Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (277)

Search Parameters:
Keywords = mortar wall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2388 KiB  
Article
Evaluating Lumbar Biomechanics for Work-Related Musculoskeletal Disorders at Varying Working Heights During Wall Construction Tasks
by Md. Sumon Rahman, Tatsuru Yazaki, Takanori Chihara and Jiro Sakamoto
Biomechanics 2025, 5(3), 58; https://doi.org/10.3390/biomechanics5030058 (registering DOI) - 3 Aug 2025
Abstract
Objectives: The aim of this study was to evaluate the impact of four working heights on lumbar biomechanics during wall construction tasks, focusing on work-related musculoskeletal disorders (WMSDs). Methods: Fifteen young male participants performed simulated mortar-spreading and bricklaying tasks while actual [...] Read more.
Objectives: The aim of this study was to evaluate the impact of four working heights on lumbar biomechanics during wall construction tasks, focusing on work-related musculoskeletal disorders (WMSDs). Methods: Fifteen young male participants performed simulated mortar-spreading and bricklaying tasks while actual body movements were recorded using Inertial Measurement Unit (IMU) sensors. Muscle activities of the lumbar erector spinae (ES), quadratus lumborum (QL), multifidus (MF), gluteus maximus (GM), and iliopsoas (IL) were estimated using a 3D musculoskeletal (MSK) model and measured via surface electromyography (sEMG). The analysis of variance (ANOVA) test was conducted to identify the significant differences in muscle activities across four working heights (i.e., foot, knee, waist, and shoulder). Results: Findings showed that working at foot-level height resulted in the highest muscle activity (7.6% to 40.6% increase), particularly in the ES and QL muscles, indicating an increased risk of WMSDs. The activities of the ES, MF, and GM muscles were statistically significant across both tasks and all working heights (p < 0.01). Conclusions: Both MSK and sEMG analyses indicated significantly lower muscle activities at knee and waist heights, suggesting these as the best working positions (47 cm to 107 cm) for minimizing the risk of WMSDs. Conversely, working at foot and shoulder heights was identified as a significant risk factor for WMSDs. Additionally, the similar trends observed between MSK simulations and sEMG data suggest that MSK modeling can effectively substitute for sEMG in future studies. These findings provide valuable insights into ergonomic work positioning to reduce WMSD risks among wall construction workers. Full article
(This article belongs to the Section Tissue and Vascular Biomechanics)
Show Figures

Figure 1

31 pages, 11619 KiB  
Article
Experimental Verification of Innovative, Low-Cost Method for Upgrading of Seismic Resistance of Masonry Infilled Rc Frames
by Jordan Bojadjiev, Roberta Apostolska, Golubka Necevska Cvetanovska, Damir Varevac and Julijana Bojadjieva
Appl. Sci. 2025, 15(15), 8520; https://doi.org/10.3390/app15158520 (registering DOI) - 31 Jul 2025
Viewed by 34
Abstract
For the past few decades, during each disastrous earthquake, severe damage and poor seismic performance of masonry infilled RC frames, including many newly designed ones, have been reported extensively. Inherent problems related to analysis and design methods for tight-fit infilled frame structures have [...] Read more.
For the past few decades, during each disastrous earthquake, severe damage and poor seismic performance of masonry infilled RC frames, including many newly designed ones, have been reported extensively. Inherent problems related to analysis and design methods for tight-fit infilled frame structures have not yet been solved and are recognized as being far from satisfactory in terms of completeness and reliability. The primary objective of this research was to propose and test an innovative method that can effectively mitigate undesirable interaction damage to masonry infilled RC frame structures. This proposed technical solution consists of connection of the infill panel to the bounding columns with steel reinforcement connections deployed in mortar layers and anchored to the columns. This is practical, cheap and easy to implement without any specific technology, which is especially important for developing countries. A three story, two bay RC building model with the proposed connection implemented on the infill walls was designed and tested on the shake table at IZIIS in Skopje, N. Macedonia. The test results and design guidelines/recommendations from the proposed research are also expected to benefit the infrastructural development in other countries threatened by earthquakes, preferably in the Balkan and the Mediterranean region. Full article
Show Figures

