Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (910)

Search Parameters:
Keywords = multi-unmanned systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1563 KiB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 88
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

37 pages, 3151 KiB  
Review
Systematic Review of Multi-Objective UAV Swarm Mission Planning Systems from Regulatory Perspective
by Luke Checker, Hui Xie, Siavash Khaksar and Iain Murray
Drones 2025, 9(7), 509; https://doi.org/10.3390/drones9070509 - 20 Jul 2025
Viewed by 356
Abstract
Advancements in Unmanned Aerial Vehicle (UAV) technologies have increased exponentially in recent years, with UAV swarm being a key area of interest. UAV swarm overcomes the energy reserve, payload, and single-objective limitations of single UAVs, enabling broader mission scopes. Despite these advantages, UAV [...] Read more.
Advancements in Unmanned Aerial Vehicle (UAV) technologies have increased exponentially in recent years, with UAV swarm being a key area of interest. UAV swarm overcomes the energy reserve, payload, and single-objective limitations of single UAVs, enabling broader mission scopes. Despite these advantages, UAV swarm has yet to see widespread application within global industry. A leading factor hindering swarm application within industry is the divide that currently exists between the functional capacity of modern UAV swarm systems and the functionality required by legislation. This paper investigates this divide through an overview of global legislative practice, contextualized via a case study of Australia’s UAV regulatory environment. The overview highlighted legislative objectives that coincided with open challenges in the UAV swarm literature. These objectives were then formulated into analysis criteria that assessed whether systems presented sufficient functionality to address legislative concern. A systematic review methodology was used to apply analysis criteria to multi-objective UAV swarm mission planning systems. Analysis focused on multi-objective mission planning systems due to their role in defining the functional capacity of UAV swarms within complex real-world operational environments. This, alongside the popularity of these systems within the modern literature, makes them ideal candidates for defining new enabling technologies that could address the identified areas of weakness. The results of this review highlighted several legislative considerations that remain under-addressed by existing technologies. These findings guided the proposal of enabling technologies to bridge the divide between functional capacity and legislative concern. Full article
Show Figures

Figure 1

45 pages, 11380 KiB  
Article
Application of Multi-Strategy Controlled Rime Algorithm in Path Planning for Delivery Robots
by Haokai Lv, Qian Qian, Jiawen Pan, Miao Song, Yong Feng and Yingna Li
Biomimetics 2025, 10(7), 476; https://doi.org/10.3390/biomimetics10070476 - 19 Jul 2025
Viewed by 288
Abstract
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME [...] Read more.
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME optimization algorithm. Through in-depth analysis, we identified several major drawbacks in the standard RIME algorithm for path planning: insufficient global exploration capability in the initial stages, a lack of diversity in the hard RIME search mechanism, and oscillatory phenomena in soft RIME step size adjustment. These issues often lead to undesirable phenomena in path planning, such as local optima traps, path redundancy, or unsmooth trajectories. To address these limitations, this study proposes the Multi-Strategy Controlled Rime Algorithm (MSRIME), whose innovation primarily manifests in three aspects: first, it constructs a multi-strategy collaborative optimization framework, utilizing an infinite folding Fuch chaotic map for intelligent population initialization to significantly enhance the diversity of solutions; second, it designs a cooperative mechanism between a controlled elite strategy and an adaptive search strategy that, through a dynamic control factor, autonomously adjusts the strategy activation probability and adaptation rate, expanding the search space while ensuring algorithmic convergence efficiency; and finally, it introduces a cosine annealing strategy to improve the step size adjustment mechanism, reducing parameter sensitivity and effectively preventing path distortions caused by abrupt step size changes. During the algorithm validation phase, comparative tests were conducted between two groups of algorithms, demonstrating their significant advantages in optimization capability, convergence speed, and stability. Further experimental analysis confirmed that the algorithm’s multi-strategy framework effectively suppresses the impact of coordinate and dimensional differences on path quality during iteration, making it more suitable for delivery robot path planning scenarios. Ultimately, path planning experimental results across various Building Coverage Rate (BCR) maps and diverse application scenarios show that MSRIME exhibits superior performance in key indicators such as path length, running time, and smoothness, providing novel technical insights and practical solutions for the interdisciplinary research between intelligent logistics and computer science. Full article
Show Figures

