Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = multi-platform clinical trials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7428 KiB  
Article
Sialic Acid-Loaded Nanoliposomes with Enhanced Stability and Transdermal Delivery for Synergistic Anti-Aging, Skin Brightening, and Barrier Repair
by Fan Yang, Hua Wang, Dan Luo, Jun Deng, Yawen Hu, Zhi Liu and Wei Liu
Pharmaceutics 2025, 17(8), 956; https://doi.org/10.3390/pharmaceutics17080956 - 24 Jul 2025
Viewed by 302
Abstract
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: [...] Read more.
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: To overcome these challenges, SA was encapsulated within nanoliposomes (NLPs) by the high-pressure homogenization technique to develop an advanced and efficient transdermal drug delivery system. The skincare capabilities of this novel system were comprehensively evaluated across multiple experimental platforms, including in vitro cell assays, 3D skin models, in vivo zebrafish studies, and clinical human trials. Results: The SA-loaded NLPs (SA-NLPs) substantially improved the transdermal penetration and retention of SA, facilitating enhanced cellular uptake and cell proliferation. Compared to free SA, SA-NLPs demonstrated a 246.98% increase in skin retention and 1.8-fold greater cellular uptake in HDF cells. Moreover, SA-NLPs protected cells from oxidative stress-induced damage, stimulated collagen synthesis, and effectively suppressed the secretion of matrix metalloproteinases, tyrosinase activity, and melanin production. Additionally, zebrafish-based assays provided in vivo evidence of the skincare efficacy of SA-NLPs. Notably, clinical evaluations demonstrated that a 56-day application of the SA-NLPs-containing cream resulted in a 4.20% increase in L*, 7.87% decrease in b*, 8.45% decrease in TEWL, and 4.01% reduction in wrinkle length, indicating its superior brightening, barrier-repair, and anti-aging effects. Conclusions: This multi-level, systematic investigation strongly suggests that SA-NLPs represent a highly promising transdermal delivery strategy, capable of significantly enhancing the anti-aging, barrier-repair, and skin-brightening properties of SA, thus opening new avenues for its application in the fields of dermatology and cosmeceuticals. Full article
(This article belongs to the Special Issue Lipid/Polymer-Based Drug Delivery Systems)
Show Figures

Figure 1

53 pages, 915 KiB  
Review
Neural Correlates of Huntington’s Disease Based on Electroencephalography (EEG): A Mechanistic Review and Discussion of Excitation and Inhibition (E/I) Imbalance
by James Chmiel, Jarosław Nadobnik, Szymon Smerdel and Mirela Niedzielska
J. Clin. Med. 2025, 14(14), 5010; https://doi.org/10.3390/jcm14145010 - 15 Jul 2025
Viewed by 445
Abstract
Introduction: Huntington’s disease (HD) disrupts cortico-striato-thalamocortical circuits decades before clinical onset. Electroencephalography (EEG) offers millisecond temporal resolution, low cost, and broad accessibility, yet its mechanistic and biomarker potential in HD remains underexplored. We conducted a mechanistic review to synthesize half a century [...] Read more.
Introduction: Huntington’s disease (HD) disrupts cortico-striato-thalamocortical circuits decades before clinical onset. Electroencephalography (EEG) offers millisecond temporal resolution, low cost, and broad accessibility, yet its mechanistic and biomarker potential in HD remains underexplored. We conducted a mechanistic review to synthesize half a century of EEG findings, identify reproducible electrophysiological signatures, and outline translational next steps. Methods: Two independent reviewers searched PubMed, Scopus, Google Scholar, ResearchGate, and the Cochrane Library (January 1970–April 2025) using the terms “EEG” OR “electroencephalography” AND “Huntington’s disease”. Clinical trials published in English that reported raw EEG (not ERP-only) in human HD gene carriers were eligible. Abstract/title screening, full-text appraisal, and cross-reference mining yielded 22 studies (~700 HD recordings, ~600 controls). We extracted sample characteristics, acquisition protocols, spectral/connectivity metrics, and neuroclinical correlations. Results: Across diverse platforms, a consistent spectral trajectory emerged: (i) presymptomatic carriers show a focal 7–9 Hz (low-alpha) power loss that scales with CAG repeat length; (ii) early-manifest patients exhibit widespread alpha attenuation, delta–theta excess, and a flattened anterior-posterior gradient; (iii) advanced disease is characterized by global slow-wave dominance and low-voltage tracings. Source-resolved studies reveal early alpha hypocoherence and progressive delta/high-beta hypersynchrony, microstate shifts (A/B ↑, C/D ↓), and rising omega complexity. These electrophysiological changes correlate with motor burden, cognitive slowing, sleep fragmentation, and neurovascular uncoupling, and achieve 80–90% diagnostic accuracy in shallow machine-learning pipelines. Conclusions: EEG offers a coherent, stage-sensitive window on HD pathophysiology—from early thalamocortical disinhibition to late network fragmentation—and fulfills key biomarker criteria. Translation now depends on large, longitudinal, multi-center cohorts with harmonized high-density protocols, rigorous artifact control, and linkage to clinical milestones. Such infrastructure will enable the qualification of alpha-band restoration, delta-band hypersynchrony, and neurovascular coupling as pharmacodynamic readouts, fostering precision monitoring and network-targeted therapy in Huntington’s disease. Full article
Show Figures

