inspection (NII) of complex civil infrastructures requires overcoming the limitations of traditional ground-penetrating radar (GPR) systems in addressing diverse and large-scale applications. The solution proposed in this study focuses on an initial design that integrates a low-SWaP (Size, [...] Read more.
The increasing demand for noninvasive inspection (NII) of complex civil infrastructures requires overcoming the limitations of traditional ground-penetrating radar (GPR) systems in addressing diverse and large-scale applications. The solution proposed in this study focuses on an initial design that integrates a low-SWaP (Size, Weight, and Power) ultra-wideband (UWB) impulse radar with realistic electromagnetic modeling for deployment on unmanned aerial vehicles (UAVs). The system incorporates ultra-realistic antenna and propagation models, utilizing Finite Difference Time Domain (FDTD) solvers and multilayered media, to replicate realistic airborne sensing geometries. Verification and calibration are performed by comparing simulation outputs with laboratory measurements using varied material samples and target models. Custom signal processing algorithms are developed to extract meaningful features from complex electromagnetic environments and support anomaly detection. Additionally, machine learning (ML) techniques are trained on synthetic data to automate the identification of structural characteristics. The results demonstrate accurate agreement between simulations and measurements, as well as the potential for deploying this design in flight tests within realistic environments featuring complex electromagnetic interference. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 4163 KiB  
Article
Digital Twin-Based Ray Tracing Analysis for Antenna Orientation Optimization in Wireless Networks
by Onem Yildiz
Electronics 2025, 14(15), 3023; https://doi.org/10.3390/electronics14153023 - 29 Jul 2025
Viewed by 139
Abstract
Efficient antenna orientation of transmitters is essential for improving wireless signal quality and coverage, especially in large-scale and complex 6G networks. Identifying the best antenna angles is difficult due to the nonlinear interaction among orientation, signal propagation, and interference. This paper introduces a [...] Read more.
Efficient antenna orientation of transmitters is essential for improving wireless signal quality and coverage, especially in large-scale and complex 6G networks. Identifying the best antenna angles is difficult due to the nonlinear interaction among orientation, signal propagation, and interference. This paper introduces a digital twin-based evaluation approach utilizing ray tracing simulations to assess the influence of antenna orientation on critical performance metrics: path gain, received signal strength (RSS), and signal-to-interference-plus-noise ratio (SINR). A thorough array of orientation scenarios was simulated to produce a dataset reflecting varied coverage conditions. The dataset was utilized to investigate antenna configurations that produced the optimal and suboptimal performance for each parameter. Additionally, three machine learning models—k-nearest neighbors (KNN), multi-layer perceptron (MLP), and XGBoost—were developed to forecast ideal configurations. XGBoost had superior prediction accuracy compared to the other models, as evidenced by regression outcomes and cumulative distribution function (CDF) analyses. The proposed workflow demonstrates that learning-based predictors can uncover orientation refinements that conventional grid sweeps overlook, enabling agile, interference-aware optimization. Key contributions include an end-to-end digital twin methodology for rapid what-if analysis and a systematic comparison of lightweight machine learning predictors for antenna orientation. This comprehensive method provides a pragmatic and scalable solution for the data-driven optimization of wireless systems in real-world settings. Full article
(This article belongs to the Special Issue Advances in Wireless Communication Performance Analysis)
Show Figures

Figure 1

26 pages, 686 KiB  
Article
Galerkin’s Spectral Method in the Analysis of Antenna Wall Operation
by Marian Wnuk
Appl. Sci. 2025, 15(14), 7901; https://doi.org/10.3390/app15147901 - 15 Jul 2025
Viewed by 177
Abstract
In this paper, a solution to the problem of electromagnetic field scattering on a periodic, constrained, planar antenna structure placed on the boundary of two dielectric media was formulated. The scattering matrix of such a structure was derived, and its generalization for the [...] Read more.
In this paper, a solution to the problem of electromagnetic field scattering on a periodic, constrained, planar antenna structure placed on the boundary of two dielectric media was formulated. The scattering matrix of such a structure was derived, and its generalization for the case of an antenna with a multilayer dielectric substrate was defined. By applying the Galerkin spectral method, the problem was reduced to a system of algebraic equations for the coefficients of current distribution on metal elements of the antenna grid, considering the distribution of the electromagnetic field on Floquet harmonics. The finite transverse dimension of the antenna was considered by introducing, to the solution of the case of an unconstrained antenna, a window function on the antenna aperture. The presented formalism allows modeling the operation of periodic, dielectric, composite antenna arrays. Full article
Show Figures

