Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,091)

Search Parameters:
Keywords = multi-domain simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1108 KB  
Article
Scattering Coefficient Estimation Using Thin-Film Phantoms with a Spectral-Domain Dental OCT System
by H. M. S. S. Herath, Nuwan Madusanka, Eun Seo Choi, Song Woosub, RyungKee Chang, GyuHyun Lee, Myunggi Yi, Jae Sung Ahn and Byeong-il Lee
Sensors 2026, 26(3), 815; https://doi.org/10.3390/s26030815 - 26 Jan 2026
Abstract
This study introduces a framework for estimating the optical scattering properties of thin-film phantoms using a custom-built Spectral-Domain Dental Optical Coherence Tomography (DEN-OCT) system operating within the 780–900 nm spectral range. The purpose of this work was to assess the performance of this [...] Read more.
This study introduces a framework for estimating the optical scattering properties of thin-film phantoms using a custom-built Spectral-Domain Dental Optical Coherence Tomography (DEN-OCT) system operating within the 780–900 nm spectral range. The purpose of this work was to assess the performance of this system. The system exhibited high depth-resolved imaging performance with an axial resolution of approximately 16.30 µm, a signal-to-noise ratio of about 32.4 dB, and a 6 dB sensitivity roll-off depth near 2 mm, yielding an effective imaging range of 2.5 mm. Thin-film phantoms with controlled optical characteristics were fabricated and analyzed using Beer–Lambert and diffusion approximation models to evaluate attenuation behavior. Samples representing different tissue analogs demonstrated distinct scattering responses: one sample showed strong scattering similar to hard tissues, while the others exhibited lower scattering and higher transmission, resembling soft-tissue properties. Spectrophotometric measurements at 840 nm supported these trends through characteristic transmittance and reflectance profiles. While homogeneous samples conformed to analytical models, the highly scattering sample deviated due to structural non-uniformity, requiring Monte Carlo simulation to accurately describe photon transport. OCT A-scan analyses fitted with exponential decay models produced attenuation coefficients consistent with spectrophotometric data, confirming the dominance of scattering over absorption. The integration of OCT imaging, optical modeling, and Monte Carlo simulation establishes a reliable methodology for quantitative scattering estimation and demonstrates the potential of the developed DEN-OCT system for advanced dental and biomedical imaging applications. The innovation of this work lies in the integration of phantom-based optical calibration, multi-model scattering analysis, and depth-resolved OCT signal modeling, providing a validated pathway for quantitative parameter extraction in dental OCT applications. Full article
(This article belongs to the Special Issue Application of Optical Imaging in Medical and Biomedical Research)
30 pages, 3807 KB  
Review
Flapping Foil-Based Propulsion and Power Generation: A Comprehensive Review
by Prabal Kandel, Jiadong Wang and Jian Deng
Biomimetics 2026, 11(2), 86; https://doi.org/10.3390/biomimetics11020086 - 25 Jan 2026
Viewed by 57
Abstract
This review synthesizes the state of the art in flapping foil technology and bridges the distinct engineering domains of bio-inspired propulsion and power generation via flow energy harvesting. This review is motivated by the observation that propulsion and power-generation studies are frequently presented [...] Read more.
This review synthesizes the state of the art in flapping foil technology and bridges the distinct engineering domains of bio-inspired propulsion and power generation via flow energy harvesting. This review is motivated by the observation that propulsion and power-generation studies are frequently presented separately, even though they share common unsteady vortex dynamics. Accordingly, we adopt a unified unsteady-aerodynamic perspective to relate propulsion and energy-extraction regimes within a common framework and to clarify their operational duality. Within this unified framework, the feathering parameter provides a theoretical delimiter between momentum transfer and kinetic energy extraction. A critical analysis of experimental foundations demonstrates that while passive structural flexibility enhances propulsive thrust via favorable wake interactions, synchronization mismatches between deformation and peak hydrodynamic loading constrain its benefits in power generation. This review extends the analysis to complex and non-homogeneous environments and identifies that density stratification fundamentally alters the hydrodynamic performance. Specifically, resonant interactions with the natural Brunt–Väisälä frequency of the fluid shift the optimal kinematic regimes. The present study also surveys computational methodologies and highlights a paradigm shift from traditional parametric sweeps to high-fidelity three-dimensional (3D) Large-Eddy Simulations (LESs) and Deep Reinforcement Learning (DRL) to resolve finite-span vortex interconnectivities. Finally, this review outlines the critical pathways for future research. To bridge the gap between computational idealization and physical reality, the findings suggest that future systems prioritize tunable stiffness mechanisms, multi-phase environmental modeling, and artificial intelligence (AI)-driven digital twin frameworks for real-time adaptation. Full article
Show Figures