Figure 1

19 pages, 3236 KiB  
Article
Performance Evaluation of a Hybrid Power System for Unmanned Aerial Vehicles Applications
by Tiberius-Florian Frigioescu, Gabriel-Petre Badea, Mădălin Dombrovschi and Maria Căldărar
Electronics 2025, 14(14), 2873; https://doi.org/10.3390/electronics14142873 - 18 Jul 2025
Viewed by 177
Abstract
While electric unmanned aerial vehicles (UAVs) offer advantages in noise reduction, safety, and operational efficiency, their endurance is limited by current battery technology. Extending flight autonomy without compromising performance is a critical challenge in UAV system development. Previous studies introduced hybrid micro-turbogenerator architectures, [...] Read more.
While electric unmanned aerial vehicles (UAVs) offer advantages in noise reduction, safety, and operational efficiency, their endurance is limited by current battery technology. Extending flight autonomy without compromising performance is a critical challenge in UAV system development. Previous studies introduced hybrid micro-turbogenerator architectures, but limitations in control stability and output power constrained their practical implementation. This study aimed to finalize the design and experimental validation of an optimized hybrid power system featuring a micro-turboprop engine mechanically coupled to an upgraded electric generator. A fuzzy logic-based control algorithm was implemented on a single-board computer to enable autonomous voltage regulation. The test bench architecture was reinforced and instrumented to allow stable multi-stage testing across increasing power levels. Results demonstrated stable voltage control at 48 VDC and electrical power outputs up to 3 kW, with an estimated maximum of 3.5 kW at full throttle. Efficiency was calculated at approximately 67%, and analysis of the generator’s KV constant revealed that using a lower KV variant (KV80) could reduce required rotational speed (RPM) and improve performance. These findings underscore the value of adaptive hybridization in UAVs and suggest that tuning generator electromechanical parameters can significantly enhance overall energy efficiency and platform autonomy. Full article
Show Figures

Figure 1

19 pages, 3520 KiB  
Article
Vision-Guided Maritime UAV Rescue System with Optimized GPS Path Planning and Dual-Target Tracking
by Suli Wang, Yang Zhao, Chang Zhou, Xiaodong Ma, Zijun Jiao, Zesheng Zhou, Xiaolu Liu, Tianhai Peng and Changxing Shao
Drones 2025, 9(7), 502; https://doi.org/10.3390/drones9070502 - 16 Jul 2025
Viewed by 367
Abstract
With the global increase in maritime activities, the frequency of maritime accidents has risen, underscoring the urgent need for faster and more efficient search and rescue (SAR) solutions. This study presents an intelligent unmanned aerial vehicle (UAV)-based maritime rescue system that combines GPS-driven [...] Read more.
With the global increase in maritime activities, the frequency of maritime accidents has risen, underscoring the urgent need for faster and more efficient search and rescue (SAR) solutions. This study presents an intelligent unmanned aerial vehicle (UAV)-based maritime rescue system that combines GPS-driven dynamic path planning with vision-based dual-target detection and tracking. Developed within the Gazebo simulation environment and based on modular ROS architecture, the system supports stable takeoff and smooth transitions between multi-rotor and fixed-wing flight modes. An external command module enables real-time waypoint updates. This study proposes three path-planning schemes based on the characteristics of drones. Comparative experiments have demonstrated that the triangular path is the optimal route. Compared with the other schemes, this path reduces the flight distance by 30–40%. Robust target recognition is achieved using a darknet-ROS implementation of the YOLOv4 model, enhanced with data augmentation to improve performance in complex maritime conditions. A monocular vision-based ranging algorithm ensures accurate distance estimation and continuous tracking of rescue vessels. Furthermore, a dual-target-tracking algorithm—integrating motion prediction with color-based landing zone recognition—achieves a 96% success rate in precision landings under dynamic conditions. Experimental results show a 4% increase in the overall mission success rate compared to traditional SAR methods, along with significant gains in responsiveness and reliability. This research delivers a technically innovative and cost-effective UAV solution, offering strong potential for real-world maritime emergency response applications. Full article
Show Figures