Figure 1

15 pages, 4432 KiB  
Article
Millimeter-Wave Miniaturized Substrate-Integrated Waveguide Multibeam Antenna Based on Multi-Layer E-Plane Butler Matrix
by Qing-Yuan Wu, Ling-Hui Wu, Cheng-Qin Ben and Ji-Wei Lian
Electronics 2025, 14(13), 2553; https://doi.org/10.3390/electronics14132553 - 24 Jun 2025
Viewed by 285
Abstract
A millimeter-wave multi-layer and miniaturized multibeam antenna fed by an E-plane Butler matrix (BM) in substrate integrated waveguide (SIW) technology is proposed. For the beam-forming network (BFN), a folded E-plane 4 × 4 BM is proposed, whose basic components are stacked up along [...] Read more.
A millimeter-wave multi-layer and miniaturized multibeam antenna fed by an E-plane Butler matrix (BM) in substrate integrated waveguide (SIW) technology is proposed. For the beam-forming network (BFN), a folded E-plane 4 × 4 BM is proposed, whose basic components are stacked up along the vertical direction aiming to reduce the horizontal size by more than 75% compared with a single-layer BM. For the radiation portion, an unconventional slot antenna array arranged in a ladder type is adopted. The slot antenna elements are distributed in separate layers, making them more compatible with the presented BM and are arranged in the longitudinal direction to suppress the mutual coupling effect. Furthermore, the BM has been adjusted to accommodate the slot antenna array and obtain further miniaturization. The overall dimension of the designed multibeam antenna, taking the BFN into account, is 12 mm × 45 mm × 2 mm (1.2 λ × 4.5 λ × 0.2 λ), which is preferable for future 6G smartphone applications. The impacts of the air gap in fabrication are also taken into consideration to alleviate the error between simulated model and fabricated prototype. Full article
Show Figures

Figure 1

17 pages, 5790 KiB  
Article
Early Detection of Alzheimer’s Disease via Machine Learning-Based Microwave Sensing: An Experimental Validation
by Leonardo Cardinali, Valeria Mariano, David O. Rodriguez-Duarte, Jorge A. Tobón Vasquez, Rosa Scapaticci, Lorenzo Crocco and Francesca Vipiana
Sensors 2025, 25(9), 2718; https://doi.org/10.3390/s25092718 - 25 Apr 2025
Viewed by 931
Abstract
The early diagnosis of Alzheimer’s disease remains an unmet medical need due to the cost and invasiveness of current methods. Early detection would ensure a higher quality of life for patients, enabling timely and suitable treatment. We investigate microwave sensing for low-cost, non-intrusive [...] Read more.
The early diagnosis of Alzheimer’s disease remains an unmet medical need due to the cost and invasiveness of current methods. Early detection would ensure a higher quality of life for patients, enabling timely and suitable treatment. We investigate microwave sensing for low-cost, non-intrusive early detection and assessment of Alzheimer’s disease. This study is based on the emerging evidence that the electromagnetic properties of cerebrospinal fluid are affected by abnormal concentrations of proteins recognized as early-stage biomarkers. We design a conformal six-element antenna array placed on the upper portion of the head, operating in the 500 MHz to 6.5 GHz band. It measures scattering response due to changes in the dielectric properties of intracranial cerebrospinal fluid. A multi-layer perceptron network extracts the diagnostic information. Data classification consists of two steps: binary classification to identify the disease presence and multi-class classification to evaluate its stage. The algorithm is trained and validated through controlled experiments mimicking various pathological severities with an anthropomorphic multi-tissue head phantom. Results support the feasibility of the proposed method using only amplitude data and lay the foundation for more extensive studies on microwave sensing for early Alzheimer’s detection. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