Graphical abstract

16 pages, 1079 KB  
Article
Differential Reflecting Frequency Modulation with QAM for RIS-Based Communications
by Yajun Fan, Le Zhao, Wencai Yan and Haihua Ma
Sensors 2026, 26(3), 802; https://doi.org/10.3390/s26030802 - 25 Jan 2026
Viewed by 51
Abstract
Reconfigurable intelligent surface (RIS)-aided index modulation (IM) shows great potential for next-generation wireless communications. Nevertheless, obtaining channel state information (CSI) for RIS-based IM incurs high pilot overhead, particularly for multi-domain IM. In this paper, we integrate orthogonal frequency division multiplexing into RIS-aided differential [...] Read more.
Reconfigurable intelligent surface (RIS)-aided index modulation (IM) shows great potential for next-generation wireless communications. Nevertheless, obtaining channel state information (CSI) for RIS-based IM incurs high pilot overhead, particularly for multi-domain IM. In this paper, we integrate orthogonal frequency division multiplexing into RIS-aided differential reflecting modulation (DRM) communications, introducing the differential reflecting frequency modulation (DRFM) system. In DRFM, information bits are jointly conveyed through the activation permutations of reflecting patterns, grouped carriers, and constellation symbols. The transmitter combines the differentially coded reflecting-time block and the time–frequency block using the Kronecker product. This allows DRFM to operate without relying on CSI at the transmitter, RIS, or receiver. Moreover, we design a novel high-rate quadrature amplitude modulation (QAM) scheme for DRFM. Compared to PSK-based DRFM, this QAM scheme can boost either the throughput or the performance of DRFM. Simulation results illustrate the superiority of the DRFM system, along with an acceptable SNR penalty, compared to non-differential modulation with coherent detection. At the same spectral efficiency, the proposed QAM-aided DRFM outperforms schemes using traditional PSK, amplitude phase shift keying (APSK), and star-QAM constellation modulations. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