Figure 1

15 pages, 588 KiB  
Review
Archaeometry of Ancient Mortar-Based Materials in Roman Regio X and Neighboring Territories: A First Review
by Simone Dilaria
Minerals 2025, 15(7), 746; https://doi.org/10.3390/min15070746 - 16 Jul 2025
Viewed by 319
Abstract
This review synthesizes the corpus of archaeometric and analytical investigations focused on mortar-based materials, including wall paintings, plasters, and concrete, in the Roman Regio X and neighboring territories of northeastern Italy from the mid-1970s to the present. Organized into three principal categories—wall paintings [...] Read more.
This review synthesizes the corpus of archaeometric and analytical investigations focused on mortar-based materials, including wall paintings, plasters, and concrete, in the Roman Regio X and neighboring territories of northeastern Italy from the mid-1970s to the present. Organized into three principal categories—wall paintings and pigments, structural and foundational mortars, and flooring preparations—the analysis highlights the main methodological advances and progress in petrographic microscopy, mineralogical analysis, and mechanical testing of ancient mortars. Despite extensive case studies, the review identifies a critical need for systematic, statistically robust, and chronologically anchored datasets to fully reconstruct socio-economic and technological landscapes of this provincial region. This work offers a programmatic research agenda aimed at bridging current gaps and fostering integrated understandings of ancient construction technologies in northern Italy. The full forms of the abbreviations used throughout the text to describe the analytical equipment are provided at the end of the document in the “Abbreviations” section. Full article
Show Figures

Figure 1

22 pages, 2047 KiB  
Article
Structure Formation and Curing Stage of Arbolite–Concrete Composites Based on Iron-Sulfur Binders
by Baizak Isakulov, Abilkhair Issakulov and Agnieszka Dąbska
Infrastructures 2025, 10(7), 179; https://doi.org/10.3390/infrastructures10070179 - 10 Jul 2025
Viewed by 311
Abstract
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and [...] Read more.
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and impact, the mutual neutralization and detoxification methods of industrial waste toxic components through their mechanochemical treatment on the structures of ball mill LShM-750, were used to obtain iron-sulfur-containing binders. Pyrite cinders acted as oxidizing agents, and elementary technical sulfur had reduced properties. To determine the rate of creep strain growth, the load on prism samples was applied in the form of specially made spring units at stress levels of 0.15 Rbn, 0.44 Rbn, and 0.74 Rbn, where Rbn is the prism strength of iron-sulfur-containing arbolite concrete in compression. The strength and fracture formations of lightweight iron-sulfur concrete were studied using strain gauge apparatus and depth strain gauges glued on shredded reed fibers using adhesive, installed before concreting. It was revealed that the introduction of a sulfur additive within the range from 10 to 13% increases the compressive strength of iron-sulfur-containing concrete composites prepared with that of mortars at a water/solid ratio equal to 0.385 in wet and dry states. It is found that the deformations occurring under applied load growth proportionally to it, and deviation from this regularity was observed for lightweight iron-sulfur-containing concrete only at high compressive stresses. It was also proved that the destruction of iron-sulfur-containing arbolite occurs sequentially. First, the destruction of the mortar component is observed, and then the organic aggregate in the form of crushed reed fiber is destroyed. It was confirmed that arbolite concrete composite can be used as an effective wall material for civil engineering structure, especially in seismic regions of Kazakhstan. Full article
Show Figures

