Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = multi-template molecularly imprinted polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1562 KiB  
Review
Electrospun Molecularly Imprinted Polymers for Environmental Remediation: A Mini Review
by Sisonke Sigonya, Bakang Mo Mothudi, Olayemi J. Fakayode, Teboho C. Mokhena, Paul Mayer, Thabang H. Mokhothu, Talent R. Makhanya and Katekani Shingange
Polymers 2025, 17(15), 2082; https://doi.org/10.3390/polym17152082 - 30 Jul 2025
Viewed by 219
Abstract
This review critically examines the recent advancements in the development and application of electrospun molecularly imprinted polymer (MIP) nanofiber membranes for environmental remediation. Emphasizing the significance of these materials, the discussion highlights the mechanisms by which electrospun MIPs achieve high selectivity and efficiency [...] Read more.
This review critically examines the recent advancements in the development and application of electrospun molecularly imprinted polymer (MIP) nanofiber membranes for environmental remediation. Emphasizing the significance of these materials, the discussion highlights the mechanisms by which electrospun MIPs achieve high selectivity and efficiency in removing various pollutants, including dyes, heavy metals, and pharmaceutical residues such as NSAIDs and antiretroviral drugs. The synthesis methodologies are explored in detail, focusing on the choice of monomers, templates, and polymerization conditions that influence the structural and functional properties of the membranes. Characterization techniques used to assess morphology, surface area, porosity, and imprinting efficacy are also examined, providing insights into how these parameters affect adsorption performance. Furthermore, the review evaluates the performance metrics of electrospun MIPs, including adsorption capacities, selectivity, reusability, and stability in complex environmental matrices. Practical considerations, such as scalability, regeneration, and long-term operational stability, are discussed to assess their potential for real-world applications. The article concludes with an outline of future research directions, emphasizing the need for multi-template imprinting, integration with existing treatment technologies, and field-scale validation to address current limitations. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

15 pages, 3216 KiB  
Article
Multi-Template Molecularly Imprinted Polymers Coupled with a Solid-Phase Extraction System in the Selective Determination of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Environmental Water Samples
by David Aurelio-Soria, Giaan A. Alvarez-Romero, Maria E. Paez-Hernandez, I. Perez-Silva, Miriam Franco-Guzman, Gabriela Islas and Israel S. Ibarra
Separations 2025, 12(6), 140; https://doi.org/10.3390/separations12060140 - 25 May 2025
Viewed by 453
Abstract
A simple, fast, and low-cost pre-concentration methodology based on the application of multi-template molecularly imprinted polymers (mt-MIP) in a solid-phase extraction system coupled with capillary electrophoresis was developed for the determination of naproxen, diclofenac, and ibuprofen in environmental water samples. A systematic study [...] Read more.
A simple, fast, and low-cost pre-concentration methodology based on the application of multi-template molecularly imprinted polymers (mt-MIP) in a solid-phase extraction system coupled with capillary electrophoresis was developed for the determination of naproxen, diclofenac, and ibuprofen in environmental water samples. A systematic study of the mt-MIP composition was conducted using a second-order simplex lattice experiment design (fraction of the functional monomer methacrylic acid (MAA), the total moles of functional monomers, and the total moles of the cross-linker agent). The optimal mt-MIP, consisting of 0.025 mmol of each analyte, with 2.40 mmol of methacrylic acid (MAA) and 3.60 mmol of 4-vinylpyridine (4VP) and 23.00 mmol of the cross-linker agent (EGDMA), was coupled to an SPE system under the optimal conditions: pH = 3.5; 20 mg of mt-MIP; and an eluent (MeOH/NaOH [0.001]). This methodology provides limits of detection from 3.00 to 12.00 µg L−1 for the studied NSAIDs. The methodology’s precision was evaluated in terms of inter- and intra-day repeatability, with %RSD < 10% in all cases. Finally, the proposed method can be successfully applied in the analysis of environmental water samples (bottle, tap, cistern, well, and river water samples), which demonstrates the developed method’s robustness. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Figure 1