29 pages, 6199 KB  
Article
Multi-Objective Optimization and Load-Flow Analysis in Complex Power Distribution Networks
by Tariq Ali, Muhammad Ayaz, Husam S. Samkari, Mohammad Hijji, Mohammed F. Allehyani and El-Hadi M. Aggoune
Fractal Fract. 2026, 10(2), 82; https://doi.org/10.3390/fractalfract10020082 - 25 Jan 2026
Viewed by 39
Abstract
Modern power distribution networks are increasingly challenged with nonlinear operating conditions, the high penetration of distributed energy resources, and conflicting operational objectives such as loss minimization and voltage regulation. Existing load-flow optimization approaches often suffer from slow convergence, premature stagnation in non-convex search [...] Read more.
Modern power distribution networks are increasingly challenged with nonlinear operating conditions, the high penetration of distributed energy resources, and conflicting operational objectives such as loss minimization and voltage regulation. Existing load-flow optimization approaches often suffer from slow convergence, premature stagnation in non-convex search spaces, and limited robustness when handling conflicting multi-objective performance criteria under fixed network constraints. To address these challenges, this paper proposes a Fractional Multi-Objective Load Flow Optimizer (FMOLFO), which integrates a fractional-order numerical regularization mechanism with an adaptive Pareto-based Differential Evolution framework. The fractional-order formulation employed in FMOLFO operates over an auxiliary iteration domain and serves as a numerical regularization strategy to improve the sensitivity conditioning and convergence stability of the load-flow solution, rather than modeling the physical time dynamics or memory effects of the power system. The optimization framework simultaneously minimizes physically consistent active power loss and voltage deviation within existing network operating constraints. Extensive simulations on IEEE 33-bus and 69-bus benchmark distribution systems demonstrate that FMOLFO achieves an up to 27% reduction in active power loss, improved voltage profile uniformity, and faster convergence compared with classical Newton–Raphson and metaheuristic baselines evaluated under identical conditions. The proposed framework is intended as a numerically enhanced, optimization-driven load-flow analysis tool, rather than a control- or dispatch-oriented optimal power flow formulation. Full article
(This article belongs to the Special Issue Fractional Dynamics and Control in Multi-Agent Systems and Networks)
45 pages, 1326 KB  
Article
Cross-Domain Deep Reinforcement Learning for Real-Time Resource Allocation in Transportation Hubs: From Airport Gates to Seaport Berths
by Zihao Zhang, Qingwei Zhong, Weijun Pan, Yi Ai and Qian Wang
Aerospace 2026, 13(1), 108; https://doi.org/10.3390/aerospace13010108 - 22 Jan 2026
Viewed by 41
Abstract
Efficient resource allocation is critical for transportation hub operations, yet current scheduling systems require substantial domain-specific customization when deployed across different facilities. This paper presents a domain-adaptive deep reinforcement learning (DADRL) framework that learns transferable optimization policies for dynamic resource allocation across structurally [...] Read more.
Efficient resource allocation is critical for transportation hub operations, yet current scheduling systems require substantial domain-specific customization when deployed across different facilities. This paper presents a domain-adaptive deep reinforcement learning (DADRL) framework that learns transferable optimization policies for dynamic resource allocation across structurally similar transportation scheduling problems. The framework integrates dual-level heterogeneous graph attention networks for separating constraint topology from domain-specific features, hypergraph-based constraint modeling for capturing high-order dependencies, and hierarchical policy decomposition that reduces computational complexity from O(mnT) to O(m+n+T). Evaluated on realistic simulators modeling airport gate assignment (Singapore Changi: 50 gates, 300–400 daily flights) and seaport berth allocation (Singapore Port: 40 berths, 80–120 daily vessels), DADRL achieves 87.3% resource utilization in airport operations and 86.3% in port operations, outperforming commercial solvers under strict real-time constraints (Gurobi-MIP with 300 s time limit: 85.1%) while operating 270 times faster (1.1 s versus 298 s per instance). Given unlimited time, Gurobi achieves provably optimal solutions, but DADRL reaches 98.7% of this optimum in 1.1 s, making it suitable for time-critical operational scenarios where exact solvers are computationally infeasible. Critically, policies trained exclusively on airport scenarios retain 92.4% performance when applied to ports without retraining, requiring only 800 adaptation steps compared to 13,200 for domain-specific training. The framework maintains 86.2% performance under operational disruptions and scales to problems three times larger than training instances with only 7% degradation. These results demonstrate that learned optimization principles can generalize across transportation scheduling problems sharing common constraint structures, enabling rapid deployment of AI-based scheduling systems across multi-modal transportation networks with minimal customization and reduced implementation costs. Full article
(This article belongs to the Special Issue Emerging Trends in Air Traffic Flow and Airport Operations Control)
Show Figures

