A Molecularly Imprinted Polypyrrole/GO@Fe3O4 Nanocomposite Modified Impedimetric Sensor for the Routine Monitoring of Lysozyme
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Samples
2.2. Instrumentation
2.3. Synthesis of GO@Fe3O4
2.4. Synthesis of MIPPy/GO@Fe3O4
2.5. Electrochemical Measurements
3. Results and Discussion
3.1. Morphological Characterization and Composition
3.2. Fabrication Optimization
3.3. Impedimetric Characterization
3.4. Equivalent Circuit Model Analysis and Analytical Performance
3.5. Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Oliver, W.T.; Wells, J.E. Lysozyme as an Alternative to Growth Promoting Antibiotics in Swine Production. J. Anim. Sci. Biotechnol. 2015, 6, 35. [Google Scholar] [CrossRef] [PubMed]
- Liang, A.; Tang, B.; Hou, H.P.; Sun, L.; Luo, A.Q. A Novel CuFe2O4 Nanospheres Molecularly Imprinted Polymers Modified Electrochemical Sensor for Lysozyme Determination. J. Electroanal. Chem. 2019, 853, 113465. [Google Scholar] [CrossRef]
- Wei, X.; Wang, Y.; Chen, J.; Ni, R.; Meng, J.; Liu, Z.; Xu, F.; Zhou, Y. Ionic Liquids Skeleton Typed Magnetic Core-Shell Molecularly Imprinted Polymers for the Specific Recognition of Lysozyme. Anal. Chim. Acta 2019, 1081, 81–92. [Google Scholar] [CrossRef]
- Hashemi, M.M.; Aminlari, M.; Moosavinasab, M. Preparation of and Studies on the Functional Properties and Bactericidal Activity of the Lysozyme-Xanthan Gum Conjugate. Food Sci. Technol. 2014, 57, 594–602. [Google Scholar] [CrossRef]
- Ruan, E.D.; Wang, H.; Ruan, Y.; Juárez, M. Characteristics of Glycation and Glycation Sites of Lysozyme by Matrix-Assisted Laser Desorption/Ionization Time of Flight/Timeof-Flight Mass Spectrometry and Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. Eur. J. Mass Spectrom. 2014, 20, 327–336. [Google Scholar] [CrossRef]
- Yang, M.W.; Wu, W.H.; Ruan, Y.J.; Huang, L.M.; Wu, Z.; Cai, Y.; Fu, F.F. Ultra-Sensitive Quantification of Lysozyme Based on Element Chelate Labeling and Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry. Anal. Chim. Acta 2014, 812, 12–17. [Google Scholar] [CrossRef]
- Kerkaert, B.; Mestdagh, F.; de Meulenaer, B. Detection of Hen’s Egg White Lysozyme in Food: Comparison between a Sensitive HPLC and a Commercial ELISA Method. Food Chem. 2010, 120, 580–584. [Google Scholar] [CrossRef]
- Carstens, C.; Deckwart, M.; Webber-Witt, M.; Schäfer, V.; Eichhorn, L.; Brockow, K.; Fischer, M.; Christmann, M.; Paschke-Kratzin, A. Evaluation of the Efficiency of Enological Procedures on Lysozyme Depletion in Wine by an Indirect ELISA Method. J. Agric. Food Chem. 2014, 62, 6247–6253. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, Y.-Y.; Chen, H.; Wang, X.-H.; Chen, Q.; He, P.-G. Sensitive Fluorescence Detection of Lysozyme Using a Tris(Bipyridine)Ruthenium(II) Complex Containing Multiple Cyclodextrins. Chem. Commun. 2015, 51, 52. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, S.; Jiang, R.; Sun, L.; Pang, S.; Luo, A. Fluorescent Molecularly Imprinted Membranes as Biosensor for the Detection of Target Protein. Sens. Actuators B Chem. 2018, 254, 1078–1086. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, Q.; Tang, G.; Liu, S.; Xu, S.; Zhang, X. A Facile Electrochemical Aptasensor for Lysozyme Detection Based on Target-Induced Turn-off of Photosensitization. Biosens. Bioelectron. 2019, 126, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Lu, Y.; Wu, Z.; Li, M.; Xiang, S.; Ma, X.; Zhang, Z. A Facile Approach to Preparing Molecularly Imprinted Chitosan for Detecting 2,4,6-Tribromophenol with a Widely Linear Range. Environments 2017, 4, 30. [Google Scholar] [CrossRef]
