Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,978)

Search Parameters:
Keywords = morphological plasticity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 250 KB  
Proceeding Paper
Landraces of Barley Exhibit Superior Drought Resistance: Insights from Agro-Morphological and Physiological Analysis
by Abhisek Shrestha, Bharti Thapa, Santosh Marahatta, Krishna Hari Dhakal, Dhurva Prasad Gauchan and Tirth Narayan Yadav
Biol. Life Sci. Forum 2025, 54(1), 11; https://doi.org/10.3390/blsf2025054011 - 28 Jan 2026
Abstract
Barley is a marginalized crop subjected to several types of abiotic stress but need to intensify for future climate smart crop. This study investigated the drought resistance of barley landraces focusing on agro-morphological and physiological traits under controlled drought conditions. The experiment employed [...] Read more.
Barley is a marginalized crop subjected to several types of abiotic stress but need to intensify for future climate smart crop. This study investigated the drought resistance of barley landraces focusing on agro-morphological and physiological traits under controlled drought conditions. The experiment employed a two-factorial completely randomized design (CRD) with 14 barley landraces (of which 8 completed the maturity period examination) subjected to drought stress at three growth stages (CRI, tillering, and grain filling). Key parameters such as SPAD values (chlorophyll content), tiller number, and yield attributes were measured and analyzed using drought tolerance indices. Fourteen genotypes were initially tested, of which six failed to reach maturity; eight genotypes completed the full growth cycle and were used for yield and stress index analysis. Results revealed significant genotypic variation in drought response. Eight landraces exhibited higher SPAD values under drought, indicating better photosynthetic retention. Notably, AFU202501 demonstrated high yield stability (Stress Tolerance Index, STI = 1.782) under both stress and non-stress conditions, while Saptari Local showed exceptional drought avoidance (low Stress Susceptibility Index, SSI = −0.068) through early maturity and minimal yield reduction. In contrast, genotypes like Muktinath and NGRC 6010 were highly sensitive to drought, with significant yield losses (49–87%). Physiological traits such as chlorophyll retention and phenological plasticity (e.g., accelerated maturity under stress) were critical for drought adaptation. The findings highlight the potential of landraces like AFU202501 and Saptari Local as genetic resources for breeding climate-resilient barley varieties. The study underscores the importance of integrating traditional landraces into modern breeding programs to enhance food security in drought-prone regions. Full article
(This article belongs to the Proceedings of The 3rd International Online Conference on Agriculture)
15 pages, 1536 KB  
Article
The Influence of Wood Flour and Recycled High-Density Polyethylene on the Mechanical Performance of Wood–Plastic Composites (WPCs)
by Abera Endesha, Getahun Tefera, Glen Bright and Sarp Adali
J. Compos. Sci. 2026, 10(2), 66; https://doi.org/10.3390/jcs10020066 - 28 Jan 2026
Abstract
Plastic waste poses a growing environmental challenge due to the extensive use of plastics in packaging applications. Recycling plastics offers environmental and economic advantages. Wood flour-derived from cypress wood, often generated as a by-product and discarded in landfills, contributes to environmental In this [...] Read more.
Plastic waste poses a growing environmental challenge due to the extensive use of plastics in packaging applications. Recycling plastics offers environmental and economic advantages. Wood flour-derived from cypress wood, often generated as a by-product and discarded in landfills, contributes to environmental In this study, wood–plastic composites were fabricated from recycled high-density polyethylene, wood flour, and high-density polyethylene with maleic anhydride-grafted polyethylene as a coupling agent. Five composite formulations were produced by varying the recycled high-density polyethylene and wood flour volume ratios and processed through injection molding. The mechanical properties, including flexural, tensile, and impact strengths, along with water absorption behavior and microstructural characteristics, were evaluated in accordance with relevant standards using a universal testing machine, Charpy impact test, and scanning electron microscopy. The results revealed that increasing the recycled high-density polyethylene content from 20% to 35% significantly improved the composite performance, reducing water absorption by 9.86% and enhancing flexural, tensile, and impact strengths by 43.33%, 36%, and 35.03%, respectively. Morphological analysis confirmed improved fiber–matrix interfacial adhesion with higher recycled plastic content. These findings demonstrate the potential of recycled high-density polyethylene wood composites as sustainable materials for structural applications, combining environmental benefits with enhanced mechanical performance. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