Figure 1

32 pages, 5465 KiB  
Article
DETEAMSK: A Model-Based Reinforcement Learning Approach to Intelligent Top-Level Planning and Decisions for Multi-Drone Ad Hoc Teamwork by Decoupling the Identification of Teammate and Task
by Penghui Xu, Yu Zhang, Le Hao and Qilin Yan
Aerospace 2025, 12(7), 635; https://doi.org/10.3390/aerospace12070635 - 16 Jul 2025
Viewed by 131
Abstract
The ability to collaborate with new teammates, adapt to unfamiliar environments, and engage in effective planning is essential for multi-drone agents within unmanned combat systems. This paper introduces DETEAMSK (Model-based Reinforcement Learning by Decoupling the Identification of Teammates and Tasks), a model-based reinforcement [...] Read more.
The ability to collaborate with new teammates, adapt to unfamiliar environments, and engage in effective planning is essential for multi-drone agents within unmanned combat systems. This paper introduces DETEAMSK (Model-based Reinforcement Learning by Decoupling the Identification of Teammates and Tasks), a model-based reinforcement learning method in intelligent top-level planning and decisions designed for ad hoc teamwork among multi-drone agents. It specifically addresses integrated reconnaissance and strike missions in urban combat scenarios under varying conditions. DETEAMSK’s performance is evaluated through comprehensive, multidimensional experiments and compared with other baseline models. The results demonstrate that DETEAMSK exhibits superior effectiveness, robustness, and generalization capabilities across a range of task domains. Moreover, the model-based reinforcement learning approach offers distinct advantages over traditional models, such as the PLASTIC-Model, and model-free approaches, like the PLASTIC-Policy, due to its unique “dynamic decoupling identification” feature. This study provides valuable insights for advancing both theoretical and applied research in model-based reinforcement learning methods for multi-drone systems. Full article
(This article belongs to the Special Issue Innovations in Unmanned Aerial Vehicle: Design and Development)
Show Figures

Figure 1

39 pages, 1775 KiB  
Article
A Survey on UAV Control with Multi-Agent Reinforcement Learning
by Chijioke C. Ekechi, Tarek Elfouly, Ali Alouani and Tamer Khattab
Drones 2025, 9(7), 484; https://doi.org/10.3390/drones9070484 - 9 Jul 2025
Viewed by 879
Abstract
Unmanned Aerial Vehicles (UAVs) have become increasingly prevalent in both governmental and civilian applications, offering significant reductions in operational costs by minimizing human involvement. There is a growing demand for autonomous, scalable, and intelligent coordination strategies in complex aerial missions involving multiple Unmanned [...] Read more.
Unmanned Aerial Vehicles (UAVs) have become increasingly prevalent in both governmental and civilian applications, offering significant reductions in operational costs by minimizing human involvement. There is a growing demand for autonomous, scalable, and intelligent coordination strategies in complex aerial missions involving multiple Unmanned Aerial Vehicles (UAVs). Traditional control techniques often fall short in dynamic, uncertain, or large-scale environments where decentralized decision-making and inter-agent cooperation are crucial. A potentially effective technique used for UAV fleet operation is Multi-Agent Reinforcement Learning (MARL). MARL offers a powerful framework for addressing these challenges by enabling UAVs to learn optimal behaviors through interaction with the environment and each other. Despite significant progress, the field remains fragmented, with a wide variety of algorithms, architectures, and evaluation metrics spread across domains. This survey aims to systematically review and categorize state-of-the-art MARL approaches applied to UAV control, identify prevailing trends and research gaps, and provide a structured foundation for future advancements in cooperative aerial robotics. The advantages and limitations of these techniques are discussed along with suggestions for further research to improve the effectiveness of MARL application to UAV fleet management. Full article
Show Figures