- Arshad, R.; Rhouati, A.; Hayat, A.; Nawaz, M.H.; Yameen, M.A.; Mujahid, A.; Latif, U. MIP-Based Impedimetric Sensor for Detecting Dengue Fever Biomarker. Appl. Biochem. Biotechnol. 2020, 191, 1384–1394. [Google Scholar] [CrossRef] [PubMed]
- Selvolini, G.; Marrazza, G. MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination. Sensors 2017, 17, 718. [Google Scholar] [CrossRef]
- Xing, R.; Wang, S.; Bie, Z.; He, H.; Liu, Z. Preparation of Molecularly Imprinted Polymers Specific to Glycoproteins, Glycans and Monosaccharides via Boronate Affinity Controllable-Oriented Surface Imprinting. Nat. Protoc. 2017, 12, 964–987. [Google Scholar] [CrossRef]
- Menon, S.; Jesny, S.; Girish Kumar, K. A Voltammetric Sensor for Acetaminophen Based on Electropolymerized-Molecularly Imprinted Poly(o-Aminophenol) Modified Gold Electrode. Talanta 2018, 179, 668–675. [Google Scholar] [CrossRef]
- Prasad, B.B.; Singh, R.; Kumar, A. Synthesis of Fullerene (C60-Monoadduct)-Based Water-Compatible Imprinted Micelles for Electrochemical Determination of Chlorambucil. Biosens. Bioelectron. 2017, 94, 115–123. [Google Scholar] [CrossRef]
- Cui, B.; Liu, P.; Liu, X.; Liu, S.; Zhang, Z. Molecularly Imprinted Polymers for Electrochemical Detection and Analysis: Progress and Perspectives. J. Mater. Res. Technol. 2020, 9, 12568–12584. [Google Scholar] [CrossRef]
- Stevenson, D.; El-Sharif, H.F.; Reddy, S.M. Selective Extraction of Proteins and Other Macromolecules from Biological Samples Using Molecular Imprinted Polymers. Bioanalysis 2016, 8, 2255–2263. [Google Scholar] [CrossRef]
- Peña, I.; Cabezas, C. Rotational Spectra of van Der Waals Complexes: Pyrrole-Ne and Pyrrole-Ne2. Phys. Chem. Chem. Phys. 2020, 22, 25652–25660. [Google Scholar] [CrossRef]
- Yan, C.; Liu, X.; Zhang, R.; Chen, Y.; Wang, G. A Selective Strategy for Determination of Ascorbic Acid Based on Molecular Imprinted Copolymer of O-Phenylenediamine and Pyrrole. J. Electroanal. Chem. 2016, 780, 276–281. [Google Scholar] [CrossRef]
- Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Alcacer, A.; Bausells, J.; Martin, M.; Bessueille, F.; Minot, S.; Jaffrezic-Renault, N.; Zine, N.; et al. Theoretical Study and Analytical Performance of a Lysozyme Impedimetric Microsensor Based on a Molecularly Imprinted Chitosan Film. Sens. Actuators B Chem. 2021, 339, 129903. [Google Scholar] [CrossRef]
- Ertuğrul Uygun, H.D.; Demir, M.N. A Novel Fullerene-Pyrrole-Pyrrole-3-Carboxylic Acid Nanocomposite Modified Molecularly Imprinted Impedimetric Sensor for Dopamine Determination in Urine. Electroanalysis 2020, 32, 1971–1976. [Google Scholar] [CrossRef]