35 pages, 4936 KiB  
Review
Multi-Template Molecularly Imprinted Polymeric Electrochemical Biosensors
by Meltem Agar, Maisem Laabei, Hannah S. Leese and Pedro Estrela
Chemosensors 2025, 13(1), 11; https://doi.org/10.3390/chemosensors13010011 - 8 Jan 2025
Cited by 4 | Viewed by 3117
Abstract
Dual- or multi-template molecularly imprinted polymers have been an attractive research field for many years as they allow simultaneous detection of more than one target with high selectivity and sensitivity by creating template-specific recognition sites for multiple targets on the same functional monomer. [...] Read more.
Dual- or multi-template molecularly imprinted polymers have been an attractive research field for many years as they allow simultaneous detection of more than one target with high selectivity and sensitivity by creating template-specific recognition sites for multiple targets on the same functional monomer. Dual/multi-template molecular imprinting techniques have been applied to identify, extract, and detect many targets, from heavy metal ions to viruses, by different methods, such as high-performance liquid chromatography (HPLC), liquid chromatography–mass spectrometry (LC-MS), and piezoelectric, optical, and electrochemical methods. This article focuses on electrochemical sensors based on dual/multi-template molecularly imprinted polymers detecting a wide range of targets by electrochemical methods. Furthermore, this work highlights the use of these sensors for point-of-care applications, their commercialization and their integration with microfluidic systems. Full article
Show Figures

Figure 1

18 pages, 4944 KiB  
Article
Magnetic Molecularly Imprinted Polymer Combined with Solid-Phase Extraction for Purification of Schisandra chinensis Lignans
by Huijuan Xu, Lihan Sun, Yufei Du, Wenxin Duan, Wei Li, Sha Luo, Bing Liang, Chunhui Ma and Gaofeng Pan
Polymers 2024, 16(22), 3124; https://doi.org/10.3390/polym16223124 - 8 Nov 2024
Cited by 1 | Viewed by 1127
Abstract
Molecularly imprinted polymers (MIPs) can specifically recognize template molecules in solution with imprinted cavities. Due to their capacity for scalable production, they can be used to isolate target products from natural products for industrial production in the fields of pharmaceuticals and food. In [...] Read more.
Molecularly imprinted polymers (MIPs) can specifically recognize template molecules in solution with imprinted cavities. Due to their capacity for scalable production, they can be used to isolate target products from natural products for industrial production in the fields of pharmaceuticals and food. In this study, magnetic single-template molecularly imprinted polymers (St-MIPs) instead of magnetic multi-template molecularly imprinted polymers (Mt-MIPs) were prepared by surface imprinting using Schizandrol A as a template molecule and deep eutectic solvent (DES) as a functional monomer, combined with solid-phase extraction (SPE) for the adsorption and separation of Schizandrol A, Schisantherin A, Schizandrin A, and Schizandrin B from Schisandra chinensis (Turcz.) Baill. (S. chinensis) fruits extracts. The synthesized MIPs were characterized by FT-IR, TEM, SEM, TG, XRD and VSM, and their adsorption properties were also evaluated. MIPs can specifically recognize the template molecules with high reusability. The purity of the total S. chinensis lignans after SPE was 74.05%, among which that of Schizandrol A, Schisantherin A, Schizandrin A, and Schizandrin B was 33.38%, 8.69%, 16.33% and 15.67%, respectively. Moreover, the one-step synthesis of carrier was easy to operate. And St-MIPs reduced the production cost compared with Mt-MIPs. This study provides a new idea for natural product separation by molecular imprinting technology (MIT). Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