Figure 1

34 pages, 4581 KiB  
Review
Nanoradiopharmaceuticals: Design Principles, Radiolabeling Strategies, and Biomedicine Applications
by Andrés Núñez-Salinas, Cristian Parra-Garretón, Daniel Acuña, Sofía Peñaloza, Germán Günther, Soledad Bollo, Francisco Arriagada and Javier Morales
Pharmaceutics 2025, 17(7), 912; https://doi.org/10.3390/pharmaceutics17070912 - 14 Jul 2025
Viewed by 585
Abstract
Nanoradiopharmaceuticals integrate nanotechnology with nuclear medicine to enhance the precision and effectiveness of radiopharmaceuticals used in diagnostic imaging and targeted therapies. Nanomaterials offer improved targeting capabilities and greater stability, helping to overcome several limitations. This review presents a comprehensive overview of the fundamental [...] Read more.
Nanoradiopharmaceuticals integrate nanotechnology with nuclear medicine to enhance the precision and effectiveness of radiopharmaceuticals used in diagnostic imaging and targeted therapies. Nanomaterials offer improved targeting capabilities and greater stability, helping to overcome several limitations. This review presents a comprehensive overview of the fundamental design principles, radiolabeling techniques, and biomedical applications of nanoradiopharmaceuticals, with a particular focus on their expanding role in precision oncology. It explores key areas, including single- and multi-modal imaging modalities (SPECT, PET), radionuclide therapies involving beta, alpha, and Auger emitters, and integrated theranostic systems. A diverse array of nanocarriers is examined, including liposomes, micelles, albumin nanoparticles, PLGA, dendrimers, and gold, iron oxide, and silica-based platforms, with an assessment of both preclinical and clinical research outcomes. Theranostic nanoplatforms, which integrate diagnostic and therapeutic functions within a single system, enable real-time monitoring and personalized dose optimization. Although some of these systems have progressed to clinical trials, several obstacles remain, including formulation stability, scalable manufacturing, regulatory compliance, and long-term safety considerations. In summary, nanoradiopharmaceuticals represent a promising frontier in personalized medicine, particularly in oncology. By combining diagnostic and therapeutic capabilities within a single nanosystem, they facilitate more individualized and adaptive treatment approaches. Continued innovation in formulation, radiochemistry, and regulatory harmonization will be crucial to their successful routine clinical use. Full article
(This article belongs to the Special Issue Nanosystems for Advanced Diagnostics and Therapy)
Show Figures

