Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = multi-beam bathymetric system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2832 KiB  
Article
A Crossover Adjustment Method Considering the Beam Incident Angle for a Multibeam Bathymetric Survey Based on USV Swarms
by Qiang Yuan, Weiming Xu, Shaohua Jin and Tong Sun
J. Mar. Sci. Eng. 2025, 13(7), 1364; https://doi.org/10.3390/jmse13071364 - 17 Jul 2025
Viewed by 322
Abstract
Multibeam echosounder systems (MBESs) are widely used in unmanned surface vehicle swarms (USVs) to perform various marine bathymetry surveys because of their excellent performance. To address the challenges of systematic error superposition and edge beam error propagation in multibeam bathymetry surveying, this study [...] Read more.
Multibeam echosounder systems (MBESs) are widely used in unmanned surface vehicle swarms (USVs) to perform various marine bathymetry surveys because of their excellent performance. To address the challenges of systematic error superposition and edge beam error propagation in multibeam bathymetry surveying, this study proposes a novel error adjustment method integrating crossover error density clustering and beam incident angle (BIA) compensation. Firstly, a bathymetry error detection model was developed based on adaptive Density-Based Spatial Clustering of Applications with Noise (DBSCAN). By optimizing the neighborhood radius and minimum sample threshold through analyzing sliding-window curvature, the method achieved the automatic identification of outliers, reducing crossover discrepancies from ±150 m to ±50 m in the deep sea at a depth of approximately 5000 m. Secondly, an asymmetric quadratic surface correction model was established by incorporating the BIA as a key parameter. A dynamic weight matrix ω = 1/(1 + 0.5θ2) was introduced to suppress edge beam errors, combined with Tikhonov regularization to resolve ill-posed matrix issues. Experimental validation in the Western Pacific demonstrated that the RMSE of crossover points decreased by about 30.4% and the MAE was reduced by 57.3%. The proposed method effectively corrects residual systematic errors while maintaining topographic authenticity, providing a reference for improving the quality of multibeam bathymetric data obtained via USVs and enhancing measurement efficiency. Full article
(This article belongs to the Special Issue Technical Applications and Latest Discoveries in Seafloor Mapping)
Show Figures

Figure 1

25 pages, 20571 KiB  
Article
Mid-Water Ocean Current Field Estimation Using Radial Basis Functions Based on Multibeam Bathymetric Survey Data for AUV Navigation
by Jiawen Liu, Kaixuan Wang, Shuai Chang and Lin Pan
J. Mar. Sci. Eng. 2025, 13(5), 841; https://doi.org/10.3390/jmse13050841 - 24 Apr 2025
Viewed by 506
Abstract
Autonomous Underwater Vehicle (AUV) navigation relies on bottom-tracking velocity from Doppler Velocity Log (DVL) for positioning through dead-reckoning or aiding Strapdown Inertial Navigation System (SINS). In mid-water environments, the distance between the AUV and the seafloor exceeds the detection range of DVL, causing [...] Read more.
Autonomous Underwater Vehicle (AUV) navigation relies on bottom-tracking velocity from Doppler Velocity Log (DVL) for positioning through dead-reckoning or aiding Strapdown Inertial Navigation System (SINS). In mid-water environments, the distance between the AUV and the seafloor exceeds the detection range of DVL, causing failure of bottom-tracking and leaving only water-relative velocity available. This makes unknown ocean currents a significant error source that leads to substantial cumulative positioning errors. This paper proposes a method for mid-water ocean current estimation using multibeam bathymetric survey data. First, the method models the regional unknown current field using radius basis functions (RBFs) and establishes an AUV dead-reckoning model incorporating the current field. The RBF model inherently satisfies ocean current incompressibility. Subsequently, by dividing the multibeam bathymetric point cloud data surveyed by the AUV into submaps and performing a terrain-matching algorithm, relative position observations among different AUV positions can be constructed. These observations are then utilized to estimate the RBF parameters of the current field within the navigation model. Numerical simulations and experiments based on real-world bathymetric and ocean current data demonstrate that the proposed method can effectively capture the complex spatial variations in ocean currents, contributing to the accurate reconstruction of the mid-water current field and significant improvement in positioning accuracy. Full article
Show Figures