30 pages, 4821 KiB  
Review
Molecularly Imprinted Ratiometric Fluorescent Sensors for Analysis of Pharmaceuticals and Biomarkers
by Jingyi Yan, Siwu Liu, Dani Sun, Siyuan Peng, Yongfei Ming, Abbas Ostovan, Zhihua Song, Jinmao You, Jinhua Li and Huaying Fan
Sensors 2024, 24(21), 7068; https://doi.org/10.3390/s24217068 - 2 Nov 2024
Cited by 5 | Viewed by 2447
Abstract
Currently, analyzing pharmaceuticals and biomarkers is crucial for ensuring medication safety and protecting life and health, and there is an urgent need to develop new and efficient analytical techniques in view of the limitations of traditional analytical methods. Molecularly imprinted ratiometric fluorescent (MI-RFL) [...] Read more.
Currently, analyzing pharmaceuticals and biomarkers is crucial for ensuring medication safety and protecting life and health, and there is an urgent need to develop new and efficient analytical techniques in view of the limitations of traditional analytical methods. Molecularly imprinted ratiometric fluorescent (MI-RFL) sensors have received increasing attention in the field of analytical detection due to their high selectivity, sensitivity and anti-interference ability, short response time, and visualization. This review summarizes the recent advances of MI-RFL sensors in the field of pharmaceuticals and biomarkers detection. Firstly, the fluorescence sources and working mechanisms of MI-RFL sensors are briefly introduced. On this basis, new techniques and strategies for preparing molecularly imprinted polymers, such as dummy template imprinting, nanoimprinting, multi-template imprinting, and stimulus-responsive imprinting strategies, are presented. Then, dual- and triple-emission types of fluorescent sensors are introduced. Subsequently, specific applications of MI-RFL sensors in pharmaceutical analysis and biomarkers detection are highlighted. In addition, innovative applications of MI-RFL sensors in point-of-care testing are discussed in-depth. Finally, the challenges of MI-RFL sensors for analysis of pharmaceuticals and biomarkers are proposed, and the research outlook and development trends of MI-RFL sensors are prospected. Full article
(This article belongs to the Special Issue Fluorescence Sensors for Biological and Medical Applications)
Show Figures

Figure 1

13 pages, 3849 KiB  
Article
Dual-Template Molecularly Imprinted Polymers for Dispersive Solid-Phase Extraction Combined with High Performance Liquid Chromatography for the Determination of Sulfonamide Antibiotics in Environmental Water Samples
by Yuhao Wen, Mingyang Hou, Xingkai Hao, Dani Sun, Hao Zhang, Farooq Saqib, Wenhui Lu, Huitao Liu, Lingxin Chen and Jinhua Li
Polymers 2024, 16(21), 3095; https://doi.org/10.3390/polym16213095 - 1 Nov 2024
Viewed by 1855
Abstract
In this study, we designed a molecularly imprinted polymers-dispersive solid-phase extraction-high-performance liquid chromatography (MIPs-DSPE-HPLC) method, as a simple and efficient platform for the sensitive detection of two sulfonamide antibiotics (SAs) of sulfamethoxine (SMM) and sulfamethoxazole (SMZ) in environmental water samples. Using SMM and [...] Read more.
In this study, we designed a molecularly imprinted polymers-dispersive solid-phase extraction-high-performance liquid chromatography (MIPs-DSPE-HPLC) method, as a simple and efficient platform for the sensitive detection of two sulfonamide antibiotics (SAs) of sulfamethoxine (SMM) and sulfamethoxazole (SMZ) in environmental water samples. Using SMM and SMZ as templates, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the crosslinking agent, and azodiisobutyronitrile as the catalyst, the dual-template molecularly imprinted polymers (dt-MIPs) were successfully synthesized via surface imprinting technology and multi-template imprinting strategy. The adsorption properties of the prepared MIPs were characterized, and the adsorption capacities of MIPs towards SMZ and SMM were 27.35 mg/g and 30.92 mg/g, respectively. The detection limits of the method in three environmental water samples were in the range of 0.23–1.74 μg/L, and the recoveries were between 82.7 and 110.3%, with relative standard deviations less than 5.93%. The construction process of this MIPs-DSPE-HPLC method is straightforward, exhibits high sensitivity and selectivity, and thus provides a versatile method for the quantification of SAs in complex matrices. Full article
(This article belongs to the Special Issue Advance in Molecularly Imprinted Polymers II)
Show Figures