Figure 1

40 pages, 2250 KiB  
Review
Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application
by Sk Hasan and Nafizul Alam
Actuators 2025, 14(7), 342; https://doi.org/10.3390/act14070342 - 9 Jul 2025
Viewed by 621
Abstract
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric [...] Read more.
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

16 pages, 654 KiB  
Review
Engaging Broader Stakeholders to Accelerate Group A Streptococcus Vaccine Development
by Dechuan Kong, Hao Pan, Huanyu Wu and Jian Chen
Vaccines 2025, 13(7), 734; https://doi.org/10.3390/vaccines13070734 - 7 Jul 2025
Viewed by 736
Abstract
Group A Streptococcus (GAS) imposes a significant global health burden across all age groups, annually causing over 600 million cases of pharyngitis and more than 18 million severe invasive infections or sequelae. The resurgence of scarlet fever globally and streptococcal toxic shock syndrome [...] Read more.
Group A Streptococcus (GAS) imposes a significant global health burden across all age groups, annually causing over 600 million cases of pharyngitis and more than 18 million severe invasive infections or sequelae. The resurgence of scarlet fever globally and streptococcal toxic shock syndrome (STSS) outbreaks in Japan have brought GAS infections back into the spotlight as a pressing global health concern. Unfortunately, no licensed vaccine against GAS is yet available for clinical use. Our comprehensive review examines the developmental history of GAS vaccines, outlining the research trajectory from early inactivated vaccines to contemporary multivalent, conjugate, multi-antigen, and mRNA-based vaccine platforms. It systematically analyzes clinical trial outcomes of GAS vaccines, highlighting recent advances in both M protein-based and non-M protein vaccine candidates while summarizing promising target antigens. The review concludes with critical strategies to accelerate vaccine commercialization, including enhanced investment in research and development, expanded collaborations, leveraging advanced vaccine technologies, streamlined clinical trials, and strengthened public health advocacy. This review critically evaluates the current evidence and future prospects in GAS vaccine development, emphasizing innovative strategies and engaging broader stakeholders to accelerate GAS vaccine development. Full article
(This article belongs to the Special Issue Development of Vaccines Against Bacterial Infections)
Show Figures

Figure 1

14 pages, 1586 KiB  
Article
Stability-Guided Formulation of a Light-Sensitive D-LSD Capsule for Clinical Investigation
by Bernard Do, Luc Mallet, Maxime Annereau, Danielle Libong, Audrey Solgadi, Florence Vorspan, Muriel Paul and Philippe-Henri Secretan
Pharmaceutics 2025, 17(6), 767; https://doi.org/10.3390/pharmaceutics17060767 - 11 Jun 2025
Viewed by 620
Abstract
Background/Objectives: D-lysergic acid diethylamide (D-LSD) is under investigation as a potential therapeutic strategy for alcohol use disorder (AUD). However, the extreme light sensitivity of D-LSD presents a significant challenge in developing suitable pharmaceutical forms, particularly for clinical trial settings. This study proposes a [...] Read more.
Background/Objectives: D-lysergic acid diethylamide (D-LSD) is under investigation as a potential therapeutic strategy for alcohol use disorder (AUD). However, the extreme light sensitivity of D-LSD presents a significant challenge in developing suitable pharmaceutical forms, particularly for clinical trial settings. This study proposes a liquid-filled capsule formulation designed to provide accurate dosing while protecting D-LSD from photodegradation. Methods: To support formulation development and ensure its suitability as an investigational medicinal product, a multi-tiered analytical strategy was employed. This included liquid chromatography coupled with ion mobility spectrometry and mass spectrometry (LC-IM-MS), along with quantum chemical calculations (density functional theory (DFT) and time dependent-DFT (TD-DFT)), to ensure robust and orthogonal structural characterization of degradation products. Results: Photostress studies demonstrated that while D-LSD in solution rapidly degrades into photoisomers and photooxidative byproducts, the capsule formulation markedly mitigates these transformations under ICH-compliant conditions. Conclusions: These findings highlight the essential role of orthogonal stability profiling in guiding formulation development and demonstrate that this approach may offer a viable, photostable platform for future clinical investigation of D-LSD in the treatment of AUD. Full article
Show Figures