27 pages, 17514 KB  
Article
Respirometry and X-Ray Microtomography for a Comprehensive Assessment of Textile Biodegradation in Soil
by Ainhoa Sánchez-Martínez, Marilés Bonet-Aracil, Ignacio Montava and Jaime Gisbert-Payá
Textiles 2026, 6(1), 14; https://doi.org/10.3390/textiles6010014 - 26 Jan 2026
Viewed by 85
Abstract
The textile industry generates significant volumes of waste, making the development of reliable methods to evaluate biodegradability a pressing need. While standardised protocols exist for plastics, no specific methodologies have been established for textiles, and the quantification of non-degraded residues is commonly based [...] Read more.
The textile industry generates significant volumes of waste, making the development of reliable methods to evaluate biodegradability a pressing need. While standardised protocols exist for plastics, no specific methodologies have been established for textiles, and the quantification of non-degraded residues is commonly based on mass loss: a measurement that is prone to recovery errors. This study investigated the biodegradation of cotton, polyester, and cotton/polyester blend fabrics in soil under thermophilic conditions using a combined methodological approach. Carbon mineralisation was quantified through a respirometric assay that was specifically adapted for textile substrates, while residual solid fractions were assessed in situ by X-ray microtomography (micro-CT), thus avoiding artefacts associated with sample recovery. Complementary analyses were performed using SEM and FTIR to characterise morphological and chemical changes. Results showed substantial biodegradation of cotton, negligible degradation of polyester, and intermediate behaviour for the cotton/polyester blend. Micro-CT enabled the visualisation of fibre fragmentation and the quantification of the residual. The integration of respirometric, imaging, and spectroscopic techniques provided a comprehensive assessment of textile biodegradability. This study highlights the potential of micro-CT as a non-destructive tool to improve the accuracy and robustness of textile biodegradability assessment by enabling direct quantification of the residual solid fraction that can support future LCA studies and the development of standardised protocols for textile biodegradability. Full article
Show Figures

Graphical abstract

13 pages, 3047 KB  
Article
ESRP1-Associated CD44 Alternative Splicing Stratifies Epithelial–Mesenchymal Identity States in a Non-Transformed Human Cell System
by Karolina Bajdak-Rusinek, Natalia Diak, Anna Trybus, Agnieszka Fus-Kujawa, Marcelina Salamon, Jan Olszewski, Weronika Wójtowicz and Patrycja Rozwadowska-Kunecka
Curr. Issues Mol. Biol. 2026, 48(2), 130; https://doi.org/10.3390/cimb48020130 - 24 Jan 2026
Viewed by 100
Abstract
Epithelial–mesenchymal plasticity encompasses a spectrum of epithelial and mesenchymal identity states that enable cells to adapt to changing biological contexts. While CD44 isoform usage and epithelial splicing regulators ESRP1/2 are well-characterized in cancer-associated epithelial–mesenchymal transition (EMT), their regulation across physiological, non-transformed identity states [...] Read more.
Epithelial–mesenchymal plasticity encompasses a spectrum of epithelial and mesenchymal identity states that enable cells to adapt to changing biological contexts. While CD44 isoform usage and epithelial splicing regulators ESRP1/2 are well-characterized in cancer-associated epithelial–mesenchymal transition (EMT), their regulation across physiological, non-transformed identity states remains less well defined. Here, we employed a non-malignant human cellular system comprising primary dermal fibroblasts, induced pluripotent stem (iPS) cells, and iPS-derived mesenchymal stem cells (iPS-MSCs) to define discrete epithelial, intermediate epithelial/mesenchymal, and mesenchymal identity states positioned along an epithelial–mesenchymal identity axis. Morphological assessment, lineage marker profiling, and RT-qPCR analyses revealed reproducible population-level stratification of these states. CD44 expression and alternative splicing followed this hierarchy, with CD44s predominating in fibroblasts, broad variant exon inclusion in iPS cells, and intermediate patterns in iPS-MSCs. ESRP1 expression mirrored CD44 splicing architecture, and ESRP1 silencing in iPS cells induced a shift toward CD44s, confirming its functional contribution to epithelial-associated CD44 splicing. In contrast, Notch-related transcriptional readouts displayed distinct, context-dependent profiles across the examined identity states. Together, this study establishes a tractable non-transformed human model that captures selected molecular features associated with epithelial–mesenchymal plasticity beyond malignant contexts. Full article
(This article belongs to the Special Issue Molecular Mechanisms Driving Cancer Progression and Metastasis)
Show Figures