Figure 1

15 pages, 4505 KiB  
Article
Using Magnetic Molecularly Imprinted Polymer Technology for Determination of Fish Serum Glucose Levels
by Boxuan Yao, Long Gu, Li Huang, Ruichun Li, Ze Fan, Zhongxiang Chen, Dongli Qin and Lei Gao
Polymers 2024, 16(11), 1538; https://doi.org/10.3390/polym16111538 - 29 May 2024
Cited by 4 | Viewed by 1362
Abstract
In this study, a highly efficient magnetic molecularly imprinted polymer nanocomposite material was prepared using multi-walled carbon nanotubes as carriers. The characterization of the obtained nanocomposite material was conducted using Fourier transform infrared spectroscopy, a vibrating sample magnetometer, a thermogravimetric analyzer, a scanning [...] Read more.
In this study, a highly efficient magnetic molecularly imprinted polymer nanocomposite material was prepared using multi-walled carbon nanotubes as carriers. The characterization of the obtained nanocomposite material was conducted using Fourier transform infrared spectroscopy, a vibrating sample magnetometer, a thermogravimetric analyzer, a scanning electron microscope, and a transmission electron microscope. The adsorption properties of the nanocomposite material were evaluated through adsorption experiments, including static adsorption, dynamic adsorption, and selective recognition studies. The prepared nanocomposite material, serving as a selective adsorbent, was applied in magnetic solid-phase extraction. Subsequently, the derivatized samples were analyzed for glucose in fish serum using liquid chromatography–tandem mass spectrometry. Under optimal conditions, the detection limit was 0.30 ng/mL, the quantitation limit was 0.99 ng/mL, satisfactory spiked recovery rates were obtained, and the relative standard deviation was less than 1.1%. Using 2-deoxy-D-ribose as the template molecule and a structural analog of glucose allowed us to eliminate the potential template leakage in qualitative and quantitative analyses, effectively avoiding the issues of false positives and potential quantitative errors, compared to traditional methods. A method for detecting glucose levels in fish serum based on molecularly imprinted polymer technology has been successfully developed to determine the stress and health levels of fish. Full article
(This article belongs to the Special Issue Advance in Molecularly Imprinted Polymers II)
Show Figures

Figure 1

19 pages, 2925 KiB  
Article
Synthesis of a Multi-Template Molecular Imprinted Bulk Polymer for the Adsorption of Non-Steroidal Inflammatory and Antiretroviral Drugs
by Sisonke Sigonya, Teboho Clement Mokhena, Paul Micheal Mayer, Phumlane Selby Mdluli, Talent Raymond Makhanya and Thabang Hendrica Mokhothu
Appl. Sci. 2024, 14(8), 3320; https://doi.org/10.3390/app14083320 - 15 Apr 2024
Cited by 5 | Viewed by 3557
Abstract
In this paper, we report the synthesis of a multi-template molecularly imprinted polymer (MIP) to target and extract naproxen, ibuprofen, diclofenac, emtricitabine, tenofovir disoproxil, and efavirenz from wastewater bodies. A bulk polymerization procedure was used to synthesize the MIP and non-imprinted polymer (NIP). [...] Read more.
In this paper, we report the synthesis of a multi-template molecularly imprinted polymer (MIP) to target and extract naproxen, ibuprofen, diclofenac, emtricitabine, tenofovir disoproxil, and efavirenz from wastewater bodies. A bulk polymerization procedure was used to synthesize the MIP and non-imprinted polymer (NIP). The specific recognition sites for each target were obtained through the removal of the imprinted targeted compounds. The interaction of antiretroviral drugs (ARVs) and non-steroidal anti-inflammatory drugs (NSAIDs) compounds with the MIP was studied under various conditions such as pH, mass, concentration, and time factors. The results demonstrated the optimum conditions were 55 mg of MIP, pH 7.0, a concentration of 5 mg L−1, and a contact time of 10 min. For every compound studied, the extraction efficiencies for ARVs and NSAIDs in aqueous solutions was >96%. The adsorption capacity for the MIP was >0.91 mg·g−1. Adsorption obeys a second-order rate, and the Freundlich model explains the adsorption isotherm data. This study demonstrated that the synthesized multi-template MIP has huge potential to be employed for the removal of ARVs and NSAIDs from the environment as well as in drug purification or recovery processes. Full article
Show Figures