Figure 1

16 pages, 4814 KiB  
Article
Geomorphological Characteristics and Evolutionary Process of a Typical Isolated Carbonate Platform Slope in the Xisha Sea: A Case Study of the Northwestern Dongdao Platform
by Xudong Guo, Dongyu Lu, Xuelin Li, Xiaochen Fang, Fei Tian, Changfa Xia, Lei Huang, Mei Chen, Luyi Wang and Zhongyu Sun
Water 2025, 17(9), 1259; https://doi.org/10.3390/w17091259 - 23 Apr 2025
Viewed by 475
Abstract
The northwestern slope of the Dongdao Platform in the Xisha Sea exhibits a complex geomorphological structure. Utilizing high-resolution multibeam bathymetric data and 2D seismic profiles, this study systematically reconstructs the slope morphology and its evolutionary processes. The study area displays a distinct threefold [...] Read more.
The northwestern slope of the Dongdao Platform in the Xisha Sea exhibits a complex geomorphological structure. Utilizing high-resolution multibeam bathymetric data and 2D seismic profiles, this study systematically reconstructs the slope morphology and its evolutionary processes. The study area displays a distinct threefold zonation: the upper slope (160–700 m water depth) has a steep gradient of 15°–25°, characterized by deeply incised V-shaped channels and slump deposits, primarily shaped by gravity-driven erosion; the middle slope (700–1200 m water depth) features a gentler gradient of 10°–15°, where channels stabilize, adopting U-shaped cross-sections with the development of lateral accretion deposits; the lower slope (1200–1500 m water depth) exhibits a milder gradient of 5°–10°, dominated by a mixture of fine-grained carbonate sediments and hemipelagic mud–marine sediments originating partly from the open ocean and partly from the nearby continental margin. The slope extends from 160 m to 1500 m water depth, hosting the C1–C4 channel system. Seismic facies analysis reveals mass-transport deposits, channel-fill facies, and facies modified by bottom currents—currents near the seafloor that redistribute sediments laterally—highlighting the interplay between fluid activity and gravity-driven processes. The slope evolution follows a four-stage model: (1) the pockmark formation stage, where overpressured gas migrates vertically through chimneys, inducing localized sediment instability and forming discrete pockmarks; (2) the initial channel development stage, during which gravity flows exploit the pockmark chains as preferential erosional pathways, establishing nascent incised channels; (3) the channel expansion and maturation stage, marked by intensified erosion from high-density debris flows, resulting in a stepped longitudinal profile, while bottom-current reworking enhances lateral sediment differentiation; (4) the stable transport stage, wherein the channels fully integrate with the Sansha Canyon, forming a well-connected “platform-to-canyon” sediment transport system. Full article
(This article belongs to the Special Issue Regional Geomorphological Characteristics and Sedimentary Processes)
Show Figures

Figure 1

23 pages, 21739 KiB  
Article
Fine-Scale Geomorphologic Classification of Guyots in Representative Areas of the Western Pacific Ocean
by Heshun Wang, Yongfu Sun, Shengli Wang, Wei Gao, Weikun Xu, Zhen Liu, Xuebing Yin, Sidi Ruan and Yihui Shao
J. Mar. Sci. Eng. 2025, 13(4), 823; https://doi.org/10.3390/jmse13040823 - 21 Apr 2025
Viewed by 739
Abstract
Guyots are a special type of seamount with a flat top and are widely distributed in the global ocean. In this paper, a geomorphologic classification method for guyots based on multibeam bathymetry data is proposed. By studying typical guyots, namely, the Jiaxie Guyots, [...] Read more.
Guyots are a special type of seamount with a flat top and are widely distributed in the global ocean. In this paper, a geomorphologic classification method for guyots based on multibeam bathymetry data is proposed. By studying typical guyots, namely, the Jiaxie Guyots, the Caiwei Guyots, and the DD Guyot in the Western Pacific Ocean, in this study, a multilevel classification system was established, integrating elevation, slope, and bathymetric position index (BPI). The method successfully classified seafloor geomorphology into nine types: summit platform, extremely steep slope, steep slope, gentle slope, very gentle slope, gully on the slope, seafloor plain, local crest, and local depression. Significant differences in the area distribution, depth characteristics, and slope extent of different geomorphologic units in the guyots were revealed by quantitative analysis. The flexibility and accuracy of the method were demonstrated through depth profile validation and method comparison validation. This classification system provides a new cognitive framework for defining the boundaries of seamounts, as well as for the study of the genesis mechanisms of the gullies on the slopes, local crests, and local depressions formed by volcanic activity and other actions. Full article
Show Figures