Figure 1

18 pages, 471 KB  
Commentary
Modern Coral Taxonomy Requires Reproducible Data Alongside Field Observations—Comments on Veron et al. (2025)
by Peter F. Cowman, Tom C. L. Bridge, Tracy D. Ainsworth, Francesca Benzoni, Victor Bonito, Ann Budd, Patrick Cabaitan, Emma F. Camp, Chaolun Allen Chen, Sean R. Connolly, Augustine J. Crosbie, Joana Figueiredo, Douglas Fenner, Zac Forsman, Hironobu Fukami, Catherine E. I. Head, Bert W. Hoeksema, Danwei Huang, Marcelo V. Kitahara, Nancy Knowlton, Chao-Yang Kuo, Mei-Fang Lin, Joshua S. Madin, Hanaka Mera, Keiichi Nomura, Nicolas Oury, Andrea M. Quattrini, Kate M. Quigley, Sage H. Rassmussen, Kaveh Samimi-Namin, Frederic Sinniger, David J. Suggett and Andrew H. Bairdadd Show full author list remove Hide full author list
Diversity 2026, 18(2), 60; https://doi.org/10.3390/d18020060 - 23 Jan 2026
Viewed by 213
Abstract
The recent review by Veron et al. (2025) posits that quantitative genomic evidence used to understand coral evolution should be secondary to species hypotheses derived from expert opinion based on field experience. The authors argue that morphological “biological entities” should take [...] Read more.
The recent review by Veron et al. (2025) posits that quantitative genomic evidence used to understand coral evolution should be secondary to species hypotheses derived from expert opinion based on field experience. The authors argue that morphological “biological entities” should take precedence over molecular evidence when conflicts arise. This perspective required the rejection of extensive, independent molecular datasets that have progressively converged on a robust evolutionary framework for reef corals. Here, we reaffirm how prioritising subjective visual assessments over quantitative genetic and genomic data is methodologically unsound and scientifically regressive. We reject the framing of this perspective as “morphology versus molecules”. Rather, it is a fundamental divergence between two opposing philosophies: a static system anchored in non-reproducible expert judgement, and an integrative framework where genetic data provide the necessary independent test of morphological hypotheses. We show how a reliance on “field entities” obscures true morphological patterns by failing to distinguish between phenotypic plasticity, convergence, and evolutionary divergence. Effective taxonomy requires species hypotheses to be testable, and to stand or fall on the strength of reproducible evidence. Such a framework does not replace morphology; it validates it by providing an explicit, testable basis for evaluating morphological hypotheses. The integration of testable, reproducible molecular analysis with other lines of evidence including morphology is the benchmark of modern taxonomy across all Kingdoms of Life. We address the logical inconsistencies in the general arguments put forward by Veron et al. (2025) and refute their specific rejection of recent Acropora species-level revision with reproducible data. Full article
(This article belongs to the Section Marine Diversity)
28 pages, 9454 KB  
Article
Integrative Transcriptomic and Network Analysis of Hemocyte Volume Plasticity and Redox Regulation Under Osmotic Stress in Penaeus monodon
by Sheng Huang, Falin Zhou, Qibin Yang, Song Jiang, Jilin Chen, Jie Xiong, Erchao Li and Yundong Li
Antioxidants 2026, 15(1), 147; https://doi.org/10.3390/antiox15010147 - 22 Jan 2026
Viewed by 92
Abstract
Osmotic stress affects ion transport and cell hydration, potentially disrupting redox homeostasis through altered proteostasis and mitochondrial metabolism. However, how immune hemocytes coordinate volume regulation with these stress-linked processes, particularly oxidative stress and antioxidant responses, remains unclear in crustaceans. This study integrated quantitative [...] Read more.
Osmotic stress affects ion transport and cell hydration, potentially disrupting redox homeostasis through altered proteostasis and mitochondrial metabolism. However, how immune hemocytes coordinate volume regulation with these stress-linked processes, particularly oxidative stress and antioxidant responses, remains unclear in crustaceans. This study integrated quantitative cytology, RNA sequencing, and network analysis to profile hemocyte volume plasticity in the euryhaline shrimp Penaeus monodon across a salinity gradient. Hemocytes were incubated for 24 h in hypoosmotic, isosmotic, and hyperosmotic media, with significant volume shifts observed while maintaining membrane integrity and morphology. The permeability of solutes (urea and sorbitol) suggested that volume adjustment is coupled with solute transport. Transcriptomic analyses identified key salinity-responsive pathways, including oxidative phosphorylation, MAPK signaling, ribosome biogenesis, and antioxidant defense mechanisms, underscoring the activation of redox-regulatory systems under osmotic stress. Weighted gene co-expression network analysis highlighted ribosomal proteins as central hubs in a salinity-responsive module, with qRT-PCR confirming the co-regulation of these hubs alongside representative osmoregulatory and antioxidant genes (AQP4, Na+/K+-ATPase, HSP70, CHOP, and antioxidant enzymes). These findings reveal how hemocyte volume dynamics are coupled to redox regulation, providing a mechanistic framework for understanding osmotic stress–redox coupling in crustacean immune cells. Full article
Show Figures