Figure 1

15 pages, 1312 KiB  
Review
Molecularly Imprinted Polymers for Pharmaceutical Impurities: Design and Synthesis Methods
by Aliya Nur Hasanah and Ike Susanti
Polymers 2023, 15(16), 3401; https://doi.org/10.3390/polym15163401 - 14 Aug 2023
Cited by 12 | Viewed by 3202
Abstract
The safety of a medicinal product is determined by its pharmacological and toxicological profile, which depends not only on the active substance’s toxicological properties, but also on the impurities it contains. Because impurities are a problem that must be considered to ensure the [...] Read more.
The safety of a medicinal product is determined by its pharmacological and toxicological profile, which depends not only on the active substance’s toxicological properties, but also on the impurities it contains. Because impurities are a problem that must be considered to ensure the safety of a drug product, many studies have been conducted regarding the separation or purification of active pharmaceutical ingredients (APIs) and the determination of impurities in APIs and drug products. Several studies have applied molecularly imprinted polymers (MIPs) to separate impurities in active ingredients and as adsorbents in the sample preparation process. This review presents the design of MIPs and the methods used to synthesise MIPs to separate impurities in APIs and drug product samples, the application of MIPs to separate impurities, and a view of future studies involving MIPs to remove impurities from pharmaceutical products. Based on a comparison of the bulk and surface-imprinting polymerisation methods, the MIPs produced by the surface-imprinting polymerisation method have a higher adsorption capacity and faster adsorption kinetics than the MIPs produced by the bulk polymerisation method. However, the application of MIPs in the analysis of APIs and drug products are currently only related to organic compounds. Considering the advantages of MIPs to separate impurities, MIPs for other impurities still need to be developed, including multi-template MIPs for simultaneous separation of multiple impurities. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Pharmaceutical Applications IV)
Show Figures

Figure 1

26 pages, 2962 KiB  
Review
Recent Advances in Molecularly Imprinted Polymers for Antibiotic Analysis
by Guangli Zhao, Yue Zhang, Dani Sun, Shili Yan, Yuhao Wen, Yixiao Wang, Guisheng Li, Huitao Liu, Jinhua Li and Zhihua Song
Molecules 2023, 28(1), 335; https://doi.org/10.3390/molecules28010335 - 1 Jan 2023
Cited by 49 | Viewed by 5849
Abstract
The abuse and residues of antibiotics have a great impact on the environment and organisms, and their determination has become very important. Due to their low contents, varieties and complex matrices, effective recognition, separation and enrichment are usually required prior to determination. Molecularly [...] Read more.
The abuse and residues of antibiotics have a great impact on the environment and organisms, and their determination has become very important. Due to their low contents, varieties and complex matrices, effective recognition, separation and enrichment are usually required prior to determination. Molecularly imprinted polymers (MIPs), a kind of highly selective polymer prepared via molecular imprinting technology (MIT), are used widely in the analytical detection of antibiotics, as adsorbents of solid-phase extraction (SPE) and as recognition elements of sensors. Herein, recent advances in MIPs for antibiotic residue analysis are reviewed. Firstly, several new preparation techniques of MIPs for detecting antibiotics are briefly introduced, including surface imprinting, nanoimprinting, living/controlled radical polymerization, and multi-template imprinting, multi-functional monomer imprinting and dummy template imprinting. Secondly, several SPE modes based on MIPs are summarized, namely packed SPE, magnetic SPE, dispersive SPE, matrix solid-phase dispersive extraction, solid-phase microextraction, stir-bar sorptive extraction and pipette-tip SPE. Thirdly, the basic principles of MIP-based sensors and three sensing modes, including electrochemical sensing, optical sensing and mass sensing, are also outlined. Fourthly, the research progress on molecularly imprinted SPEs (MISPEs) and MIP-based electrochemical/optical/mass sensors for the detection of various antibiotic residues in environmental and food samples since 2018 are comprehensively reviewed, including sulfonamides, quinolones, β-lactams and so on. Finally, the preparation and application prospects of MIPs for detecting antibiotics are outlined. Full article
(This article belongs to the Special Issue Molecularly Imprinted Materials: New Vistas and Challenge)
Show Figures