Figure 1

16 pages, 2031 KB  
Article
Semitransparent Perovskite-Emulating Photovoltaic Covers for Lettuce Production
by Miriam Distefano, Giovanni Avola, Alessandra Alberti, Salvatore Valastro, Gaetano Calogero, Giovanni Mannino and Ezio Riggi
Agriculture 2026, 16(2), 282; https://doi.org/10.3390/agriculture16020282 - 22 Jan 2026
Viewed by 43
Abstract
Semitransparent perovskite photovoltaic (sPV) covers offer an attractive route for agrivoltaics, but their spectrally selective transmittance must be validated on plants cultivated under panel or in simulated conditions. Here, an AVA–MAPI perovskite module transmission profile was replicated using a programmable multi-channel LED platform [...] Read more.
Semitransparent perovskite photovoltaic (sPV) covers offer an attractive route for agrivoltaics, but their spectrally selective transmittance must be validated on plants cultivated under panel or in simulated conditions. Here, an AVA–MAPI perovskite module transmission profile was replicated using a programmable multi-channel LED platform and compared with a Reference McCree-adapted LED spectrum at identical photon flux density. Two lettuce cultivars (Lactuca sativa L.; ‘Canasta’ and ‘Trocadero’) were grown hydroponically in a light-sealed phytotron for 30 days (300 μmol m−2 s−1; 16/8 h photoperiod) under uniform temperature and humidity. Leaf gas exchange was quantified by fitting photosynthetic light-response curves, and plant performance was concurrently evaluated through growth metrics, biomass partitioning, and pigment-related traits (chlorophyll a/b, total carotenoids). The perovskite-emulated spectrum measurably reshaped net CO2 assimilation across the PAR domain—yielding higher AN at selected irradiances in post hoc contrasts—yet these physiological shifts did not translate into differences in leaf area, shoot or root biomass, or pigment concentrations—demonstrating spectral plasticity and agricultural compatibility of field-characterized perovskite transmission spectra. Overall, perovskite-emulated light sustained agronomically equivalent lettuce performance under moderate irradiance, supporting the feasibility of semitransparent perovskite PV covers, while underscoring the need for validation under natural sunlight. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

44 pages, 2586 KB  
Review
Cellular Automata and Phase-Field Modeling of Microstructure Evolution in Metal Additive Manufacturing: Recent Advances, Hybrid Frameworks, and Pathways to Predictive Control
by Łukasz Łach
Metals 2026, 16(1), 124; https://doi.org/10.3390/met16010124 - 21 Jan 2026
Viewed by 255
Abstract
Metal additive manufacturing (AM) generates complex microstructures through extreme thermal gradients and rapid solidification, critically influencing mechanical performance and industrial qualification. This review synthesizes recent advances in cellular automata (CA) and phase-field (PF) modeling to predict grain-scale microstructure evolution during AM. CA methods [...] Read more.
Metal additive manufacturing (AM) generates complex microstructures through extreme thermal gradients and rapid solidification, critically influencing mechanical performance and industrial qualification. This review synthesizes recent advances in cellular automata (CA) and phase-field (PF) modeling to predict grain-scale microstructure evolution during AM. CA methods provide computational efficiency, enabling large-domain simulations and excelling in texture prediction and multi-layer builds. PF approaches deliver superior thermodynamic fidelity for interface dynamics, solute partitioning, and nonequilibrium rapid solidification through CALPHAD coupling. Hybrid CA–PF frameworks strategically balance efficiency and accuracy by allocating PF to solidification fronts and CA to bulk grain competition. Recent algorithmic innovations—discrete event-inspired CA, GPU acceleration, and machine learning—extend scalability while maintaining predictive capability. Validated applications across Ni-based superalloys, Ti-6Al-4V, tool steels, and Al alloys demonstrate robust process–microstructure–property predictions through EBSD and mechanical testing. Persistent challenges include computational scalability for full-scale components, standardized calibration protocols, limited in situ validation, and incomplete multi-physics coupling. Emerging solutions leverage physics-informed machine learning, digital twin architectures, and open-source platforms to enable predictive microstructure control for first-time-right manufacturing in aerospace, biomedical, and energy applications. Full article
Show Figures