Figure 1

20 pages, 4572 KiB  
Article
Nonlinear Output Feedback Control for Parrot Mambo UAV: Robust Complex Structure Design and Experimental Validation
by Asmaa Taame, Ibtissam Lachkar, Abdelmajid Abouloifa, Ismail Mouchrif and Abdelali El Aroudi
Appl. Syst. Innov. 2025, 8(4), 95; https://doi.org/10.3390/asi8040095 - 7 Jul 2025
Viewed by 335
Abstract
This paper addresses the problem of controlling quadcopters operating in an environment characterized by unpredictable disturbances such as wind gusts. From a control point of view, this is a nonstandard, highly challenging problem. Fundamentally, these quadcopters are high-order dynamical systems characterized by an [...] Read more.
This paper addresses the problem of controlling quadcopters operating in an environment characterized by unpredictable disturbances such as wind gusts. From a control point of view, this is a nonstandard, highly challenging problem. Fundamentally, these quadcopters are high-order dynamical systems characterized by an under-actuated and highly nonlinear model with coupling between several state variables. The main objective of this work is to achieve a trajectory by tracking desired altitude and attitude. The problem was tackled using a robust control approach with a multi-loop nonlinear controller combined with extended Kalman filtering (EKF). Specifically, the flight control system consists of two regulation loops. The first one is an outer loop based on the backstepping approach and allows for control of the elevation as well as the yaw of the quadcopter, while the second one is the inner loop, which allows the maintenance of the desired attitude by adjusting the roll and pitch, whose references are generated by the outer loop through a standard PID, to limit the 2D trajectory to a desired set path. The investigation integrates EKF technique for sensor signal processing to increase measurements accuracy, hence improving robustness of the flight. The proposed control system was formally developed and experimentally validated through indoor tests using the well-known Parrot Mambo unmanned aerial vehicle (UAV). The obtained results show that the proposed flight control system is efficient and robust, making it suitable for advanced UAV navigation in dynamic scenarios with disturbances. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

13 pages, 1883 KiB  
Article
A GAN-Based Method for Cognitive Covert Communication UAV Jamming-Assistance Under Fully Labeled Sample Conditions
by Wenxuan Fu, Bo Li, Haipeng Wang, Haochen Gong and Xiang Lin
Technologies 2025, 13(7), 283; https://doi.org/10.3390/technologies13070283 - 3 Jul 2025
Viewed by 259
Abstract
This paper addresses the optimization problem for mobile jamming assistance schemes in cognitive covert communication (CR-CC), where cognitive users adopt the underlying mode for spectrum access, while an unmanned aerial vehicle (UAV) transmits the same-frequency noise signals to interfere with eavesdroppers. Leveraging the [...] Read more.
This paper addresses the optimization problem for mobile jamming assistance schemes in cognitive covert communication (CR-CC), where cognitive users adopt the underlying mode for spectrum access, while an unmanned aerial vehicle (UAV) transmits the same-frequency noise signals to interfere with eavesdroppers. Leveraging the inherent dynamic game-theoretic characteristics of covert communication (CC) systems, we propose a novel covert communication optimization algorithm based on generative adversarial networks (GAN-CCs) to achieve system-wide optimization under the constraint of maximum detection error probability. In GAN-CC, the generator simulates legitimate users to generate UAV interference assistance schemes, while the discriminator simulates the optimal signal detection of eavesdroppers. Through the alternating iterative optimization of these two components, the dynamic game process in CC is simulated, ultimately achieving the Nash equilibrium. The numerical results show that, compared with the commonly used multi-objective optimization algorithm or nonlinear programming algorithm at present, this algorithm exhibits faster and more stable convergence, enabling the derivation of optimal mobile interference assistance schemes for cognitive CC systems. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Hydraulic Performance and Flow Characteristics of a High-Speed Centrifugal Pump Based on Multi-Objective Optimization
by Yifu Hou and Rong Xue
Fluids 2025, 10(7), 174; https://doi.org/10.3390/fluids10070174 - 2 Jul 2025
Viewed by 245
Abstract
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller [...] Read more.
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller size while maintaining hydraulic performance, thereby significantly decreasing the overall volume and mass. However, high-speed operation introduces considerable internal flow losses, placing stricter demands on the geometric design and flow-field compatibility of the impeller. In this study, a miniature high-speed centrifugal pump (MHCP) was investigated, and a multi-objective optimization of the impeller was carried out using response surface methodology (RSM) to improve internal flow characteristics and overall hydraulic performance. Numerical simulations demonstrated strong predictive capability, and experimental results validated the model’s accuracy. At the design condition (10,000 rpm, 4.8 m3/h), the pump achieved a head of 46.1 m and an efficiency of 49.7%, corresponding to its best efficiency point (BEP). Sensitivity analysis revealed that impeller outlet diameter and blade outlet angle were the most influential parameters affecting pump performance. Following the optimization, the pump head increased by 3.7 m, and the hydraulic efficiency improved by 4.8%. In addition, the pressure distribution and streamlines within the impeller exhibited better uniformity, while the turbulent kinetic energy near the blade suction surface and at the impeller outlet was markedly decreased. This work provides theoretical support and design guidance for the efficient application of MHCPs in UAV thermal management systems. Full article
Show Figures