Figure 1

25 pages, 3112 KiB  
Review
Applications of Molecular Imprinting Technology in the Study of Traditional Chinese Medicine
by Yue Zhang, Guangli Zhao, Kaiying Han, Dani Sun, Na Zhou, Zhihua Song, Huitao Liu, Jinhua Li and Guisheng Li
Molecules 2023, 28(1), 301; https://doi.org/10.3390/molecules28010301 - 30 Dec 2022
Cited by 29 | Viewed by 4672
Abstract
Traditional Chinese medicine (TCM) is one of the most internationally competitive industries. In the context of TCM modernization and internationalization, TCM-related research studies have entered a fast track of development. At the same time, research of TCM is also faced with challenges, such [...] Read more.
Traditional Chinese medicine (TCM) is one of the most internationally competitive industries. In the context of TCM modernization and internationalization, TCM-related research studies have entered a fast track of development. At the same time, research of TCM is also faced with challenges, such as matrix complexity, component diversity and low level of active components. As an interdisciplinary technology, molecular imprinting technology (MIT) has gained popularity in TCM study, owing to the produced molecularly imprinted polymers (MIPs) possessing the unique features of structure predictability, recognition specificity and application universality, as well as physical robustness, thermal stability, low cost and easy preparation. Herein, we comprehensively review the recent advances of MIT for TCM studies since 2017, focusing on two main aspects including extraction/separation and purification and detection of active components, and identification analysis of hazardous components. The fundamentals of MIT are briefly outlined and emerging preparation techniques for MIPs applied in TCM are highlighted, such as surface imprinting, nanoimprinting and multitemplate and multifunctional monomer imprinting. Then, applications of MIPs in common active components research including flavonoids, alkaloids, terpenoids, glycosides and polyphenols, etc. are respectively summarized, followed by screening and enantioseparation. Related identification detection of hazardous components from TCM itself, illegal addition, or pollution residues (e.g., heavy metals, pesticides) are discussed. Moreover, the applications of MIT in new formulation of TCM, chiral drug resolution and detection of growing environment are summarized. Finally, we propose some issues still to be solved and future research directions to be expected of MIT for TCM studies. Full article
(This article belongs to the Special Issue Molecularly Imprinted Materials: New Vistas and Challenge)
Show Figures