Figure 1

12 pages, 2798 KiB  
Article
Macro-Mesoscale Submodeling Approach for Analysis of Large Masonry Structures
by S. Pietruszczak and P. Przecherski
Buildings 2025, 15(14), 2382; https://doi.org/10.3390/buildings15142382 - 8 Jul 2025
Viewed by 236
Abstract
In this work, a sub-modeling technique is proposed for the analysis of large-scale masonry structures. The approach couples an anisotropic macroscale formulation, derived by incorporating the notion of a fabric tensor for an orthotropic material, with mesoscale analysis. The latter employs distinct inelastic [...] Read more.
In this work, a sub-modeling technique is proposed for the analysis of large-scale masonry structures. The approach couples an anisotropic macroscale formulation, derived by incorporating the notion of a fabric tensor for an orthotropic material, with mesoscale analysis. The latter employs distinct inelastic constitutive relations assigned to the brick material and brick-mortar interfaces, which enable the tracing of localized damage propagation. The mechanical properties at the macro-level are identified from the ‘virtual’ set of data generated through mesoscale analysis, ensuring consistency between the two approaches in representing the masonry material across different scales. In the numerical analysis, the macroscale approach is first applied over the entire domain to interpolate the kinematic boundary conditions in a local region of interest, which is then re-analyzed based on the mesoscale framework. The developed strategy is illustrated by simulating the shear response of a large-scale unreinforced masonry wall with multiple window openings. Full article
(This article belongs to the Special Issue Modeling and Testing the Performance of Masonry Structures)
Show Figures

Figure 1

27 pages, 21889 KiB  
Article
Modulus of Elasticity and Mechanical Properties Assessment of Historical Masonry Elements After Elevated Temperature: Experimental Study and Numerical Analysis
by Ahmet Fazıl Kara, Ferit Cakir and Metehan Calis
Buildings 2025, 15(13), 2324; https://doi.org/10.3390/buildings15132324 - 2 Jul 2025
Viewed by 407
Abstract
Historical masonry structures deteriorate over time, requiring restoration and strengthening. Hydraulic lime-based mortars (HLMs), due to their compatibility with historical materials, are commonly used for this purpose. This study examines the fire resistance of masonry walls constructed with HLMs. Masonry prisms with clay [...] Read more.
Historical masonry structures deteriorate over time, requiring restoration and strengthening. Hydraulic lime-based mortars (HLMs), due to their compatibility with historical materials, are commonly used for this purpose. This study examines the fire resistance of masonry walls constructed with HLMs. Masonry prisms with clay bricks were prepared using HLMs in accordance with material testing standards. Specimens were subjected to high temperatures ranging from 200 °C to 800 °C, followed by flexural–compression tests for mortar and compression tests for masonry prisms. A total of 20 masonry prism specimens, 15 brick specimens, and 15 mortar specimens were tested, including reference specimens at room temperature. Experimental results indicate that masonry prisms, clay bricks, and HLMs progressively lose their mechanical properties as temperature increases. The elastic modulus of masonry prisms was evaluated according to relevant standards, and Finite Element Analysis (FEA) was conducted to validate temperature-dependent material properties. The stress–strain response of M15 HLM masonry prisms was determined, addressing the absence of such data in EN 1996-1-2. Additionally, compression test results were compared with digital image correlation (DIC) analyses to enhance measurement accuracy. This study provides critical insights into the thermal performance of masonry walls with HLMs, contributing to the development of fire-resistant restoration materials. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 2704 KiB  
Article
Shear Capacity of Masonry Walls Externally Strengthened via Reinforced Khorasan Jacketing
by Cagri Mollamahmutoglu, Mehdi Ozturk and Mehmet Ozan Yilmaz
Buildings 2025, 15(13), 2177; https://doi.org/10.3390/buildings15132177 - 22 Jun 2025
Viewed by 339
Abstract
This study investigates the in-plane shear behavior of solid brick masonry walls, both unreinforced and retrofitted using Reinforced Khorasan Jacketing (RHJ), a traditional pozzolanic mortar technique rooted in Iranian and Ottoman architecture. Six one-block-thick English bond masonry walls were tested in three configurations: [...] Read more.
This study investigates the in-plane shear behavior of solid brick masonry walls, both unreinforced and retrofitted using Reinforced Khorasan Jacketing (RHJ), a traditional pozzolanic mortar technique rooted in Iranian and Ottoman architecture. Six one-block-thick English bond masonry walls were tested in three configurations: unreinforced with Horasan plaster (Group I), reinforced with steel mesh aligned to wall edges (Group II), and reinforced with mesh aligned diagonally (Group III). All the walls were plastered with 3.5 cm of Horasan mortar and tested after 18 months using diagonal compression, with load-displacement data recorded. A detailed 3D micro-modeling approach was employed in finite element simulations, with bricks and mortar modeled separately. The Horasan mortar was represented using an elastoplastic Mohr-Coulomb model with a custom softening law (parabolic-to-exponential), calibrated via inverse parameter fitting using the Nelder-Mead algorithm. The numerical predictions closely matched the experimental data. Reinforcement improved the shear strength significantly: Group II showed a 1.8 times increase, and Group III up to 2.7 times. Ductility, measured as post-peak deformation capacity, increased by factors of two (parallel) and three (diagonal). These enhancements transformed the brittle failure mode into a more ductile, energy-absorbing behavior. RHJ is shown to be a compatible, effective retrofit solution for historic masonry structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 3661 KiB  
Article
Sustainable Development and Assessment of Low-Strength/High-Toughness Recycled Plastic Rebars for Structural Elements Under Light Loads
by Aaroon Joshua Das and Majid Ali
Sustainability 2025, 17(11), 4997; https://doi.org/10.3390/su17114997 - 29 May 2025
Cited by 1 | Viewed by 996
Abstract
The construction sector faces growing pressure to adopt sustainable alternatives amid the global plastic-waste crisis. This study presents a novel use of mechanically recycled high-density polyethylene (HDPE) and polypropylene (PP) to manufacture full-scale plastic rebars for mortar-free, light-load construction applications. A total of [...] Read more.
The construction sector faces growing pressure to adopt sustainable alternatives amid the global plastic-waste crisis. This study presents a novel use of mechanically recycled high-density polyethylene (HDPE) and polypropylene (PP) to manufacture full-scale plastic rebars for mortar-free, light-load construction applications. A total of 48 samples, plain and ribbed, across three diameters (12 mm, 19 mm, and 25 mm) were fabricated and tested. Due to the absence of standardized protocols for recycled plastic rebars, tensile testing was conducted in reference to ASTM A615. Characterization techniques such as X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) confirmed the material’s structural features and polymer integrity. XRD confirmed the crystalline phases of HDPE and PP, while SEM revealed ductile fracture in HDPE and brittle failure in PP. The 25 mm ribbed PP rebars demonstrated superior performance, achieving a maximum load capacity of 12.2 ± 0.6 kN, a toughness index of 19.3 ± 1.0, and energy absorption of 101.6 ± 5.0 N-m × 10. These results affirm their suitability for lightweight structural components such as boundary walls, partition panels, and mortar-free interlocking systems. Unlike prior studies that confined recycled plastics to filler roles in composites, this work validates their direct application as full-section, load-bearing members. Additionally, a polynomial-based empirical model was formulated to predict the tensile behavior of the recycled rebars. The findings underscore the potential of mechanical extrusion as a low-emission, scalable solution to convert plastic waste into durable construction materials that support circular economic principles. Full article
Show Figures