Figure 1

21 pages, 8384 KiB  
Article
Multi-Temporal Image Fusion-Based Shallow-Water Bathymetry Inversion Method Using Active and Passive Satellite Remote Sensing Data
by Jie Li, Zhipeng Dong, Lubin Chen, Qiuhua Tang, Jiaoyu Hao and Yujie Zhang
Remote Sens. 2025, 17(2), 265; https://doi.org/10.3390/rs17020265 - 13 Jan 2025
Cited by 3 | Viewed by 1088
Abstract
In the active–passive fusion-based bathymetry inversion method using single-temporal images, image data often suffer from errors due to inadequate atmospheric correction and interference from neighboring land and water pixels. This results in the generation of noise, making high-quality data difficult to obtain. To [...] Read more.
In the active–passive fusion-based bathymetry inversion method using single-temporal images, image data often suffer from errors due to inadequate atmospheric correction and interference from neighboring land and water pixels. This results in the generation of noise, making high-quality data difficult to obtain. To address this problem, this paper introduces a multi-temporal image fusion method. First, a median filter is applied to separate land and water pixels, eliminating the influence of adjacent land and water pixels. Next, multiple images captured at different times are fused to remove noise caused by water surface fluctuations and surface vessels. Finally, ICESat-2 laser altimeter data are fused with multi-temporal Sentinel-2 satellite data to construct a machine learning framework for coastal bathymetry. The bathymetric control points are extracted from ICESat-2 ATL03 products rather than from field measurements. A backpropagation (BP) neural network model is then used to incorporate the initial multispectral information of Sentinel-2 data at each bathymetric point and its surrounding area during the training process. Bathymetric maps of the study areas are generated based on the trained model. In the three study areas selected in the South China Sea (SCS), the validation is performed by comparing with the measurement data obtained using shipborne single-beam or multi-beam and airborne laser bathymetry systems. The root mean square errors (RMSEs) of the model using the band information after image fusion and median filter processing are better than 1.82 m, and the mean absolute errors (MAEs) are better than 1.63 m. The results show that the proposed method achieves good performance and can be applied for shallow-water terrain inversion. Full article
Show Figures