Figure 1

27 pages, 3891 KB  
Article
Multi-Frequency Time-Reversal and Topological Derivative Fusion Imaging of Steel Pipe Defects via Sparse Bayesian Learning
by Xinyu Zhang, Changzhi He, Zhen Li and Shaofeng Wang
Appl. Sci. 2026, 16(2), 1084; https://doi.org/10.3390/app16021084 - 21 Jan 2026
Viewed by 76
Abstract
Steel pipes play a vital role in energy and industrial transportation systems, where undetected defects such as cracks and wall thinning may lead to severe safety hazards. Although ultrasonic guided waves enable long-range inspection, their defect imaging performance is often limited by dispersion, [...] Read more.
Steel pipes play a vital role in energy and industrial transportation systems, where undetected defects such as cracks and wall thinning may lead to severe safety hazards. Although ultrasonic guided waves enable long-range inspection, their defect imaging performance is often limited by dispersion, multimode interference, and strong noise. In this work, a multi-frequency fusion imaging method integrating time-reversal, topological derivative, and sparse Bayesian learning is proposed for guided wave-based defect detection in steel pipes. Multi-frequency guided waves are employed to enhance defect sensitivity and suppress frequency-dependent ambiguity. Time-reversal focusing is used to concentrate scattered energy at defect locations, while the topological derivative provides a global sensitivity map as physics-guided prior information. These results are further fused within a sparse Bayesian learning framework to achieve probabilistic defect imaging and uncertainty quantification. Dispersion compensation based on the semi-analytical finite element method is introduced to ensure accurate wavefield reconstruction at different frequencies. Domain randomization is also incorporated to improve robustness against uncertainties in material properties, temperature, and measurement noise. Numerical simulation results verify that the proposed method achieves high localization accuracy and significantly outperforms conventional TR-based imaging in terms of resolution, false alarm suppression, and stability. The proposed approach provides a reliable and robust solution for guided wave inspection of steel pipelines and offers strong potential for engineering applications in nondestructive evaluation and structural health monitoring. Full article
Show Figures

Figure 1

14 pages, 1097 KB  
Article
Low-Power Embedded Sensor Node for Real-Time Environmental Monitoring with On-Board Machine-Learning Inference
by Manuel J. C. S. Reis
Sensors 2026, 26(2), 703; https://doi.org/10.3390/s26020703 - 21 Jan 2026
Viewed by 111
Abstract
This paper presents the design and optimisation of a low-power embedded sensor-node architecture for real-time environmental monitoring with on-board machine-learning inference. The proposed system integrates heterogeneous sensing elements for air quality and ambient parameters (temperature, humidity, gas concentration, and particulate matter) into a [...] Read more.
This paper presents the design and optimisation of a low-power embedded sensor-node architecture for real-time environmental monitoring with on-board machine-learning inference. The proposed system integrates heterogeneous sensing elements for air quality and ambient parameters (temperature, humidity, gas concentration, and particulate matter) into a modular embedded platform based on a low-power microcontroller coupled with an energy-efficient neural inference accelerator. The design emphasises end-to-end energy optimisation through adaptive duty-cycling, hierarchical power domains, and edge-level data reduction. The embedded machine-learning layer performs lightweight event/anomaly detection via on-device multi-class classification (normal/anomalous/critical) using quantised neural models in fixed-point arithmetic. A comprehensive system-level analysis, performed via MATLAB Simulink simulations, evaluates inference accuracy, latency, and energy consumption under realistic environmental conditions. Results indicate that the proposed node achieves 94% inference accuracy, 0.87 ms latency, and an average power consumption of approximately 2.9 mWh, enabling energy-autonomous operation with hybrid solar–battery harvesting. The adaptive LoRaWAN communication strategy further reduces data transmissions by ≈88% relative to periodic reporting. The results indicate that on-device inference can reduce network traffic while maintaining reliable event detection under the evaluated operating conditions. The proposed architecture is intended to support energy-efficient environmental sensing deployments in smart-city and climate-monitoring contexts. Full article
(This article belongs to the Special Issue Applications of Sensors Based on Embedded Systems)
Show Figures