Figure 1

33 pages, 2768 KiB  
Review
Adeno-Associated Virus Vectors: Principles, Practices, and Prospects in Gene Therapy
by Limor Zwi-Dantsis, Saira Mohamed, Giulia Massaro and Emad Moeendarbary
Viruses 2025, 17(2), 239; https://doi.org/10.3390/v17020239 - 9 Feb 2025
Cited by 3 | Viewed by 5497
Abstract
Gene therapy offers promising potential as an efficacious and long-lasting therapeutic option for genetic conditions, by correcting defective mutations using engineered vectors to deliver genetic material to host cells. Among these vectors, adeno-associated viruses (AAVs) stand out for their efficiency, versatility, and safety, [...] Read more.
Gene therapy offers promising potential as an efficacious and long-lasting therapeutic option for genetic conditions, by correcting defective mutations using engineered vectors to deliver genetic material to host cells. Among these vectors, adeno-associated viruses (AAVs) stand out for their efficiency, versatility, and safety, making them one of the leading platforms in gene therapy. The enormous potential of AAVs has been demonstrated through their use in over 225 clinical trials and the FDA’s approval of six AAV-based gene therapy products, positioning these vectors at the forefront of the field. This review highlights the evolution and current applications of AAVs in gene therapy, focusing on their clinical successes, ongoing developments, and the manufacturing processes required for the rapid commercial growth anticipated in the AAV therapy market. It also discusses the broader implications of these advancements for future therapeutic strategies targeting more complex and multi-systemic conditions and biological processes such as aging. Finally, we explore some of the major challenges currently confronting the field. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

12 pages, 495 KiB  
Review
Understanding the Landscape of Multi-Cancer Detection Tests: The Current Data and Clinical Considerations
by Cody E. Cotner and Elizabeth O’Donnell
Life 2024, 14(7), 896; https://doi.org/10.3390/life14070896 - 19 Jul 2024
Cited by 3 | Viewed by 3494
Abstract
Multi-cancer detection (MCD) tests are blood-based assays that screen for multiple cancers concurrently and offer a promising approach to improve early cancer detection and screening uptake. To date, there have been two prospective interventional studies evaluating MCD tests as a screening tool in [...] Read more.
Multi-cancer detection (MCD) tests are blood-based assays that screen for multiple cancers concurrently and offer a promising approach to improve early cancer detection and screening uptake. To date, there have been two prospective interventional studies evaluating MCD tests as a screening tool in human subjects. No MCD tests are currently approved by the FDA, but there is one commercially available MCD test. Ongoing trials continue to assess the efficacy, safety, and cost implications of MCD tests. In this review, we discuss the performance of CancerSEEK and Galleri, two leading MCD platforms, and discuss the clinical consideration for the broader application of this new technology. Full article
(This article belongs to the Special Issue Novel Approaches to Early Cancer Detection)
Show Figures