Figure 1

39 pages, 11665 KiB  
Review
Sustainable Masonry Retrofitting and Upgrading Techniques: A Review
by Arnas Majumder, Flavio Stochino, Monica Valdes, Giovanna Concu, Marco Pepe and Enzo Martinelli
Fibers 2025, 13(6), 68; https://doi.org/10.3390/fib13060068 - 23 May 2025
Viewed by 1595
Abstract
This study presents a comprehensive review of various advanced methodologies that have been used to enhance the structural and thermal performance of masonry walls through innovative and sustainable retrofitting/upgrading techniques. Focusing on three primary approaches—mechanical/structural retrofitting, thermal retrofitting, and integrated (structural and thermal) [...] Read more.
This study presents a comprehensive review of various advanced methodologies that have been used to enhance the structural and thermal performance of masonry walls through innovative and sustainable retrofitting/upgrading techniques. Focusing on three primary approaches—mechanical/structural retrofitting, thermal retrofitting, and integrated (structural and thermal) retrofitting, this paper critically examines various masonry-strengthening strategies. Retrofitting techniques are categorized by material use and objectives. Fiber-based solutions include insulation materials, fiber composite mortar for strength, FRP for high-strength reinforcement, and TRM for durability. According to the relevant objectives, retrofitting can enhance structural stability (FRP, TRM), improve thermal insulation, or combine both for integrated performance. Particular emphasis is placed on the effectiveness of TRM systems, with a comparative analysis of man-made (glass, steel textile) and natural fiber-based TRM solutions. Regarding integrating natural fibers into TRM systems, this study highlights their potential as eco-friendly alternatives that reduce environmental impact while maintaining or improving structural integrity. Furthermore, it highlights and examines techniques for testing masonry walls. In this context, this review highlights the applicability of natural fiber as a sustainable building material in various retrofitting/upgrading solutions. Full article
Show Figures