Figure 1

26 pages, 6535 KiB  
Article
Aerodynamic Optimization of Morphing Airfoil by PCA and Optimization-Guided Data Augmentation
by Ao Guo, Jing Wang, Miao Zhang and Han Wang
Aerospace 2025, 12(7), 599; https://doi.org/10.3390/aerospace12070599 - 1 Jul 2025
Viewed by 270
Abstract
An aircraft that has been carefully optimized for a single flight condition will tend to perform poorly at other flight conditions. For aircraft such as long-haul airliners, this is not necessarily a problem, since the cruise condition so heavily dominates a typical mission. [...] Read more.
An aircraft that has been carefully optimized for a single flight condition will tend to perform poorly at other flight conditions. For aircraft such as long-haul airliners, this is not necessarily a problem, since the cruise condition so heavily dominates a typical mission. However, other aircraft, such as Unmanned Aerial Vehicles (UAVs), may be expected to perform well at a wide range of flight conditions. Morphing systems may be a solution to this problem, as they allow the aircraft to adapt its shape to produce optimum performance at each flight condition. This study proposes an aerodynamic optimization framework for morphing airfoils by integrating Principal Component Analysis (PCA) for geometric dimensionality reduction and deep learning (DL) for surrogate modeling, alongside an optimization-guided data augmentation strategy. By employing PCA, the geometric dimensionality of airfoil surfaces is reduced from 24 to 18 design variables while preserving 100% shape fidelity, thus establishing a compressed morphing parameterization space. A Multi-Island Genetic Algorithm (MIGA) efficiently explores the reduced design space, while iterative retraining of the surrogate model enhances prediction accuracy, particularly in high-performance regions. Additionally, Shapley Additive Explanation (SHAP) analysis reveals interpretable correlations between principal component modes and aerodynamic performances. Experimental results show that the optimized airfoil achieves a 54.66% increase in low-speed cruise lift-to-drag ratio and 10.90% higher climb lift compared to the baseline. Overall, the proposed framework not only enhances the adaptability of morphing airfoils across various low-speed flight conditions but also facilitates targeted surrogate refinement and efficient data acquisition in high-performance regions. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 2267 KiB  
Article
Closed-Loop Aerial Tracking with Dynamic Detection-Tracking Coordination
by Yang Wang, Heqing Huang, Jiahao He, Dongting Han and Zhiwei Zhao
Drones 2025, 9(7), 467; https://doi.org/10.3390/drones9070467 - 30 Jun 2025
Viewed by 314
Abstract
Aerial tracking is an important service for many Unmanned Aerial Vehicle (UAV) applications. Existing work has failed to provide robust solutions when handling target disappearance, viewpoint changes, and tracking drifts in practical scenarios with limited UAV resources. In this paper, we propose a [...] Read more.
Aerial tracking is an important service for many Unmanned Aerial Vehicle (UAV) applications. Existing work has failed to provide robust solutions when handling target disappearance, viewpoint changes, and tracking drifts in practical scenarios with limited UAV resources. In this paper, we propose a closed-loop framework integrating three key components: (1) a lightweight adaptive detection with multi-scale feature extraction, (2) spatiotemporal motion modeling through Kalman-filter-based trajectory prediction, and (3) autonomous decision-making through composite scoring of detection confidence, appearance similarity, and motion consistency. By implementing dynamic detection-tracking coordination with quality-aware feature preservation, our system enables real-time operation through performance-adaptive frequency modulation. Evaluated on VOT-ST2019 and OTB100 benchmarks, the proposed method yields marked improvements over baseline trackers, achieving a 27.94% increase in Expected Average Overlap (EAO) and a 10.39% reduction in failure rates, while sustaining a frame rate of 23–95 FPS on edge hardware. The framework achieves rapid target reacquisition during prolonged occlusion scenarios through optimized protocols, outperforming conventional methods in sustained aerial surveillance tasks. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