Figure 1

18 pages, 14732 KiB  
Article
Atypical Linear Tectonic Block of the Intraplate Deformation Zone in the Central Indian Ocean Basin
by Vsevolod V. Yutsis, Oleg V. Levchenko, Alexander V. Tevelev, Yulia G. Marinova, Ilia A. Veklich and Abraham Del Razo Gonzalez
J. Mar. Sci. Eng. 2024, 12(12), 2231; https://doi.org/10.3390/jmse12122231 - 5 Dec 2024
Cited by 1 | Viewed by 1079
Abstract
The Central Indian Ocean Basin (CIOB) is distinguished by unusually high tectonic activity, setting it apart from all other passive oceanic basins. Within the interior of the Indo-Australian lithospheric plate lies a unique area of intraplate deformation. This region is characterized by the [...] Read more.
The Central Indian Ocean Basin (CIOB) is distinguished by unusually high tectonic activity, setting it apart from all other passive oceanic basins. Within the interior of the Indo-Australian lithospheric plate lies a unique area of intraplate deformation. This region is characterized by the highest recorded intraplate oceanic seismicity, with earthquake magnitudes reaching up to M = 8, abnormally high heat flow—measured to be two to four times higher than background levels for the ancient oceanic lithosphere of the Cretaceous age—and, most notably, intense folding and faulting of sediments and the basement, which are typically associated only with boundary zones of lithospheric plates. This anomalously tectonically active intraplate area was studied during regular research cruises in the 1970s–1980s, after which new conclusions were mainly drawn from satellite data modeling. Substantially new geophysical data were obtained in 2017 after a long gap. Bathymetric surveys using multibeam echosounders during the 42nd cruise of the R/V (Research Vessel) Akademik Boris Petrov and the SO258/2 cruise of the R/V Sonne provided full coverage of a large portion of the intraplate deformation area in the CIOB. This confirmed the mosaic-block structure of the intraplate deformation zone in the Central Indian Ocean Basin, consisting of numerous isometrically deformed tectonic blocks. A linear block at 0.2–0.6° S, which has a branch-like shape in plain view, is morphologically distinct from these blocks. It represents a system of structural elements of different scales (folds, flexures, ruptures), which constitute a structural paragenesis formed in the mechanical environment of a dextral transpressive tectonic setting. Full article
Show Figures

Figure 1

21 pages, 13874 KiB  
Article
A Joint Graph-Based Approach for Simultaneous Underwater Localization and Mapping for AUV Navigation Fusing Bathymetric and Magnetic-Beacon-Observation Data
by Shuai Chang, Dalong Zhang, Linfeng Zhang, Guoji Zou, Chengcheng Wan, Wencong Ma and Qingji Zhou
J. Mar. Sci. Eng. 2024, 12(6), 954; https://doi.org/10.3390/jmse12060954 - 6 Jun 2024
Cited by 5 | Viewed by 1853
Abstract
Accurate positioning is the necessary basis for autonomous underwater vehicles (AUV) to perform safe navigation in underwater tasks, such as port environment monitoring, target search, and seabed exploration. The position estimates of underwater navigation systems usually suffer from an error accumulation problem, which [...] Read more.
Accurate positioning is the necessary basis for autonomous underwater vehicles (AUV) to perform safe navigation in underwater tasks, such as port environment monitoring, target search, and seabed exploration. The position estimates of underwater navigation systems usually suffer from an error accumulation problem, which makes the AUVs difficult use to perform long-term and accurate underwater tasks. Underwater simultaneous localization and mapping (SLAM) approaches based on multibeam-bathymetric data have attracted much attention for being able to obtain error-bounded position estimates. Two problems limit the use of multibeam bathymetric SLAM in many scenarios. The first is that the loop closures only occur in the AUV path intersection areas. The second is that the data association is prone to failure in areas with gentle topographic changes. To overcome these problems, a joint graph-based underwater SLAM approach that fuses bathymetric and magnetic-beacon measurements is proposed in this paper. In the front-end, a robust dual-stage bathymetric data-association method is used to first detect loop closures on the multibeam bathymetric data. Then, a magnetic-beacon-detection method using Euler-deconvolution and optimization algorithms is designed to localize the magnetic beacons using a magnetic measurement sequence on the path. The loop closures obtained from both bathymetric and magnetic-beacon observations are fused to build a joint-factor graph. In the back-end, a diagnosis method is introduced to identify the potential false factors in the graph, thus improving the robustness of the joint SLAM system to outliers in the measurement data. Experiments based on field bathymetric datasets are performed to test the performance of the proposed approach. Compared with classic bathymetric SLAM algorithms, the proposed algorithm can improve the data-association accuracy by 50%, and the average positioning error after optimization converges to less than 10 m. Full article
(This article belongs to the Special Issue Future Maritime Transport: Trends and Solutions)
Show Figures