Figure 1

12 pages, 2368 KiB  
Article
Hollow-Channel Paper Analytical Devices Supported Biofuel Cell-Based Self-Powered Molecularly Imprinted Polymer Sensor for Pesticide Detection
by Yanhu Wang, Huihui Shi, Jiantao Sun, Jianjian Xu, Mengchun Yang and Jinghua Yu
Biosensors 2022, 12(11), 974; https://doi.org/10.3390/bios12110974 - 5 Nov 2022
Cited by 6 | Viewed by 2471
Abstract
Herein, a paper-based glucose/air biofuel cell (BFC) was constructed and implemented for self-powered pesticide detection. Our developed paper-based chip relies on a hollow-channel to transport fluids rather than capillarity, which reduces analysis times as well as physical absorption. The gold nanoparticles (Au NPs) [...] Read more.
Herein, a paper-based glucose/air biofuel cell (BFC) was constructed and implemented for self-powered pesticide detection. Our developed paper-based chip relies on a hollow-channel to transport fluids rather than capillarity, which reduces analysis times as well as physical absorption. The gold nanoparticles (Au NPs) and carbon nanotubes (CNTs) were adapted to modify the paper fibers to fabricate the flexible conductive paper anode/cathode electrode (Au–PAE/CNT–PCE). Molecularly imprinted polymers (MIPs) using 2,4-dichlorophenoxyacetic acid (2,4-D) as a template were synthesized on Au–PAE for signal control. In the cathode, bilirubin oxidase (BOD) was used for the oxygen reduction reaction. Based on a competitive reaction between 2,4-D and glucose-oxidase-labeled 2,4-D (GOx-2,4-D), the amount of GOx immobilized on the bioanode can be simply tailored, thus a signal-off self-powered sensing platform was achieved for 2,4-D determination. Meanwhile, the coupling of the paper supercapacitor (PS) with the paper-based chip provides a simple route for signal amplification. Combined with a portable digital multi-meter detector, the amplified signal can be sensitively readout. Through rational design of the paper analytical device, the combination of BFC and PS provides a new prototype for constructing a low-cost, simple, portable, and sensitive self-powered biosensor lab-on-paper, which could be easily expanded in the field of clinical analysis and drug delivery. Full article
(This article belongs to the Special Issue Paper-Based Biosensors)
Show Figures

Figure 1

22 pages, 796 KiB  
Review
A Review: Using Multiple Templates for Molecular Imprinted Polymer: Is It Good?
by Niky Murdaya, Anastasya Leatemia Triadenda, Driyanti Rahayu and Aliya Nur Hasanah
Polymers 2022, 14(20), 4441; https://doi.org/10.3390/polym14204441 - 20 Oct 2022
Cited by 51 | Viewed by 6090
Abstract
A multi-template molecularly imprinting polymer (MT-MIP) strategy has been proposed and is increasingly utilised to synthesise MIP with multiple recognition sites in a single polymer using multiple target species as templates. This approach can expand MIP applications for simultaneous recognition and extraction of [...] Read more.
A multi-template molecularly imprinting polymer (MT-MIP) strategy has been proposed and is increasingly utilised to synthesise MIP with multiple recognition sites in a single polymer using multiple target species as templates. This approach can expand MIP applications for simultaneous recognition and extraction of more than one analyte. The advantages of MT-MIP are simultaneous analyte extraction in one process, lower solvent consumption, cost-effectiveness, and short analysis time. The use of multiple templates to prepare a MIP reduces the effort required to prepare different MIPs for different analytes separately. Although there are many studies about developing MT-MIP, there are no review articles that discuss the success rate of MT-MIP. Therefore, in this review, we summarise MT-MIP synthesis, including the polymerisation method being used, the important factors that affect the quality of MT-MIP, and MT-MIP applications. MT-MIP has great potential in chemical isolation and analysis. MT-MIP produces a product that has good sensitivity, selectivity, and reusability. Furthermore, many templates, functional monomers, and crosslinkers can be formulated as MT-MIP and have a high success rate. This is evidenced by the good values of the maximum absorption capacity (Qmax), imprinting factor (IF), and reusability. We expect that the evidence presented in this review can encourage additional research on the development and application of MT-MIP. Full article
Show Figures