27 pages, 12374 KiB  
Article
A Novel Neural Network-Based Adaptive Formation Control for Cooperative Transportation of an Underwater Payload Using a Fleet of UUVs
by Wen Pang, Daqi Zhu, Mingzhi Chen, Wentao Xu and Bin Wang
Drones 2025, 9(7), 465; https://doi.org/10.3390/drones9070465 - 30 Jun 2025
Viewed by 399
Abstract
This article studies the cooperative underwater payload transportation problem for multiple unmanned underwater vehicles (UUVs) operating in a constrained workspace with both static and dynamic obstacles. A novel cooperative formation control algorithm has been presented in this paper for the transportation of a [...] Read more.
This article studies the cooperative underwater payload transportation problem for multiple unmanned underwater vehicles (UUVs) operating in a constrained workspace with both static and dynamic obstacles. A novel cooperative formation control algorithm has been presented in this paper for the transportation of a large payload in underwater scenarios. More precisely, by using the advantages of multi-UUV formation cooperation, based on rigidity graph theory and backstepping technology, the distance between each UUV, as well as the UUV and the transport payload, is controlled to form a three-dimensional rigid structure so that the load remains balanced and stable, to coordinate the transport of objects within the feasible area of the workspace. Moreover, a neural network (NN) is utilized to maintain system stability despite unknown nonlinearities and disturbances in the system dynamics. In addition, based on the interfered fluid flow algorithm, a collision-free motion trajectory was planned for formation systems. The control scheme also performs real-time formation reconfiguration according to the size and position of obstacles in space, thereby enhancing the flexibility of cooperative handling. The uniform ultimate boundedness of the formation distance errors is comprehensively demonstrated by utilizing the Lyapunov stability theory. Finally, the simulation results show that the UUVs can quickly form and maintain the desired formation, transport the payload along the planned trajectory to shuttle in multi-obstacle environments, verify the feasibility of the method proposed in this paper, and achieve the purpose of the collaborative transportation of large underwater payload by multiple UUVs and their targeted delivery. Full article
Show Figures