14 pages, 8868 KiB  
Article
Design of a Compact Unified SIW Cavity Filtenna Module for Antenna Array Application
by Andrey Altynnikov, Roman Platonov, Alexey Sosunov, Tatyana Legkova, Andrey Komlev and Andrey B. Kozyrev
Micromachines 2025, 16(3), 285; https://doi.org/10.3390/mi16030285 - 28 Feb 2025
Viewed by 645
Abstract
The design of a multilayer SIW cavity-fed filtenna is presented. The proposed filtenna can be used as a unified module in an antenna array structure. It consists of three-pole bandpass filter with slot antenna positioned centrally within the top module surface. The modules [...] Read more.
The design of a multilayer SIW cavity-fed filtenna is presented. The proposed filtenna can be used as a unified module in an antenna array structure. It consists of three-pole bandpass filter with slot antenna positioned centrally within the top module surface. The modules aperture dimensions of λ0/2×λ0/2 in conjunction with an SMA feeding port located on the bottom filtenna surface allow implementation of an antenna array of different configurations. This approach allows greatly simplifying the feeding and matching scheme of the array. This module is designed to operate at a 2.655 GHz central frequency with a 70 MHz bandwidth. The procedure of the filtenna design is described in detail. The proposed filtenna was fabricated and tested. The simulation and measurement results show a good agreement. The measurements demonstrate that the maximum measured gain of the prototype is 3.64 dBi with a small variation in the passband. Full article
Show Figures

Figure 1

26 pages, 9151 KiB  
Article
Beam-Switching Antennas Using a Butler Matrix with a Five-Element Configuration
by Wei-Heng Peng and Yen-Sheng Chen
Electronics 2025, 14(5), 959; https://doi.org/10.3390/electronics14050959 - 27 Feb 2025
Viewed by 916
Abstract
Beam-switching technology is critical for fifth-generation (5G) Frequency Range 1 (FR1) base stations, yet existing odd-number Butler matrix designs often struggle to achieve compact size, low complexity, and efficient performance. Although a few studies have investigated 5 × 5 Butler matrices, their reliance [...] Read more.
Beam-switching technology is critical for fifth-generation (5G) Frequency Range 1 (FR1) base stations, yet existing odd-number Butler matrix designs often struggle to achieve compact size, low complexity, and efficient performance. Although a few studies have investigated 5 × 5 Butler matrices, their reliance on waveguide structures or multilayer implementations leads to larger footprints and greater fabrication complexity. This work introduces a novel 5 × 5 Butler matrix integrated with a five-element dipole antenna array for 3.3–3.7 GHz applications, offering notable improvements in beam-switching efficiency and overall system design. The proposed matrix generates five distinct beams at −144°, −72°, 0°, 72°, and 144° by employing precise phase progression, while eliminating crossovers and power dividers to simplify the layout. With a compact footprint of 2.67 × 0.80 × 0.02 cubic wavelength—94.4% smaller than waveguide-based designs—the matrix achieves a bandwidth of 3.32–3.62 GHz and consistently covers the target beams. The integrated system attains measured gains up to 11.4 dBi and half-power beamwidths ranging from 7.96° to 23.66°, with sidelobe levels comparable to those of state-of-the-art configurations. By employing a low-loss substrate, the gain can be further enhanced by as much as 6.81 dB, highlighting the potential for additional performance gains. These innovations establish the proposed design as a compact, low-complexity, and high-performance solution for 5G base station applications. Full article
Show Figures