Figure 1

13 pages, 994 KB  
Article
Privacy-Preserving Average-Tracking Control for Multi-Agent Systems with Constant Reference Signals
by Wei Jiang and Cheng-Lin Liu
Entropy 2026, 28(1), 120; https://doi.org/10.3390/e28010120 - 19 Jan 2026
Viewed by 191
Abstract
This paper addresses the average-tracking control problem for multi-agent systems subject to constant reference signals. By introducing auxiliary signals generated from the states and delayed states of agents, a novel privacy-preserving integral-type average-tracking algorithm is proposed. Leveraging the frequency-domain analysis approach, delay-dependent sufficient [...] Read more.
This paper addresses the average-tracking control problem for multi-agent systems subject to constant reference signals. By introducing auxiliary signals generated from the states and delayed states of agents, a novel privacy-preserving integral-type average-tracking algorithm is proposed. Leveraging the frequency-domain analysis approach, delay-dependent sufficient and necessary conditions for ensuring asymptotic average-tracking convergence are derived. Furthermore, the proposed algorithm is extended to tackle the average-tracking control problem with mismatched reference signals, and a corresponding delay-dependent sufficient condition is established to guarantee privacy-preserving average-tracking convergence. Numerical simulations are conducted to verify the effectiveness of the developed algorithms. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

24 pages, 2148 KB  
Article
Distribution Network Electrical Equipment Defect Identification Based on Multi-Modal Image Voiceprint Data Fusion and Channel Interleaving
by An Chen, Junle Liu, Wenhao Zhang, Jiaxuan Lu, Jiamu Yang and Bin Liao
Processes 2026, 14(2), 326; https://doi.org/10.3390/pr14020326 - 16 Jan 2026
Viewed by 182
Abstract
With the explosive growth in the quantity of electrical equipment in distribution networks, traditional manual inspection struggles to achieve comprehensive coverage due to limited manpower and low efficiency. This has led to frequent equipment failures including partial discharge, insulation aging, and poor contact. [...] Read more.
With the explosive growth in the quantity of electrical equipment in distribution networks, traditional manual inspection struggles to achieve comprehensive coverage due to limited manpower and low efficiency. This has led to frequent equipment failures including partial discharge, insulation aging, and poor contact. These issues seriously compromise the safe and stable operation of distribution networks. Real-time monitoring and defect identification of their operation status are critical to ensuring the safety and stability of power systems. Currently, commonly used methods for defect identification in distribution network electrical equipment mainly rely on single-image or voiceprint data features. These methods lack consideration of the complementarity and interleaved nature between image and voiceprint features, resulting in reduced identification accuracy and reliability. To address the limitations of existing methods, this paper proposes distribution network electrical equipment defect identification based on multi-modal image voiceprint data fusion and channel interleaving. First, image and voiceprint feature models are constructed using two-dimensional principal component analysis (2DPCA) and the Mel scale, respectively. Multi-modal feature fusion is achieved using an improved transformer model that integrates intra-domain self-attention units and an inter-domain cross-attention mechanism. Second, an image and voiceprint multi-channel interleaving model is applied. It combines channel adaptability and confidence to dynamically adjust weights and generates defect identification results using a weighting approach based on output probability information content. Finally, simulation results show that, under the dataset size of 3300 samples, the proposed algorithm achieves a 8.96–33.27% improvement in defect recognition accuracy compared with baseline algorithms, and maintains an accuracy of over 86.5% even under 20% random noise interference by using improved transformer and multi-channel interleaving mechanism, verifying its advantages in accuracy and noise robustness. Full article
Show Figures