Figure 1

19 pages, 35252 KiB  
Article
Erosional and Depositional Features along the Axis of a Canyon in the Northern South China Sea and Their Implications: Insights from High-Resolution AUV-Based Geophysical Data
by Xishuang Li, Lejun Liu, Bigui Huang, Qingjie Zhou and Chengyi Zhang
J. Mar. Sci. Eng. 2024, 12(4), 599; https://doi.org/10.3390/jmse12040599 - 30 Mar 2024
Viewed by 1527
Abstract
Autonomous Underwater Vehicle (AUV)-based multibeam bathymetry, sub-bottom profiles, and side-scan sonar images were collected in 2009 and 2010 to map the geomorphic features along the axial zone of a canyon (referred to as C4) within the canyon system developed on the northern slope [...] Read more.
Autonomous Underwater Vehicle (AUV)-based multibeam bathymetry, sub-bottom profiles, and side-scan sonar images were collected in 2009 and 2010 to map the geomorphic features along the axial zone of a canyon (referred to as C4) within the canyon system developed on the northern slope of the South China Sea. These data significantly improved the spatial resolution of acoustic data, leading to a better understanding of the sedimentary processes within the modern canyon system. The bathymetric data reveal that sections across the canyon axis exhibit either asymmetrical or symmetrical characteristics, which differ from the overall asymmetrical pattern of the entire canyon. This suggests that the overall asymmetrical pattern of the canyon is not primarily due to axial incision. Various morphological elements were identified along the canyon axis, including failure scars, undulating features, knickpoints, flat terraces, furrows, and mass transport deposits (MTDs). Landslides, predominantly located in the upper canyon, were formed after at least 5000 years BP. Between the beginning of the canyon and a water depth of approximately 1300 m, there are alternating flat terraces and knickpoints. The large knickpoints’ low slope gradients are likely formed by the presence of undulating features. The internal configurations of undulating features suggest that they are depositional structures rather than sediment deformation. The formation of small-scale furrows below a depth of 1200 m may be associated with occasional gravity flows down the canyon. It is suggested that the canyon was generally inactive during the Holocene but experienced sporadic processes of sediment erosion, transport, and re-deposition in the axial zone that were triggered by landslide events occasionally in the upper canyon. Full article
Show Figures

Figure 1

30 pages, 34635 KiB  
Article
Innovative Maritime Uncrewed Systems and Satellite Solutions for Shallow Water Bathymetric Assessment
by Laurențiu-Florin Constantinoiu, António Tavares, Rui Miguel Cândido and Eugen Rusu
Inventions 2024, 9(1), 20; https://doi.org/10.3390/inventions9010020 - 5 Feb 2024
Cited by 4 | Viewed by 3381
Abstract
Shallow water bathymetry is a topic of significant interest in various fields, including civil construction, port monitoring, and military operations. This study presents several methods for assessing shallow water bathymetry using maritime uncrewed systems (MUSs) integrated with advanced and innovative sensors such as [...] Read more.
Shallow water bathymetry is a topic of significant interest in various fields, including civil construction, port monitoring, and military operations. This study presents several methods for assessing shallow water bathymetry using maritime uncrewed systems (MUSs) integrated with advanced and innovative sensors such as Light Detection and Ranging (LiDAR) and multibeam echosounder (MBES). Furthermore, this study comprehensively describes satellite-derived bathymetry (SDB) techniques within the same geographical area. Each technique is thoroughly outlined with respect to its implementation and resultant data, followed by an analytical comparison encompassing their accuracy, precision, rapidness, and operational efficiency. The accuracy and precision of the methods were evaluated using a bathymetric reference survey conducted with traditional means, prior to the MUS survey and with cross-comparisons between all the approaches. In each assessment of the survey methodologies, a comprehensive evaluation is conducted, explaining both the advantages and limitations for each approach, thereby enabling an inclusive understanding for the reader regarding the efficacy and applicability of these methods. The experiments were conducted as part of the Robotic Experimentation and Prototyping using Maritime Unmanned Systems 23 (REPMUS23) multinational exercise, which was part of the Rapid Environmental Assessment (REA) experimentations. Full article
(This article belongs to the Special Issue From Sensing Technology towards Digital Twin in Applications)
Show Figures