- Fadillah, G.; Wicaksono, W.P.; Fatimah, I.; Saleh, T.A. A Sensitive Electrochemical Sensor Based on Functionalized Graphene Oxide/SnO2 for the Determination of Eugenol. Microchem. J. 2020, 159, 105353. [Google Scholar] [CrossRef]
- Panraksa, Y.; Siangproh, W.; Khampieng, T.; Chailapakul, O.; Apilux, A. Paper-Based Amperometric Sensor for Determination of Acetylcholinesterase Using Screen-Printed Graphene Electrode. Talanta 2018, 178, 1017–1023. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Gimadutdinova, L. Cerium(IV) and Iron(III) Oxides Nanoparticles Based Voltammetric Sensor for the Sensitive and Selective Determination of Lipoic Acid. Sensors 2021, 21, 7639. [Google Scholar] [CrossRef]
- Gao, B.; Hu, C.; Fu, H.; Sun, Y.; Li, K.; Hu, L. Preparation of Single-Layer Graphene Based on a Wet Chemical Synthesis Route and the Effect on Electrochemical Properties by Double Layering Surface Functional Groups to Modify Graphene Oxide. Electrochim. Acta 2020, 361, 137053. [Google Scholar] [CrossRef]
- Montoro-Leal, P.; García-Mesa, J.C.; Morales-Benítez, I.; García de Torres, A.; Vereda Alonso, E. Semiautomatic Method for the Ultra-Trace Arsenic Speciation in Environmental and Biological Samples via Magnetic Solid Phase Extraction Prior to HPLC-ICP-MS Determination. Talanta 2021, 235, 122769. [Google Scholar] [CrossRef]
- Montoro-Leal, P.; García-Mesa, J.C.; Lopez Guerrero, M.d.M.; Vereda Alonso, E. Comparative Study of Synthesis Methods to Prepare New Functionalized Adsorbent Materials Based on MNPs–GO Coupling. Nanomaterials 2020, 10, 304. [Google Scholar] [CrossRef]
- Do Nascimento, T.A.; de Oliveira, H.L.; Borges, K.B. Magnetic Molecularly Imprinted Polypyrrole as a New Selective Adsorbent for Pharmaceutically Active Compounds. J. Environ. Chem. Eng. 2019, 7, 103371. [Google Scholar] [CrossRef]
- Li, G.; Qi, X.; Wu, J.; Xu, L.; Wan, X.; Liu, Y.; Chen, Y.; Li, Q. Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite. J. Hazard. Mater. 2022, 436, 129107. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wu, J.; Qi, X.; Wan, X.; Liu, Y.; Chen, Y.; Xu, L. Molecularly imprinted polypyrrole film-coated poly(3,4-ethylenedioxythiophene): Polystyrene sulfonate-functionalized black phosphorene for the selective and robust detection of norfloxacin. Mater. Today Chem. 2022, 26, 101043. [Google Scholar] [CrossRef]
- González Moreno, A.; López Guerrero, M.M.; Vereda Alonso, E.; García de Torres, A.; Pavón, J.M.C. Development of a New FT-IR Method for the Determination of Iron Oxide. Optimization of the Synthesis of Suitable Magnetic Nanoparticles as Sorbent in Magnetic Solid Phase Extraction. New J. Chem. 2017, 41, 8804–8811. [Google Scholar] [CrossRef]
- Diagboya, P.N.; Olu-Owolabi, B.I.; Zhou, D.; Han, B.-H. Graphene Oxide–Tripolyphosphate Hybrid Used as a Potent Sorbent for Cationic Dyes. Carbon 2014, 79, 174–182. [Google Scholar] [CrossRef]
- Kozak, M.; Domka, L. Adsorption of the Quaternary Ammonium Salts on Montmorillonite. J. Phys. Chem. Solids 2004, 65, 441–445. [Google Scholar] [CrossRef]
- Dasog, M.; Kraus, S.; Sinelnikov, R.; Veinot, J.G.C.; Rieger, B. CO2 to Methanol Conversion Using Hydride Terminated Porous Silicon Nanoparticles. Chem. Commun. 2017, 53, 3114–3117. [Google Scholar] [CrossRef]