Figure 1

20 pages, 741 KiB  
Article
Long-Endurance Collaborative Search and Rescue Based on Maritime Unmanned Systems and Deep-Reinforcement Learning
by Pengyan Dong, Jiahong Liu, Hang Tao, Yang Zhao, Zhijie Feng and Hanjiang Luo
Sensors 2025, 25(13), 4025; https://doi.org/10.3390/s25134025 - 27 Jun 2025
Viewed by 282
Abstract
Maritime vision sensing can be applied to maritime unmanned systems to perform search and rescue (SAR) missions under complex marine environments, as multiple unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) are able to conduct vision sensing through the air, the water-surface, [...] Read more.
Maritime vision sensing can be applied to maritime unmanned systems to perform search and rescue (SAR) missions under complex marine environments, as multiple unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) are able to conduct vision sensing through the air, the water-surface, and underwater. However, in these vision-based maritime SAR systems, collaboration between UAVs and USVs is a critical issue for successful SAR operations. To address this challenge, in this paper, we propose a long-endurance collaborative SAR scheme which exploits the complementary strengths of the maritime unmanned systems. In this scheme, a swarm of UAVs leverages a multi-agent reinforcement-learning (MARL) method and probability maps to perform cooperative first-phase search exploiting UAV’s high altitude and wide field of view of vision sensing. Then, multiple USVs conduct precise real-time second-phase operations by refining the probabilistic map. To deal with the energy constraints of UAVs and perform long-endurance collaborative SAR missions, a multi-USV charging scheduling method is proposed based on MARL to prolong the UAVs’ flight time. Through extensive simulations, the experimental results verified the effectiveness of the proposed scheme and long-endurance search capabilities. Full article
(This article belongs to the Special Issue Underwater Vision Sensing System: 2nd Edition)
Show Figures

Figure 1

19 pages, 2692 KiB  
Article
Enhanced Spring Wheat Soil Plant Analysis Development (SPAD) Estimation in Hetao Irrigation District: Integrating Leaf Area Index (LAI) Under Variable Irrigation Conditions
by Qiang Wu, Dingyi Hou, Min Xie, Qi Gao, Mengyuan Li, Shuiyuan Hao, Chao Cui, Keke Fan, Yu Zhang and Yongping Zhang
Agriculture 2025, 15(13), 1372; https://doi.org/10.3390/agriculture15131372 - 26 Jun 2025
Viewed by 327
Abstract
Non-destructive monitoring of chlorophyll content through Soil Plant Analysis Development (SPAD) values is essential for precision agriculture in water-limited regions. However, current estimation methods using spectral information alone face significant limitations in sensitivity and transferability under variable irrigation conditions. While integrating canopy structural [...] Read more.
Non-destructive monitoring of chlorophyll content through Soil Plant Analysis Development (SPAD) values is essential for precision agriculture in water-limited regions. However, current estimation methods using spectral information alone face significant limitations in sensitivity and transferability under variable irrigation conditions. While integrating canopy structural parameters with spectral data represents a promising solution, systematic investigation of this approach throughout the entire growth cycle of spring wheat under different irrigation regimes remains limited. This study evaluated three machine learning algorithms (Random Forest, Support Vector Regression, and Multi-Layer Perceptron) for SPAD estimation in spring wheat cultivated in the Hetao Irrigation District. Using a split-plot experimental design with two irrigation treatments (conventional: four irrigations; limited: two irrigations) and five nitrogen levels (0–300 kg·ha−1), we analyzed ten vegetation indices derived from Unmanned Aerial Vehicle (UAV) multispectral imagery, with and without Leaf Area Index (LAI) integration, across six growth stages. Results demonstrated that incorporating LAI significantly improved SPAD estimation accuracy across all algorithms, with Random Forest exhibiting the most substantial enhancement (R2 increasing from 0.698 to 0.842, +20.6%; RMSE decreasing from 5.025 to 3.640, −27.6%). Notably, LAI contributed more significantly to SPAD estimation under limited irrigation conditions (R2 improvement: +17.6%) compared to conventional irrigation (+11.0%), indicating its particular value for chlorophyll monitoring in water-stressed environments. The Green Normalized Difference Vegetation Index (GNDVI) emerged as the most important predictor (importance score: 0.347), followed by LAI (0.213), confirming the complementary nature of spectral and structural information. These findings provide a robust framework for non-destructive SPAD estimation in spring wheat and highlight the importance of integrating canopy structural information with spectral data, particularly in water-limited agricultural systems. Full article
(This article belongs to the Special Issue Remote Sensing in Smart Irrigation Systems)
Show Figures

Figure 1

Back to TopTop