Figure 1

15 pages, 5690 KiB  
Article
mRNA Vaccine for Alzheimer’s Disease: Pilot Study
by Armine Hovakimyan, Garri Chilingaryan, Olga King, Joia Kai Capocchi, Jean Paul Chadarevian, Hayk Davtyan, Roman Kniazev, Michael G. Agadjanyan and Anahit Ghochikyan
Vaccines 2024, 12(6), 659; https://doi.org/10.3390/vaccines12060659 - 14 Jun 2024
Cited by 4 | Viewed by 5282
Abstract
The escalating global healthcare challenge posed by Alzheimer’s Disease (AD) and compounded by the lack of effective treatments emphasizes the urgent need for innovative approaches to combat this devastating disease. Currently, passive and active immunotherapies remain the most promising strategy for AD. FDA-approved [...] Read more.
The escalating global healthcare challenge posed by Alzheimer’s Disease (AD) and compounded by the lack of effective treatments emphasizes the urgent need for innovative approaches to combat this devastating disease. Currently, passive and active immunotherapies remain the most promising strategy for AD. FDA-approved lecanemab significantly reduces Aβ aggregates from the brains of early AD patients administered biweekly with this humanized monoclonal antibody. Although the clinical benefits noted in these trials have been modest, researchers have emphasized the importance of preventive immunotherapy. Importantly, data from immunotherapy studies have shown that antibody concentrations in the periphery of vaccinated people should be sufficient for targeting Aβ in the CNS. To generate relatively high concentrations of antibodies in vaccinated people at risk of AD, we generated a universal vaccine platform, MultiTEP, and, based on it, developed a DNA vaccine, AV-1959D, targeting pathological Aβ, completed IND enabling studies, and initiated a Phase I clinical trial with early AD volunteers. Our current pilot study combined our advanced MultiTEP technology with a novel mRNA approach to develop an mRNA vaccine encapsulated in lipid-based nanoparticles (LNPs), AV-1959LR. Here, we report our initial findings on the immunogenicity of 1959LR in mice and non-human primates, comparing it with the immunogenicity of its DNA counterpart, AV-1959D. Full article
(This article belongs to the Special Issue Feature Papers of DNA and mRNA Vaccines)
Show Figures

Figure 1

20 pages, 9902 KiB  
Review
Breast Tomographic Ultrasound: The Spectrum from Current Dense Breast Cancer Screenings to Future Theranostic Treatments
by Peter J. Littrup, Mohammad Mehrmohammadi and Nebojsa Duric
Tomography 2024, 10(4), 554-573; https://doi.org/10.3390/tomography10040044 - 15 Apr 2024
Cited by 6 | Viewed by 2537
Abstract
This review provides unique insights to the scientific scope and clinical visions of the inventors and pioneers of the SoftVue breast tomographic ultrasound (BTUS). Their >20-year collaboration produced extensive basic research and technology developments, culminating in SoftVue, which recently received the Food and [...] Read more.
This review provides unique insights to the scientific scope and clinical visions of the inventors and pioneers of the SoftVue breast tomographic ultrasound (BTUS). Their >20-year collaboration produced extensive basic research and technology developments, culminating in SoftVue, which recently received the Food and Drug Administration’s approval as an adjunct to breast cancer screening in women with dense breasts. SoftVue’s multi-center trial confirmed the diagnostic goals of the tissue characterization and localization of quantitative acoustic tissue differences in 2D and 3D coronal image sequences. SoftVue mass characterizations are also reviewed within the standard cancer risk categories of the Breast Imaging Reporting and Data System. As a quantitative diagnostic modality, SoftVue can also function as a cost-effective platform for artificial intelligence-assisted breast cancer identification. Finally, SoftVue’s quantitative acoustic maps facilitate noninvasive temperature monitoring and a unique form of time-reversed, focused US in a single theranostic device that actually focuses acoustic energy better within the highly scattering breast tissues, allowing for localized hyperthermia, drug delivery, and/or ablation. Women also prefer the comfort of SoftVue over mammograms and will continue to seek out less-invasive breast care, from diagnosis to treatment. Full article
Show Figures