Figure 1

12 pages, 2891 KiB  
Article
Dual-Band Multi-Layer Antenna Array with Circular Polarization and Gain Enhancement for WLAN and X-Band Applications
by Bal S. Virdee, Tohid Aribi and Tohid Sedghi
Micromachines 2025, 16(2), 203; https://doi.org/10.3390/mi16020203 - 10 Feb 2025
Viewed by 975
Abstract
This paper presents a novel multi-layer, dual-band antenna array designed for WLAN and X-band applications, incorporating several innovative features. The design employs a pentagon-shaped radiating element with parasitic strips to enable dual-band operation. A dual-transformed feed network with chamfered feed strip corners minimizes [...] Read more.
This paper presents a novel multi-layer, dual-band antenna array designed for WLAN and X-band applications, incorporating several innovative features. The design employs a pentagon-shaped radiating element with parasitic strips to enable dual-band operation. A dual-transformed feed network with chamfered feed strip corners minimizes radiation distortion and cross-polarization while introducing orthogonal phase shifts to achieve circular polarization (CP) at the X-band. A Fabry–Pérot structure, strategically placed above the array, enhances gain in the WLAN band. The antenna demonstrates an impedance bandwidth of 1.8 GHz (S11 < −10 dB) at the WLAN band, with 36% fractional bandwidth, and 4.3 GHz at the X-band, with 43% fractional bandwidth. Measured peak gains are 7 dBi for the WLAN band and 6.8 dBi for the X-band, with favourable S11 levels, omni-directional radiation patterns, and consistent gain across both bands. Circular polarization is achieved within 8.5–10.4 GHz. Experimental results confirm the array’s significant advancements in multi-band performance, making it highly suitable for diverse wireless communication applications. Full article
(This article belongs to the Special Issue RF Devices: Technology and Progress)
Show Figures

Figure 1

18 pages, 3238 KiB  
Article
Multilayer Printed Circuit Board Design Based on Copper Paste Sintering Technology for Satellite Communication Receiving Phased Array
by Sicheng Sun, Yijiu Zhao, Sitao Mei, Naixin Zhou and Yongling Ban
Electronics 2025, 14(2), 322; https://doi.org/10.3390/electronics14020322 - 15 Jan 2025
Viewed by 1139
Abstract
A 2048-element dual-polarized receive (RX) phased array for Ku-band (10.7–12.7 GHz) satellite communication (SATCOM) is presented in this paper. The design of the multilayer printed circuit board (PCB) it uses adopts a novel copper paste sintering interconnection technology that allows for [...] Read more.
A 2048-element dual-polarized receive (RX) phased array for Ku-band (10.7–12.7 GHz) satellite communication (SATCOM) is presented in this paper. The design of the multilayer printed circuit board (PCB) it uses adopts a novel copper paste sintering interconnection technology that allows for more flexibility in the design of vias and can reduce the PCB’s lamination number. This technology is more suitable for manufacturing multilayer and complex PCBs than traditional processes. The array is designed to consist of sixteen 8 × 16 element subarrays, each based on the silicon RX beamformer and multilayer PCB. Dual-polarized antenna elements are arranged in a regular rectangle with a spacing of 0.5 for a wavelength of 12.7 GHz, thus achieving a scanning range of ±70° in all planes. By adjusting the amplitude and phase of two line polarizations with cross-polarization levels better than −25 dB at boresight, the array can generate linear or circular polarization. Moreover, the antenna gain-to-noise temperature is above 12 dB/K (Tant = 20 K) at boresight. The aperture of the 2048-element RX phased array is 768 × 450 mm. With its low profile, the array is appropriate for usage in Ku-band SATCOM terminals. Full article
Show Figures

Figure 1

11 pages, 16323 KiB  
Article
A D-Band Dual-Polarized High-Gain LTCC-Based Reflectarray Antenna Using SIW Magnetoelectric-Dipole Elements
by Zhuo-Wei Miao
Micromachines 2024, 15(12), 1511; https://doi.org/10.3390/mi15121511 - 20 Dec 2024
Cited by 1 | Viewed by 1098
Abstract
This paper presents a D-band dual linear-polarized wideband high-gain reflectarray (RA) antenna using low-temperature co-fired-ceramic (LTCC) technology. The proposed element comprises a dual-polarized magnetoelectric (ME) dipole and a multilayer slot-coupling substrate-integrated waveguide (SIW) phase-delay structure, which are organized in accordance with the receiving/reradiating [...] Read more.
This paper presents a D-band dual linear-polarized wideband high-gain reflectarray (RA) antenna using low-temperature co-fired-ceramic (LTCC) technology. The proposed element comprises a dual-polarized magnetoelectric (ME) dipole and a multilayer slot-coupling substrate-integrated waveguide (SIW) phase-delay structure, which are organized in accordance with the receiving/reradiating (R/R) principle. The coverage of phase shifts for both orthogonal polarizations is set to be greater than 360 degrees by varying the length of the phase-delay structure. For verification, a D-band 1296-element RA prototype using the proposed unit cell is fabricated and measured in a THz chamber. The measured results show that the proposed RA achieves a peak gain of 32.25 and 33.03 dBi for the two orthogonal polarizations. The measured 3 dB gain bandwidths for the two orthogonal polarizations are 122–149 GHz (20%) and 123–149 GHz (19.3%), respectively. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