- Dallas, P.; Niarchos, D.; Vrbanic, D.; Boukos, N.; Pejovnik, S.; Trapalis, C.; Petridis, D. Interfacial Polymerization of Pyrrole and in Situ Synthesis of Polypyrrole/Silver Nanocomposites. Polymer 2007, 48, 2007–2013. [Google Scholar] [CrossRef]
- Lim, G.W.; Lim, J.K.; Ahmad, A.L.; Chan, D.J.C. Fluorescent Molecularly Imprinted Polymer Based on Navicula Sp. Frustules for Optical Detection of Lysozyme. Anal. Bioanal. Chem. 2016, 408, 2083–2093. [Google Scholar] [CrossRef]
- Fang, M.; Zhuo, K.; Chen, Y.; Zhao, Y.; Bai, G.; Wang, J. Fluorescent Probe Based on Carbon Dots/Silica/Molecularly Imprinted Polymer for Lysozyme Detection and Cell Imaging. Anal. Bioanal. Chem. 2019, 411, 5799–5807. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, R.; Feng, F.; He, X. Determination of Lysozyme by Thiol-Terminated Aptamer-Based Surface Plasmon Resonance. Anal. Lett. 2017, 50, 682–689. [Google Scholar] [CrossRef]
- Cheng, C.-Y.; Wang, M.-Y.; Suen, S.-Y. Eco-Friendly Polylactic Acid/Rice Husk Ash Mixed Matrix Membrane for Efficient Purification of Lysozyme from Chicken Egg White. J. Taiwan Inst. Chem. Eng. 2020, 111, 11–23. [Google Scholar] [CrossRef]
Functional Polymer | Method | Linearity (ng/mL) | LOD (ng/mL) | Ref. |
---|---|---|---|---|
NIPAM a, AAM b, MAA c | Differential pulse voltammetry | 50–800 | 1.54 | [2] |
NIPAM, AAM | Fluorescence | 980–9800 | 490 | [38] |
AAM, MAA, DMAEMA d | Fluorescence | 0–2.5 × 104 | 1400 | [39] |
- | SPR e | 104–106 | 0.5 × 104 | [40] |
CS f | EIS | 0.3–5 × 104 | 0.07 | [22] |
PPy/GO@Fe3O4 | EIS | 0.001–100 | 9 × 10−6 | This work |
Sample 1 | Added (mg/mL) | Found (mg/mL) | Recovery (%) |
---|---|---|---|
Chicken egg white | - | 4.8 ± 0.8 | - |
6 | 12.1 ± 0.7 | 112 | |
16 | 20.3 ± 0.8 | 98 | |
Sample 2 | Added (mg/tablet) | Found (mg/tablet) | Recovery (%) |
Commercial drug | - | 23 ± 4 | - |
30 | 52 ± 14 | 97 | |
100 | 122 ± 5 | 99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoro-Leal, P.; Frías, I.A.M.; Vereda Alonso, E.; Errachid, A.; Jaffrezic-Renault, N. A Molecularly Imprinted Polypyrrole/GO@Fe3O4 Nanocomposite Modified Impedimetric Sensor for the Routine Monitoring of Lysozyme. Biosensors 2022, 12, 727. https://doi.org/10.3390/bios12090727
Montoro-Leal P, Frías IAM, Vereda Alonso E, Errachid A, Jaffrezic-Renault N. A Molecularly Imprinted Polypyrrole/GO@Fe3O4 Nanocomposite Modified Impedimetric Sensor for the Routine Monitoring of Lysozyme. Biosensors. 2022; 12(9):727. https://doi.org/10.3390/bios12090727
Chicago/Turabian StyleMontoro-Leal, Pablo, Isaac A. M. Frías, Elisa Vereda Alonso, Abdelhamid Errachid, and Nicole Jaffrezic-Renault. 2022. "A Molecularly Imprinted Polypyrrole/GO@Fe3O4 Nanocomposite Modified Impedimetric Sensor for the Routine Monitoring of Lysozyme" Biosensors 12, no. 9: 727. https://doi.org/10.3390/bios12090727
APA StyleMontoro-Leal, P., Frías, I. A. M., Vereda Alonso, E., Errachid, A., & Jaffrezic-Renault, N. (2022). A Molecularly Imprinted Polypyrrole/GO@Fe3O4 Nanocomposite Modified Impedimetric Sensor for the Routine Monitoring of Lysozyme. Biosensors, 12(9), 727. https://doi.org/10.3390/bios12090727