Figure 1

18 pages, 2411 KiB  
Article
Learning from conect4children: A Collaborative Approach towards Standardisation of Disease-Specific Paediatric Research Data
by Anando Sen, Victoria Hedley, Eva Degraeuwe, Steven Hirschfeld, Ronald Cornet, Ramona Walls, John Owen, Peter N. Robinson, Edward G. Neilan, Thomas Liener, Giovanni Nisato, Neena Modi, Simon Woodworth, Avril Palmeri, Ricarda Gaentzsch, Melissa Walsh, Teresa Berkery, Joanne Lee, Laura Persijn, Kasey Baker, Kristina An Haack, Sonia Segovia Simon, Julius O. B. Jacobsen, Giorgio Reggiardo, Melissa A. Kirwin, Jessie Trueman, Claudia Pansieri, Donato Bonifazi, Sinéad Nally, Fedele Bonifazi, Rebecca Leary and Volker Straubadd Show full author list remove Hide full author list
Data 2024, 9(4), 55; https://doi.org/10.3390/data9040055 - 8 Apr 2024
Cited by 4 | Viewed by 3612
Abstract
The conect4children (c4c) initiative was established to facilitate the development of new drugs and other therapies for paediatric patients. It is widely recognised that there are not enough medicines tested for all relevant ages of the paediatric population. To overcome this, it is [...] Read more.
The conect4children (c4c) initiative was established to facilitate the development of new drugs and other therapies for paediatric patients. It is widely recognised that there are not enough medicines tested for all relevant ages of the paediatric population. To overcome this, it is imperative that clinical data from different sources are interoperable and can be pooled for larger post hoc studies. c4c has collaborated with the Clinical Data Interchange Standards Consortium (CDISC) to develop cross-cutting data resources that build on existing CDISC standards in an effort to standardise paediatric data. The natural next step was an extension to disease-specific data items. c4c brought together several existing initiatives and resources relevant to disease-specific data and analysed their use for standardising disease-specific data in clinical trials. Several case studies that combined disease-specific data from multiple trials have demonstrated the need for disease-specific data standardisation. We identified three relevant initiatives. These include European Reference Networks, European Joint Programme on Rare Diseases, and Pistoia Alliance. Other resources reviewed were National Cancer Institute Enterprise Vocabulary Services, CDISC standards, pharmaceutical company-specific data dictionaries, Human Phenotype Ontology, Phenopackets, Unified Registry for Inherited Metabolic Disorders, Orphacodes, Rare Disease Cures Accelerator-Data and Analytics Platform (RDCA-DAP), and Observational Medical Outcomes Partnership. The collaborative partners associated with these resources were also reviewed briefly. A plan of action focussed on collaboration was generated for standardising disease-specific paediatric clinical trial data. A paediatric data standards multistakeholder and multi-project user group was established to guide the remaining actions—FAIRification of metadata, a Phenopackets pilot with RDCA-DAP, applying Orphacodes to case report forms of clinical trials, introducing CDISC standards into European Reference Networks, testing of the CDISC Pediatric User Guide using data from the mentioned resources and organisation of further workshops and educational materials. Full article
Show Figures

Figure 1

23 pages, 602 KiB  
Article
A Convolutional Deep Neural Network Approach to Predict Autism Spectrum Disorder Based on Eye-Tracking Scan Paths
by May Alsaidi, Nadim Obeid, Nailah Al-Madi, Hazem Hiary and Ibrahim Aljarah
Information 2024, 15(3), 133; https://doi.org/10.3390/info15030133 - 28 Feb 2024
Cited by 12 | Viewed by 4567
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that encompasses difficulties in communication (both verbal and non-verbal), social skills, and repetitive behaviors. The diagnosis of autism spectrum disorder typically involves specialized procedures and techniques, which can be time-consuming and expensive. The accuracy and [...] Read more.
Autism spectrum disorder (ASD) is a developmental disorder that encompasses difficulties in communication (both verbal and non-verbal), social skills, and repetitive behaviors. The diagnosis of autism spectrum disorder typically involves specialized procedures and techniques, which can be time-consuming and expensive. The accuracy and efficiency of the diagnosis depend on the expertise of the specialists and the diagnostic methods employed. To address the growing need for early, rapid, cost-effective, and accurate diagnosis of autism spectrum disorder, there has been a search for advanced smart methods that can automatically classify the disorder. Machine learning offers sophisticated techniques for building automated classifiers that can be utilized by users and clinicians to enhance accuracy and efficiency in diagnosis. Eye-tracking scan paths have emerged as a tool increasingly used in autism spectrum disorder clinics. This methodology examines attentional processes by quantitatively measuring eye movements. Its precision, ease of use, and cost-effectiveness make it a promising platform for developing biomarkers for use in clinical trials for autism spectrum disorder. The detection of autism spectrum disorder can be achieved by observing the atypical visual attention patterns of children with the disorder compared to typically developing children. This study proposes a deep learning model, known as T-CNN-Autism Spectrum Disorder (T-CNN-ASD), that utilizes eye-tracking scans to classify participants into ASD and typical development (TD) groups. The proposed model consists of two hidden layers with 300 and 150 neurons, respectively, and underwent 10 rounds of cross-validation with a dropout rate of 20%. In the testing phase, the model achieved an accuracy of 95.59%, surpassing the accuracy of other machine learning algorithms such as random forest (RF), decision tree (DT), K-Nearest Neighbors (KNN), and multi-layer perceptron (MLP). Furthermore, the proposed model demonstrated superior performance when compared to the findings reported in previous studies. The results demonstrate that the proposed model can accurately classify children with ASD from those with TD without human intervention. Full article
Show Figures