Graphical abstract

14 pages, 4069 KiB  
Article
A Molecularly Imprinted Polypyrrole/GO@Fe3O4 Nanocomposite Modified Impedimetric Sensor for the Routine Monitoring of Lysozyme
by Pablo Montoro-Leal, Isaac A. M. Frías, Elisa Vereda Alonso, Abdelhamid Errachid and Nicole Jaffrezic-Renault
Biosensors 2022, 12(9), 727; https://doi.org/10.3390/bios12090727 - 5 Sep 2022
Cited by 15 | Viewed by 2799
Abstract
Lysozyme (LYS) applications encompass anti-bacterial activity, analgesic, and anti-inflammatory effects. In this work, a porous framework that was based on the polymerization of pyrrole (PPy) in the presence of multi-functional graphene oxide/iron oxide composite (GO@Fe3O4) has been developed. Oxygen-containing [...] Read more.
Lysozyme (LYS) applications encompass anti-bacterial activity, analgesic, and anti-inflammatory effects. In this work, a porous framework that was based on the polymerization of pyrrole (PPy) in the presence of multi-functional graphene oxide/iron oxide composite (GO@Fe3O4) has been developed. Oxygen-containing and amine groups that were present in the nanocomposite were availed to assembly LYS as the molecularly imprinted polymer (MIP) template. The synthesized material (MIPPy/GO@Fe3O4) was electrodeposited on top of a gold microelectrode array. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were used to confirm the adequate preparation of GO@Fe3O4, and the characterization of the resulting molecularly imprinted electrochemical sensor (MIECS) was carried out by electrochemical impedance spectrometry (EIS), FT-IR analysis, and scanning electron microscopy (SEM). The impedimetric responses were analyzed mathematically by fitting to a Q(Q(RW)) equivalent circuit and quantitative determination of LYS was obtained in a linear range from 1 pg/mL to 0.1 µg/mL, presenting good precision (RSD ≈ 10%, n = 5) and low limit of detection (LOD = 0.009 pg/mL). The fabrication of this device is relatively simple, scalable, rapid, and economical, and the sensor can be used up to nine times without disintegration. The MIECS was successfully applied to the determination of LYS in fresh chicken egg white sample and in a commercial drug, resulting in a straightforward platform for the routine monitoring of LYS. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Graphical abstract

14 pages, 3697 KiB  
Article
A Highly Selective and Sensitive Fluorescent Sensor Based on Molecularly Imprinted Polymer-Functionalized Mn-Doped ZnS Quantum Dots for Detection of Roxarsone in Feeds
by Fei Li, Jie Gao, Haocheng Wu, Yijun Li, Xiwen He and Langxing Chen
Nanomaterials 2022, 12(17), 2997; https://doi.org/10.3390/nano12172997 - 30 Aug 2022
Cited by 19 | Viewed by 2438
Abstract
Roxarsone (ROX) as an organoarsenic feed additive has been widely used in livestock breeding and poultry industry, but ROX can degrade into highly toxic inorganic arsenic species in natural environments to threaten to the environment and human health. Therefore, there is a considerable [...] Read more.
Roxarsone (ROX) as an organoarsenic feed additive has been widely used in livestock breeding and poultry industry, but ROX can degrade into highly toxic inorganic arsenic species in natural environments to threaten to the environment and human health. Therefore, there is a considerable interest in developing convenient, selective and sensitive methods for the detection of ROX in livestock breeding and poultry industry. In this work, a fluorescent molecularly imprinted polymer (MIPs) probe based on amino-modified Mn-ZnS quantum dots (QDs) has been developed by sol–gel polymerization for specific recognition of ROX. The synthesized MIPs-coated Mn-ZnS QDs (MIPs@Mn-ZnS QDs) have highly selective recognition sites to ROX because there are multi-interactions among the template ROX, functional monomer phenyltrimethoxysilane and the amino-functionalized QDs such as the π–π conjugating effect, hydrogen bonds. Under the optimal conditions, an obvious fluorescence quenching was observed when ROX was added to the solution, and the quenching mechanism could be explained as the photo-induced electron transfer. The MIPs@Mn-ZnS QDs sensor exhibited sensitive response to ROX in the linear range from 3.75 × 10−8 M to 6.25 × 10−7 M (R2 = 0.9985) and the limit of detection down to 4.34 nM. Moreover, the fluorescence probe has been applied to the quantitative detection of ROX in feed samples, and the recovery was in the range of 91.9% to 108.0%. The work demonstrated that the prepared MIPs@Mn-ZnS QDs probe has a good potential for rapid and sensitive determination of ROX in complicated samples. Full article
Show Figures

Figure 1

Back to TopTop