Figure 1

16 pages, 8970 KiB  
Article
Analysis of the Thermal Properties of Soft Silica Limestone Walls of Traditional Buildings in Central Poland
by Aleksandra Gorączko, Paula Szczepaniak and Marcin Gorączko
Materials 2025, 18(10), 2399; https://doi.org/10.3390/ma18102399 - 21 May 2025
Viewed by 500
Abstract
The challenge of thermally upgrading traditional stone masonry buildings is addressed through the analysis of a representative example typical of regional rural architecture in central Poland, constructed using soft silica limestone and clay mortar. These buildings, which form an important part of the [...] Read more.
The challenge of thermally upgrading traditional stone masonry buildings is addressed through the analysis of a representative example typical of regional rural architecture in central Poland, constructed using soft silica limestone and clay mortar. These buildings, which form an important part of the local cultural heritage, are increasingly becoming the subject of interdisciplinary research and conservation initiatives. This study presents a detailed characterization of the materials and architectural features specific to this building typology. Thermal transmittance calculations were performed and analyzed, with the use of THERM 7.6.1.0 software enabling precise modeling of the wall’s heterogeneous structure. The physical and thermal properties of natural materials—particularly soft silica limestone and clay—were taken into account. The analysis included evaluation of the heat transfer coefficient, temperature distribution, and heat flux density for a reference wall model, as well as for variants with both internal and external insulation layers. The study explores thermal comfort and energy performance within the broader context of preserving and reusing historic rural buildings. Furthermore, the findings are discussed in relation to current European energy efficiency regulations and heritage protection frameworks. The scientific value of this work lies in its context-specific, material-sensitive methodology and in providing practical insight into balancing energy retrofitting with architectural conservation. Full article
(This article belongs to the Special Issue Testing of Materials and Elements in Civil Engineering (4th Edition))
Show Figures

Figure 1

35 pages, 16032 KiB  
Article
Seismic Behavior and Vulnerability of Masonry Dwellings in Eastern Türkiye: A Comprehensive Analysis
by Resat Oyguc
Appl. Sci. 2025, 15(10), 5490; https://doi.org/10.3390/app15105490 - 14 May 2025
Viewed by 581
Abstract
From 1940 to the present, Turkish seismic standards for masonry building have gradually evolved, culminating in the performance-based TBEC (2018). Unregulated tenant expansions and informal construction, especially in rural areas, continue to be a significant cause of seismic risk despite developments in ring [...] Read more.
From 1940 to the present, Turkish seismic standards for masonry building have gradually evolved, culminating in the performance-based TBEC (2018). Unregulated tenant expansions and informal construction, especially in rural areas, continue to be a significant cause of seismic risk despite developments in ring beam design, mortar categorization, and capacity-based criteria. This paper critically examines the structural flaws caused by such expansions in partly built unreinforced masonry homes, focusing in particular on areas of moderate-to-high seismicity. The research shows that occupant changes often ignore necessary seismic protections by means of post-earthquake field observations, comparative code analysis, and recorded failure patterns. Among them are wall slenderness ratios, ring beam continuity, and masonry unit and mortar quality checks. Common ensuing failures include corner disintegration, roof–wall separation, and diagonal shear cracking. Relying on qualitative analysis of reoccurring damage mechanisms seen during field investigations, the results come from post-disaster evaluations of 2568 masonry dwellings after the 2023 Kahramanmaraş earthquakes. This paper emphasizes a continual gap between seismic rules and informal building practice and contends that without official acknowledgment of owner-built changes, code efficacy stays constrained. These results are also of worldwide importance for earthquake-prone areas struggling to control informal or self-built buildings. Full article
(This article belongs to the Special Issue Seismic Response and Safety Assessment of Building Structures)
Show Figures