Figure 1

15 pages, 2266 KiB  
Article
A Quantitative Multiparametric MRI Analysis Platform for Estimation of Robust Imaging Biomarkers in Clinical Oncology
by Eve LoCastro, Ramesh Paudyal, Amaresha Shridhar Konar, Peter S. LaViolette, Oguz Akin, Vaios Hatzoglou, Alvin C. Goh, Bernard H. Bochner, Jonathan Rosenberg, Richard J. Wong, Nancy Y. Lee, Lawrence H. Schwartz and Amita Shukla-Dave
Tomography 2023, 9(6), 2052-2066; https://doi.org/10.3390/tomography9060161 - 3 Nov 2023
Cited by 4 | Viewed by 5128
Abstract
There is a need to develop user-friendly imaging tools estimating robust quantitative biomarkers (QIBs) from multiparametric (mp)MRI for clinical applications in oncology. Quantitative metrics derived from (mp)MRI can monitor and predict early responses to treatment, often prior to anatomical changes. We have developed [...] Read more.
There is a need to develop user-friendly imaging tools estimating robust quantitative biomarkers (QIBs) from multiparametric (mp)MRI for clinical applications in oncology. Quantitative metrics derived from (mp)MRI can monitor and predict early responses to treatment, often prior to anatomical changes. We have developed a vendor-agnostic, flexible, and user-friendly MATLAB-based toolkit, MRI-Quantitative Analysis and Multiparametric Evaluation Routines (“MRI-QAMPER”, current release v3.0), for the estimation of quantitative metrics from dynamic contrast-enhanced (DCE) and multi-b value diffusion-weighted (DW) MR and MR relaxometry. MRI-QAMPER’s functionality includes generating numerical parametric maps from these methods reflecting tumor permeability, cellularity, and tissue morphology. MRI-QAMPER routines were validated using digital reference objects (DROs) for DCE and DW MRI, serving as initial approval stages in the National Cancer Institute Quantitative Imaging Network (NCI/QIN) software benchmark. MRI-QAMPER has participated in DCE and DW MRI Collaborative Challenge Projects (CCPs), which are key technical stages in the NCI/QIN benchmark. In a DCE CCP, QAMPER presented the best repeatability coefficient (RC = 0.56) across test–retest brain metastasis data, out of ten participating DCE software packages. In a DW CCP, QAMPER ranked among the top five (out of fourteen) tools with the highest area under the curve (AUC) for prostate cancer detection. This platform can seamlessly process mpMRI data from brain, head and neck, thyroid, prostate, pancreas, and bladder cancer. MRI-QAMPER prospectively analyzes dose de-escalation trial data for oropharyngeal cancer, which has earned it advanced NCI/QIN approval for expanded usage and applications in wider clinical trials. Full article
Show Figures