Figure 1

18 pages, 4298 KB  
Article
Development of Low-Power Forest Fire Water Bucket Liquid Level and Fire Situation Monitoring Device
by Xiongwei Lou, Shihong Chen, Linhao Sun, Xinyu Zheng, Siqi Huang, Chen Dong, Dashen Wu, Hao Liang and Guangyu Jiang
Forests 2026, 17(1), 126; https://doi.org/10.3390/f17010126 - 16 Jan 2026
Viewed by 97
Abstract
A portable and integrated monitoring device was developed to digitally assess both water levels and surrounding fire-related conditions in forest firefighting water buckets using multi-sensor fusion. The system integrates a hydrostatic liquid-level sensor with temperature–humidity and smoke sensors. Validation was performed through field-oriented [...] Read more.
A portable and integrated monitoring device was developed to digitally assess both water levels and surrounding fire-related conditions in forest firefighting water buckets using multi-sensor fusion. The system integrates a hydrostatic liquid-level sensor with temperature–humidity and smoke sensors. Validation was performed through field-oriented experiments conducted under semi-controlled conditions. Water-level measurements were collected over a three-month period under simulated forest conditions and benchmarked against conventional steel-ruler readings. Early-stage fire monitoring experiments were carried out using dry wood and leaf litter under varying wind speeds, wind directions, and representative extreme weather conditions. The device achieved a mean water-level bias of −0.60%, a root-mean-square error of 0.64%, and an overall accuracy of 99.36%. Fire monitoring reached a maximum detection distance of 7.30 m under calm conditions and extended to 16.50 m under strong downwind conditions, with performance decreasing toward crosswind directions. Stable operation was observed during periods of strong winds associated with typhoon events, as well as prolonged high-temperature exposure. The primary novelty of this work lies in the conceptualization of a Collaborative Forest Resource–Hazard Monitoring Architecture. Unlike traditional isolated sensors, our proposed framework utilizes a dual-domain decision-making model that simultaneously assesses water-bucket storage stability and micro-scale fire threats. By implementing a robust ‘sensing–logic–alert’ framework tailored for rugged environments, this study offers a new methodological reference for the intelligent management of forest firefighting resources. Full article
Show Figures

Figure 1

32 pages, 107231 KB  
Article
Simulation and Experimental Study of Vessel-Borne Active Motion Compensated Gangway for Offshore Wind Operation and Maintenance
by Hongyan Mu, Ting Zhou, Binbin Li and Kun Liu
J. Mar. Sci. Eng. 2026, 14(2), 187; https://doi.org/10.3390/jmse14020187 - 16 Jan 2026
Viewed by 232
Abstract
Driven by global initiatives to mitigate climate change, the offshore wind power industry is experiencing rapid growth. Personnel transfer between service operation vessels (SOVs) and offshore wind turbines under complex sea conditions remains a critical factor governing the safety and efficiency of operation [...] Read more.
Driven by global initiatives to mitigate climate change, the offshore wind power industry is experiencing rapid growth. Personnel transfer between service operation vessels (SOVs) and offshore wind turbines under complex sea conditions remains a critical factor governing the safety and efficiency of operation and maintenance (O&M) activities. This study establishes a fully coupled dynamic response and control simulation framework for an SOV equipped with an active motion-compensated gangway. A numerical model of the SOV is first developed using potential flow theory and frequency-domain multi-body hydrodynamics to predict realistic vessel motions, which serve as excitation inputs to a co-simulation environment (MATLAB/Simulink coupled with MSC Adams) representing the Stewart platform-based gangway. To address system nonlinearity and coupling, a composite control strategy integrating velocity and dynamic feedforward with three-loop PID feedback is proposed. Simulation results demonstrate that the composite strategy achieves an average disturbance isolation degree of 21.81 dB, significantly outperforming traditional PID control. Validation is conducted using a ship motion simulation platform and a combined wind–wave basin with a 1:10 scaled prototype. Experimental results confirm high compensation accuracy, with heave variation maintained within 1.6 cm and a relative error between simulation and experiment of approximately 18.2%. These findings demonstrate the framework’s capability to ensure safe personnel transfer by effectively isolating complex vessel motions and validate the reliability of the coupled dynamic model for offshore operational forecasting. Full article
Show Figures