Figure 1

15 pages, 5803 KiB  
Article
Use of Recycled Aggregates in Lime Mortars for Conservation of Historical Buildings
by Menard Kilumile, Marilda Barra, Fatma Mohamed and Diego Aponte
Constr. Mater. 2025, 5(2), 28; https://doi.org/10.3390/constrmater5020028 - 24 Apr 2025
Viewed by 991
Abstract
The use of recycled burnt clay brick sand (RBS) and recycled concrete sand (RCS) in historical lime-based repair mortars can reduce the environmental impact caused by construction and demolition waste disposal. This study examined the use of fine recycled concrete and recycled brick [...] Read more.
The use of recycled burnt clay brick sand (RBS) and recycled concrete sand (RCS) in historical lime-based repair mortars can reduce the environmental impact caused by construction and demolition waste disposal. This study examined the use of fine recycled concrete and recycled brick aggregates for the production of historical repair mortars using hydraulic lime binder and the influence of the resulting mortars on the performance of historical buildings in reduced scale walls (stacks). Natural-river-sand mortar (NSM) was used as control. Results showed that the recycled-burnt-brick-sand mortar (RBSM) performed better in terms of strength compared to the recycled-concrete sand (RCSM) and the NSM mortars. At the age of 7 and 28 days, the flexural strength of the RBSM and the RCSM was 131% and 44%, respectively, and 300% and 68% above that of the control mortar. The 45-day flexural strength of the NSM and RCSM was similar whilst the RBSM mortar’s strength was 177% higher. The compressive strength followed similar trend. On the other hand, the strength and modulus of elasticity of the stacks were found to be largely influenced by the strength of the brick units. Full article
Show Figures

Figure 1

29 pages, 29974 KiB  
Article
Restoration Study of a Masonry Monumental Building in Thrapsano, Greece
by Barbara Charalambidi, Maria E. Stavroulaki and Georgios E. Stavroulakis
Buildings 2025, 15(8), 1266; https://doi.org/10.3390/buildings15081266 - 12 Apr 2025
Viewed by 491
Abstract
This study investigates structural integrity and proposes retrofitting solutions for the historical two-storey school building in Thrapsano, Crete, severely impacted by the September 2021 earthquake. An extensive methodology was adopted, incorporating field surveys, material characterization, finite element modeling, and experimental analysis. The assessment [...] Read more.
This study investigates structural integrity and proposes retrofitting solutions for the historical two-storey school building in Thrapsano, Crete, severely impacted by the September 2021 earthquake. An extensive methodology was adopted, incorporating field surveys, material characterization, finite element modeling, and experimental analysis. The assessment is focused on identifying structural damage, such as cracking and delamination in masonry walls, and evaluating the dynamic and static performance of the load-bearing system under seismic loads. Key interventions include grouting for masonry reinforcement, replacement of mortar with compatible materials, stitching of cracks, and the addition of reinforced concrete and metallic tie elements to enhance diaphragm action. Advanced numerical simulations, validated through experimental data, were employed to model the pre- and post-retrofit behavior of the structure. The proposed retrofitting measures align with Eurocodes 6 and 8, and the Greek code for masonry structures (KADET), aiming to restore the structural stability and improve seismic resilience while respecting the building’s historical significance. The results from the finite element analysis confirm the effectiveness of the interventions in reducing tensile stresses and improving load redistribution, ensuring compliance with modern safety standards. This case study offers a framework for the seismic retrofitting of heritage structures in a similar context. Full article
(This article belongs to the Special Issue Challenges in Seismic Analysis and Assessment of Buildings)
Show Figures