Graphical abstract

24 pages, 3050 KiB  
Review
Micro-Magnetofluidic System for Rare Cell Analysis: From Principle to Translation
by Kangfu Chen and Zongjie Wang
Chemosensors 2023, 11(6), 335; https://doi.org/10.3390/chemosensors11060335 - 6 Jun 2023
Cited by 5 | Viewed by 2894
Abstract
Rare cells play essential roles in the initiation and progression of diseases and therefore their analysis is of great interest. The micro-magnetofluidic system is one of the emerging platforms that have been proposed for the rapid, sensitive, and cost-effective analysis of rare cells. [...] Read more.
Rare cells play essential roles in the initiation and progression of diseases and therefore their analysis is of great interest. The micro-magnetofluidic system is one of the emerging platforms that have been proposed for the rapid, sensitive, and cost-effective analysis of rare cells. Given its unprecedented throughput, micro-magnetofluidic systems have attracted substantial research interest in the last decade—multiple designs have been proposed, validated, and even advanced to the stage of clinical trials. This mini review aims to provide a timely summary of the relevant progress in the field thus far. We reviewed the concepts and realizations of micro-magnetofluidic devices based on the interaction between nanoparticles and on-chip micro-magnets. Their real-world applications in rare cell analysis were also highlighted and explained. In addition, we discussed the major challenges in the development and translation of micro-magnetofluidic into the clinic, including multi-marker capability and large-scale manufacturability. Full article
(This article belongs to the Special Issue Electrochemical Biosensors and Bioassays Based on Nanomaterials)
Show Figures

Figure 1

12 pages, 923 KiB  
Review
Role of Therapeutic Anticoagulation in COVID-19: The Current Situation
by Mandeep Singh Rahi, Jay Parekh, Prachi Pednekar, Mayuri Mudgal, Vishal Jindal and Kulothungan Gunasekaran
Hematol. Rep. 2023, 15(2), 358-369; https://doi.org/10.3390/hematolrep15020037 - 5 Jun 2023
Cited by 5 | Viewed by 3105
Abstract
Thrombotic complications from COVID-19 are now well known and contribute to significant morbidity and mortality. Different variants confer varying risks of thrombotic complications. Heparin has anti-inflammatory and antiviral effects. Due to its non-anticoagulant effects, escalated-dose anticoagulation, especially therapeutic-dose heparin, has been studied for [...] Read more.
Thrombotic complications from COVID-19 are now well known and contribute to significant morbidity and mortality. Different variants confer varying risks of thrombotic complications. Heparin has anti-inflammatory and antiviral effects. Due to its non-anticoagulant effects, escalated-dose anticoagulation, especially therapeutic-dose heparin, has been studied for thromboprophylaxis in hospitalized patients with COVID-19. Few randomized, controlled trials have examined the role of therapeutic anticoagulation in moderately to severely ill patients with COVID-19. Most of these patients had elevated D-dimers and low bleeding risks. Some trials used an innovative adaptive multiplatform with Bayesian analysis to answer this critical question promptly. All the trials were open-label and had several limitations. Most trials showed improvements in the meaningful clinical outcomes of organ-support-free days and reductions in thrombotic events, mainly in non-critically-ill COVID-19 patients. However, the mortality benefit needed to be more consistent. A recent meta-analysis confirmed the results. Multiple centers initially adopted intermediate-dose thromboprophylaxis, but the studies failed to show meaningful benefits. Given the new evidence, significant societies have suggested therapeutic anticoagulation in carefully selected patients who are moderately ill and do not require an intensive-care-unit level of care. There are multiple ongoing trials globally to further our understanding of therapeutic-dose thromboprophylaxis in hospitalized patients with COVID-19. In this review, we aim to summarize the current evidence regarding the use of anticoagulation in patients with COVID-19 infection. Full article
Show Figures

Figure 1

Back to TopTop