Figure 1

17 pages, 5080 KiB  
Brief Report
Concept of an Innovative System for Dimensioning and Predicting Changes in the Coastal Zone Topography Using UAVs and USVs (4DBatMap System)
by Oktawia Specht, Mariusz Specht, Andrzej Stateczny and Cezary Specht
Electronics 2023, 12(19), 4112; https://doi.org/10.3390/electronics12194112 - 30 Sep 2023
Cited by 3 | Viewed by 1639
Abstract
This publication is aimed at developing a concept of an innovative system for dimensioning and predicting changes in the coastal zone topography using Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs). The 4DBatMap system will consist of four components: 1. Measurement data [...] Read more.
This publication is aimed at developing a concept of an innovative system for dimensioning and predicting changes in the coastal zone topography using Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs). The 4DBatMap system will consist of four components: 1. Measurement data acquisition module. Bathymetric and photogrammetric measurements will be carried out with a specific frequency in the coastal zone using a UAV equipped with a Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS), Light Detection And Ranging (LiDAR) and a photogrammetric camera, as well as a USV equipped with a GNSS Real Time Kinematic (RTK) receiver and a MultiBeam EchoSounder (MBES). 2. Multi-sensor geospatial data fusion module. Low-altitude aerial imagery, hydrographic and LiDAR data acquired using UAVs and USVs will be integrated into one. The result will be an accurate and fully covered with measurements terrain of the coastal zone. 3. Module for predicting changes in the coastal zone topography. As part of this module, a computer application will be created, which, based on the analysis of a time series, will determine the optimal method for describing the spatial and temporal variability (long-term trend and seasonal fluctuations) of the coastal zone terrain. 4. Module for imaging changes in the coastal zone topography. The final result of the 4DBatMap system will be a 4D bathymetric chart to illustrate how the coastal zone topography changes over time. Full article
(This article belongs to the Special Issue Control and Applications of Intelligent Unmanned Aerial Vehicle)
Show Figures

Figure 1

15 pages, 2153 KiB  
Article
Method of Time Estimation for the Bathymetric Surveys Conducted with a Multi-Beam Echosounder System
by Artur Grządziel
Appl. Sci. 2023, 13(18), 10139; https://doi.org/10.3390/app131810139 - 8 Sep 2023
Cited by 6 | Viewed by 4279
Abstract
Exact and complete preparation of a hydrographic survey project allows for the avoidance or reduction of additional costs and unexpected delays and, at the same time, increases the efficiency of the survey. One of the essential requirements at the survey planning stage is [...] Read more.
Exact and complete preparation of a hydrographic survey project allows for the avoidance or reduction of additional costs and unexpected delays and, at the same time, increases the efficiency of the survey. One of the essential requirements at the survey planning stage is a calculation of time necessary for performing bathymetric measurements with a multi-beam echosounder. Based on these calculations, many decisions related to the costs and methodology are made. The article presents the method of time estimation for the hydrographic surveys and takes into account many variables that directly affect the final duration of the project. The paper demonstrates the influence of water depth, multi-beam echosounder swath angle, and other planning parameters related to the scheme of survey lines on the total time of stay at sea. The main findings are based on the author’s over twenty years of experience aboard the Polish Navy hydrographic ship Arctowski and include thorough analysis of specialist literature, publications, manuals, and international standards. Full article
(This article belongs to the Special Issue Applied Maritime Engineering and Transportation Problems 2022)
Show Figures