Figure 1

27 pages, 8076 KiB  
Article
Micro-Modeling of Polymer–Masonry Wall Composites Under In-Plane Loading
by Houria Hernoune, Younes Ouldkhaoua, Benchaa Benabed, Rajab Abousnina, Vanissorn Vimonsatit, Ali Mohammed and Allan Manalo
J. Compos. Sci. 2025, 9(4), 179; https://doi.org/10.3390/jcs9040179 - 7 Apr 2025
Viewed by 746
Abstract
Fiber-reinforced polymers (FRPs) are effective for strengthening masonry walls. Debonding at the polymer–masonry interface is a major concern, requiring further investigation into interface behavior. This study utilizes detailed micro-modeling finite element (FE) analysis to predict failure mechanisms and analyze the behavior of brick [...] Read more.
Fiber-reinforced polymers (FRPs) are effective for strengthening masonry walls. Debonding at the polymer–masonry interface is a major concern, requiring further investigation into interface behavior. This study utilizes detailed micro-modeling finite element (FE) analysis to predict failure mechanisms and analyze the behavior of brick masonry walls strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) under in-plane loading. The research investigates three CFRP strengthening configurations (X, I, and H). The FE model incorporates the nonlinear behavior of brick masonry components using the Concrete Damage Plasticity (CDP) model and uses a cohesive interface approach to model unit–mortar interfaces and the bond joints between masonry and CFRPs. The results demonstrate that diagonal CFRP reinforcement enhances the ductility and capacity of masonry wall systems. The FE model accurately captures the crack propagation, fracture mechanisms, and shear strength of both unreinforced and reinforced walls. The study confirms that the model can reliably predict the structural behavior of these composite systems. Furthermore, the study compares predicted shear strengths with established design equations, highlighting the ACI 440.7R-10 and CNR-DT 200/2013 models as providing the most accurate predictions when compared to experimental results. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

27 pages, 2338 KiB  
Review
Strengthening of Masonry and Concrete Members with Textile-Reinforced Alkali-Activated Mortars: A Review on the Mechanical Performance
by Paraskevi D. Askouni, Panagiotis Kapsalis, Catherine G. Papanicolaou and Thanasis C. Triantafillou
Materials 2025, 18(7), 1517; https://doi.org/10.3390/ma18071517 - 28 Mar 2025
Viewed by 508
Abstract
Textile-reinforced alkali-activated mortar (TRAAM) is a composite material that is characterized by a strain- or deflection-hardening response under tension or flexure, respectively, as well as by a good bond with concrete and masonry substrates. Owing to comparable or even superior mechanical performance compared [...] Read more.
Textile-reinforced alkali-activated mortar (TRAAM) is a composite material that is characterized by a strain- or deflection-hardening response under tension or flexure, respectively, as well as by a good bond with concrete and masonry substrates. Owing to comparable or even superior mechanical performance compared to “conventional” cement- or lime-based textile-reinforced mortar (TRM) systems and its potentially eco-friendly energy and environmental performance, TRAAM has been incorporated to retrofitting schemes. The current article reviews the studies that investigate TRAAM as a strengthening overlay for masonry and concrete members. This article focuses on the mechanical performance of the strengthened members, which, where possible, is also compared with that of members strengthened with conventional TRM systems. It is concluded that TRAAM can enhance the flexural and shear capacity of masonry and concrete members, while it can also upgrade the compression strength and seismic response of concrete members. In addition, it is concluded that the effectiveness of TRAAM can be comparable with that of “conventional” TRM systems. The combination of TRAAM with thermal insulation boards has also been proposed for structural and energy upgrading of masonry walls. Furthermore, TRAAM can be a promising solution for increasing the fire resistance of strengthened masonry members. However, research on the long-term performance of TRAAM, including durability, creep, and shrinkage, is still limited. Finally, the lack of established standards for TRM retrofitting is more evident for TRAAM applications. Full article
Show Figures

Figure 1

Back to TopTop