Figure 1

45 pages, 5693 KB  
Review
Future Perspectives on Black Hole Jet Mechanisms: Insights from Next-Generation Observatories and Theoretical Developments
by Andre L. B. Ribeiro and Nathalia M. N. da Rocha
Universe 2026, 12(1), 24; https://doi.org/10.3390/universe12010024 - 15 Jan 2026
Viewed by 136
Abstract
Black hole jets represent one of the most extreme manifestations of astrophysical processes, linking accretion physics, relativistic magnetohydrodynamics, and large-scale feedback in galaxies and clusters. Despite decades of observational and theoretical work, the mechanisms governing jet launching, collimation, and energy dissipation remain open [...] Read more.
Black hole jets represent one of the most extreme manifestations of astrophysical processes, linking accretion physics, relativistic magnetohydrodynamics, and large-scale feedback in galaxies and clusters. Despite decades of observational and theoretical work, the mechanisms governing jet launching, collimation, and energy dissipation remain open questions. In this article, we discuss how upcoming facilities such as the Event Horizon Telescope (EHT), the Cherenkov Telescope Array (CTA), the Vera C. Rubin Observatory (LSST), and the Whole Earth Blazar Telescope (WEBT) will provide unprecedented constraints on jet dynamics, variability, and multi-wavelength signatures. Furthermore, we highlight theoretical challenges, including the role of magnetically arrested disks (MADs), plasma microphysics, and general relativistic magnetohydrodynamic (GRMHD) simulations in shaping our understanding of jet formation. By combining high-resolution imaging, time-domain surveys, and advanced simulations, the next decade promises transformative progress in unveiling the physics of black hole jets. Full article
(This article belongs to the Special Issue Mechanisms Behind Black Holes and Relativistic Jets)
Show Figures

Figure 1

21 pages, 1676 KB  
Article
Fuzzy Logic-Based Data Flow Control for Long-Range Wide Area Networks in Internet of Military Things
by Rachel Kufakunesu, Herman C. Myburgh and Allan De Freitas
J. Sens. Actuator Netw. 2026, 15(1), 10; https://doi.org/10.3390/jsan15010010 - 14 Jan 2026
Viewed by 201
Abstract
The Internet of Military Things (IoMT) relies on Long-Range Wide Area Networks (LoRaWAN) for low-power, long-range communication in critical applications like border security and soldier health monitoring. However, conventional priority-based flow control mechanisms, which rely on static classification thresholds, lack the adaptability to [...] Read more.
The Internet of Military Things (IoMT) relies on Long-Range Wide Area Networks (LoRaWAN) for low-power, long-range communication in critical applications like border security and soldier health monitoring. However, conventional priority-based flow control mechanisms, which rely on static classification thresholds, lack the adaptability to handle the nuanced, continuous nature of physiological data and dynamic network states. To overcome this rigidity, this paper introduces a novel, domain-adaptive Fuzzy Logic Flow Control (FFC) protocol specifically tailored for LoRaWAN-based IoMT. While employing established Mamdani inference, the FFC system innovatively fuses multi-parameter physiological data (body temperature, blood pressure, oxygen saturation, and heart rate) into a continuous Health Score, which is then mapped via a context-optimised sigmoid function to dynamic transmission intervals. This represents a novel application-layer semantic integration with LoRaWAN’s constrained MAC and PHY layers, enabling cross-layer flow optimisation without protocol modification. Simulation results confirm that FFC significantly enhances reliability and energy efficiency while reducing latency relative to traditional static priority architectures. Seamlessly integrated into the NS-3 LoRaWAN simulation framework, the FFC protocol demonstrates superior performance in IoMT communications. Simulation results confirm that FFC significantly enhances reliability and energy efficiency while reducing latency compared with traditional static priority-based architectures. It achieves this by prioritising high-priority health telemetry, proactively mitigating network congestion, and optimising energy utilisation, thereby offering a robust solution for emergent, health-critical scenarios in resource-constrained environments. Full article
Show Figures

Figure 1

Back to TopTop