Figure 1

17 pages, 7978 KiB  
Article
A Novel Cone Model Filtering Method for Outlier Rejection of Multibeam Bathymetric Point Cloud: Principles and Applications
by Xiaoyang Lv, Lei Wang, Dexiang Huang and Shengli Wang
Sensors 2023, 23(17), 7483; https://doi.org/10.3390/s23177483 - 28 Aug 2023
Cited by 3 | Viewed by 2263
Abstract
The utilization of multibeam sonar systems has significantly facilitated the acquisition of underwater bathymetric data. However, efficiently processing vast amounts of multibeam point cloud data remains a challenge, particularly in terms of rejecting massive outliers. This paper proposes a novel solution by implementing [...] Read more.
The utilization of multibeam sonar systems has significantly facilitated the acquisition of underwater bathymetric data. However, efficiently processing vast amounts of multibeam point cloud data remains a challenge, particularly in terms of rejecting massive outliers. This paper proposes a novel solution by implementing a cone model filtering method for multibeam bathymetric point cloud data filtering. Initially, statistical analysis is employed to remove large-scale outliers from the raw point cloud data in order to enhance its resistance to variance for subsequent processing. Subsequently, virtual grids and voxel down-sampling are introduced to determine the angles and vertices of the model within each grid. Finally, the point cloud data was inverted, and the custom parameters were redefined to facilitate bi-directional data filtering. Experimental results demonstrate that compared to the commonly used filtering method the proposed method in this paper effectively removes outliers while minimizing excessive filtering, with minimal differences in standard deviations from human-computer interactive filtering. Furthermore, it yields a 3.57% improvement in accuracy compared to the Combined Uncertainty and Bathymetry Estimator method. These findings suggest that the newly proposed method is comparatively more effective and stable, exhibiting great potential for mitigating excessive filtering in areas with complex terrain. Full article
(This article belongs to the Special Issue Underwater Vision Sensing System)
Show Figures

Figure 1

24 pages, 3359 KiB  
Article
A Method for Multi-Beam Bathymetric Surveys in Unfamiliar Waters Based on the AUV Constant-Depth Mode
by Junsen Wang, Yulin Tang, Shaohua Jin, Gang Bian, Xinyang Zhao and Chengyang Peng
J. Mar. Sci. Eng. 2023, 11(7), 1466; https://doi.org/10.3390/jmse11071466 - 23 Jul 2023
Cited by 15 | Viewed by 3690
Abstract
Given the lack of systematic research on bathymetric surveys with multi-beam sonar carried by autonomous underwater vehicles (AUVs) in unfamiliar waters, this paper proposes a method for multi-beam bathymetric surveys based on the constant-depth mode of AUVs, considering equipment safety, operational efficiency, and [...] Read more.
Given the lack of systematic research on bathymetric surveys with multi-beam sonar carried by autonomous underwater vehicles (AUVs) in unfamiliar waters, this paper proposes a method for multi-beam bathymetric surveys based on the constant-depth mode of AUVs, considering equipment safety, operational efficiency, and data quality. Firstly, basic principles for multi-beam bathymetric surveys under the constant-depth mode are proposed based on multi-beam operational standards and AUV constant-depth mode characteristics. Secondly, a vertical effective height model for the vehicle is established, providing vertical constraints and a basis for determining fixed depth in constant-depth missions. Subsequently, according to these basic principles and the vertical effective height model, the operational process for multi-beam bathymetric surveys in unfamiliar waters under the AUV constant-depth mode is outlined. Finally, we validate the proposed method through sea trials in the Xisha Sea of the South China Sea. The test results show that the method proposed in this paper not only ensures the vehicle safety operation and multi-beam data quality, but also improves the operation efficiency by about 68%, demonstrating the reliability of the proposed method and its significant engineering value and guidance implications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 25021 KiB  
Article
Holocene Erosional Processes in a Highly Exposed Intertidal Sandstone Reef Inferred from Remote Sensing Data
by Nicolás Ferrer, Kella Santana, Javier Martín, José Valdazo and Oscar Bergasa
Remote Sens. 2023, 15(12), 2968; https://doi.org/10.3390/rs15122968 - 7 Jun 2023
Cited by 2 | Viewed by 2329
Abstract
An intertidal sandstone reef, named barra de Las Canteras, protects the western coast of Las Palmas de Gran Canaria city (Canary Islands, Spain). The beach-reef system of Las Canteras constitutes one of the most valuable coastal geomorphological sites in the archipelago. Stratigraphic studies [...] Read more.
An intertidal sandstone reef, named barra de Las Canteras, protects the western coast of Las Palmas de Gran Canaria city (Canary Islands, Spain). The beach-reef system of Las Canteras constitutes one of the most valuable coastal geomorphological sites in the archipelago. Stratigraphic studies have identified the formation of the reef in the Last Interglacial (MIS 5e) in a coastal sedimentary paleo-environment. The rock structure is highly exposed to the Atlantic swell and consists mainly of a sandstone beachrock with a medium resistance to erosional processes. However, the historical and current erosion rates and the original extent of the reef are not known to date. This paper explores the geomorphological structure of the reef by combining a topo-bathymetric analysis (obtained by differential GPS, multibeam echosounder and hyperspectral sensor) and the analysis of geomorphological features on high-resolution images, obtained with a hyperspectral camera mounted on a UAV. The results provide a comprehensive, high-resolution image of the subaerial and submerged morphology of the reef. The structure reflects the distribution of erosional fronts and the existence of collapsing submarine blockfields and nearshore, uneroded, remnant reliefs. Detailed analysis of these features allows to estimate the probable original extent of the sandstone reef and to relate the erosional retreat processes to the sea-level dynamics during the Holocene. Full article
(This article belongs to the Special Issue Advances in Remote Sensing in Coastal Geomorphology Ⅱ)
Show Figures