15 pages, 424 KiB  
Article
Decoupling Uplink and Downlink Access for NGEO Satellite Communications with In-Line Interference Avoidance
by Yilun Liu, Yujie Liu and Xiaoyan Kuai
Electronics 2024, 13(16), 3245; https://doi.org/10.3390/electronics13163245 - 15 Aug 2024
Viewed by 1357
Abstract
Decoupling uplink and downlink access (DUDA) has latterly proven to effectively enhance transmission efficiency in wireless communication systems, with particular effectiveness observed in both terrestrial and unmanned aerial vehicle (UAV) systems. In this paper, we propose an innovative DUDA approach specifically designed for [...] Read more.
Decoupling uplink and downlink access (DUDA) has latterly proven to effectively enhance transmission efficiency in wireless communication systems, with particular effectiveness observed in both terrestrial and unmanned aerial vehicle (UAV) systems. In this paper, we propose an innovative DUDA approach specifically designed for non-geostationary orbit (NGEO) multi-layer satellite systems (MSS), integrating strategies to mitigate in-line interference to ensure spectral coexistence between geostationary Earth orbit (GEO) and NGEO satellites. Notably, the interference from the main lobe of directional antennas on NGEO satellites is meticulously characterized using a spherical surface model based on the geocentric angle. Within the framework of proposed DUDA method, a user terminal (UT) can establish communication with the satellite which provides the highest average power of received signal in compliance with the unique exclusion angle constraints of NGEO satellites. The association probability of DUDA is analyzed based on stochastic geometry. The performance evaluation, conducted in terms of transmission rate, reveals that the proposed DUDA methodology yields significant improvements when compared to conventional access schemes. Full article
Show Figures

Figure 1

18 pages, 10601 KiB  
Article
A Compact Wearable Textile Antenna for NB-IoT and ISM Band Patient Tracking Applications
by Deepti Sharma, Rakesh N. Tiwari, Sachin Kumar, Satyendra Sharma and Ladislau Matekovits
Sensors 2024, 24(15), 5077; https://doi.org/10.3390/s24155077 - 5 Aug 2024
Cited by 16 | Viewed by 2958
Abstract
This paper proposes a novel multi-band textile monopole antenna for patient tracking applications. The designed antenna has compact footprints (0.13λ02) and works in the narrow band-internet of things (NB-IoT) 1.8 GHz, radio frequency identification (RFID), and industrial, scientific, and [...] Read more.
This paper proposes a novel multi-band textile monopole antenna for patient tracking applications. The designed antenna has compact footprints (0.13λ02) and works in the narrow band-internet of things (NB-IoT) 1.8 GHz, radio frequency identification (RFID), and industrial, scientific, and medical (ISM) 2.45 GHz and 5.8 GHz bands. The impedance bandwidths and gain of the antenna at 1.8 GHz, 2.45 GHz, and 5.8 GHz are 310 MHz, 960 MHz, and 1140 MHz; 3.7 dBi, 5.3 dBi, and 9.6 dBi, respectively. Also, the antenna’s behavior is checked on different body parts of the human body in various bending scenarios. As per the evaluated link budget, the designed antenna can easily communicate up to 100 m of distance. The specific absorption rate values of the designed antenna are also within acceptable limits as per the (FCC/ICNIRP) standards at the reported frequency bands. Unlike traditional rigid antennas, the proposed textile antenna is non-intrusive, enhancing user safety and comfort. The denim material makes it comfortable for extended wear, reducing the risk of skin irritation. It can also withstand regular wear and tear, including stretching and bending. The presented denim-based antenna can be seamlessly integrated into clothing and accessories, making it less obtrusive and more aesthetically pleasing. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