Figure 1

13 pages, 6360 KiB  
Article
Subaqueous Topographic Deformation in Abandoned Delta Lobes—A Case Study in the Yellow River Delta, China
by Yunfeng Zhang, Yingying Chai, Caiping Hu, Yijun Xu, Yuyan Zhou, Huanliang Chen, Zijun Li, Shenting Gang and Shuwei Zheng
Water 2023, 15(11), 2050; https://doi.org/10.3390/w15112050 - 28 May 2023
Viewed by 2201
Abstract
Reduction in river discharge and sediment load has left deltaic lobes in the world’s many river deltas starving, but knowledge of how the subaqueous topography of these abandoned subdeltas responds to environmental changes is limited. In this study, we aimed to determine the [...] Read more.
Reduction in river discharge and sediment load has left deltaic lobes in the world’s many river deltas starving, but knowledge of how the subaqueous topography of these abandoned subdeltas responds to environmental changes is limited. In this study, we aimed to determine the long-term dynamics of the subaqueous seabed of abandoned delta lobes to advance current knowledge. As a case study, we selected an abandoned subdelta on the Yellow River Delta of the Bohai Sea, China, for which three-decade long (1984–2017) bathymetric data and long-term river discharge and sediment load records are available. We analyzed the seafloor surface change and quantified the void space from the sea water surface to the seafloor. In addition, we surveyed the seafloor surface with an M80 unmanned surface vehicle carrying a multibeam echo sounder system (MBES) in 2019 to obtain high-resolution microtopography information. We found that a net volume of 5.3 × 108 m3 of sediment was eroded from the study seabed within an area of 3.6 × 108 m2 during 1984–2017. This volumetric quantity is equivalent to 6.89 billion metric tons of sediment, assuming a bulk density of 1.3 t/m3 for the seabed sediment. The seabed erosion from 0 to −5 m, from −5 to −10 m, and below −10 m has showed a similar increasing trend over the past 33 years. These findings suggest that seabed erosion in this abandoned subdelta will very likely continue, and that other abandoned delta lobes in the world may have been experiencing similar seabed erosion due to the interruption of the sediment supply and sea level rise. It is not clear if the seabed erosion of abandoned delta lobes would have any effect on the stability of the coastal shoreline and continental shelf. Full article
(This article belongs to the Special Issue Estuarine and Coastal Morphodynamics and Dynamic Sedimentation)
Show Figures

Figure 1

Back to TopTop