15 pages, 6650 KiB  
Article
Chipless RFID Sensor for Measuring Time-Varying Electric Fields Using a Contactless Air-Filled Substrate-Integrated Waveguide Resonator
by Amirmasoud Amirkabiri, Dawn Idoko, Behzad Kordi and Greg E. Bridges
Sensors 2024, 24(15), 4928; https://doi.org/10.3390/s24154928 - 30 Jul 2024
Cited by 1 | Viewed by 2024
Abstract
This paper presents a wireless chipless resonator-based sensor for measuring the absolute value of an external time-varying electric field. The sensor is developed using contactless air-filled substrate-integrated waveguide (CLAF-SIW) technology. The sensor employs a low-impedance electromagnetic band gap structure to confine the electric [...] Read more.
This paper presents a wireless chipless resonator-based sensor for measuring the absolute value of an external time-varying electric field. The sensor is developed using contactless air-filled substrate-integrated waveguide (CLAF-SIW) technology. The sensor employs a low-impedance electromagnetic band gap structure to confine the electric field within the sensor’s air cavity. The air cavity is loaded with varactor diodes whose reverse bias voltage is modified by the to-be-measured external electric field. Variation in the external electric field results in a variation of the sensor’s resonant frequency. The CLAF-SIW sensor offers a high unloaded quality factor, which is required for a long-distance ringback-based interrogation system. A prototype of the proposed sensor is fabricated and tested. It can measure a time-varying external electric field up to 6.9 kV/m, has a sensitivity of 1.86 (kHz)/(V/m), and can be interrogated from a distance of 80 cm. The feasible maximum bandwidth of the external electric field is 25 kHz. The proposed sensor offers a compact planar multilayer structure that can easily be incorporated with a planar antenna and its size can be reduced by selecting a higher operating frequency without an increase in dielectric loss. Full article
(This article belongs to the Special Issue Advances in Chipless RFID Sensors and Systems)
Show Figures

Figure 1

23 pages, 3462 KiB  
Article
Machine Learning Techniques for Blind Beam Alignment in mmWave Massive MIMO
by Aymen Ktari, Hadi Ghauch and Ghaya Rekaya-Ben Othman
Entropy 2024, 26(8), 626; https://doi.org/10.3390/e26080626 - 25 Jul 2024
Viewed by 1634
Abstract
This paper proposes methods for Machine Learning (ML)-based Beam Alignment (BA), using low-complexity ML models, and achieves a small pilot overhead. We assume a single-user massive mmWave MIMO, Uplink, using a fully analog architecture. Assuming large-dimension codebooks of possible beam patterns at  [...] Read more.
This paper proposes methods for Machine Learning (ML)-based Beam Alignment (BA), using low-complexity ML models, and achieves a small pilot overhead. We assume a single-user massive mmWave MIMO, Uplink, using a fully analog architecture. Assuming large-dimension codebooks of possible beam patterns at UE and BS, this data-driven and model-based approach aims to partially and blindly sound a small subset of beams from these codebooks. The proposed BA is blind (no CSI), based on Received Signal Energies (RSEs), and circumvents the need for exhaustively sounding all possible beams. A sub-sampled subset of beams is then used to train several ML models such as low-rank Matrix Factorization (MF), non-negative MF (NMF), and shallow Multi-Layer Perceptron (MLP). We provide an extensive mathematical description of these models and the algorithms for each of them. Our extensive numerical results show that, by sounding only 10% of the beams from the UE and BS codebooks, the proposed ML tools are able to accurately predict the non-sounded beams through multiple transmitted power regimes. This observation holds as the codebook sizes at UE and BS vary from 128×128 to 1024×1024. Full article
Show Figures

Figure 1

Back to TopTop