Figure 1

23 pages, 1967 KB  
Review
Retinal Astrocytes: Key Coordinators of Developmental Angiogenesis and Neurovascular Homeostasis in Health and Disease
by Yi-Yang Zhang, Qi-Fan Sun, Wen Bai and Jin Yao
Biology 2026, 15(2), 201; https://doi.org/10.3390/biology15020201 - 22 Jan 2026
Viewed by 77
Abstract
Retinal astrocytes reside mainly in the nerve fiber layer and are central to shaping retinal vessels and maintaining neurovascular balance. Derived from the optic nerve head, they spread across the inner retina to form a meshwork that both supports and instructs the emerging [...] Read more.
Retinal astrocytes reside mainly in the nerve fiber layer and are central to shaping retinal vessels and maintaining neurovascular balance. Derived from the optic nerve head, they spread across the inner retina to form a meshwork that both supports and instructs the emerging superficial vascular plexus. Immature astrocytes supply vascular endothelial growth factor-A(VEGF-A) to guide endothelial sprouting, while signals from growing vessels promote astrocyte maturation and strengthen the blood–retinal barrier. In disorders such as diabetic retinopathy and neovascular age-related macular degeneration, these cells show marked plasticity. Reactive astrogliosis can sustain VEGF and inflammation, favoring fragile, leaky neovessels, whereas alternative astrocyte states help reinforce barrier function and release anti-angiogenic factors. Located at the core of the neurovascular unit, astrocytes communicate continuously with endothelial cells, pericytes and neurons. This review integrates data from single-cell profiling and advanced imaging to outline astrocyte development, morphology and key signaling pathways (VEGF, PDGF, Wnt/Norrin, Eph/ephrin), and considers how tuning astrocyte polarization might be exploited to preserve retinal vascular integrity. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

34 pages, 7481 KB  
Review
Recent Advances in Thermoplastic Starch (TPS) and Biodegradable Polyester Blends: A Review of Compatibilization Strategies and Bioactive Functionalities
by Elizabeth Moreno-Bohorquez, Mary Judith Arias-Tapia and Andrés F. Jaramillo
Polymers 2026, 18(2), 289; https://doi.org/10.3390/polym18020289 - 21 Jan 2026
Viewed by 190
Abstract
Thermoplastic starch (TPS) blended with biodegradable polyesters such as polyhydroxybutyrate (PHB), polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL) represents a promising route toward sustainable alternatives to petroleum-based plastics. TPS offers advantages related to abundance, low cost, and biodegradability, while polyesters provide [...] Read more.
Thermoplastic starch (TPS) blended with biodegradable polyesters such as polyhydroxybutyrate (PHB), polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL) represents a promising route toward sustainable alternatives to petroleum-based plastics. TPS offers advantages related to abundance, low cost, and biodegradability, while polyesters provide improved mechanical strength, thermal stability, and barrier performance. However, the intrinsic incompatibility between hydrophilic TPS and hydrophobic polyesters typically leads to immiscible systems with poor interfacial adhesion and limited performance. This review critically examines recent advances in the development of TPS/polyester blends, with emphasis on compatibilization strategies based on chemical modification, natural and synthetic compatibilizers, bio-based additives, and reinforcing agents. Particular attention is given to the role of organic acids, essential oils, phenolic compounds, nanofillers, and natural reinforcements in controlling morphology, crystallinity, interfacial interactions, and thermal–mechanical behavior. In addition, the contribution of bioactive additives to antimicrobial and antioxidant functionality is discussed as an emerging multifunctional feature of some TPS/polyester systems. Finally, current limitations related to long-term stability, scalability, and life cycle assessment are highlighted, identifying key challenges and future research directions for the development of advanced biodegradable materials with tailored properties. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

34 pages, 2386 KB  
Article
Seasonal and Cross-Shore Assessment of Large and Small Microplastics Collected on the Ferrara Coast (Italy)
by Joana Buoninsegni, Giorgio Anfuso, Umberto Tessari, Valentina Giro, Elena Marrocchino and Carmela Vaccaro
Microplastics 2026, 5(1), 15; https://doi.org/10.3390/microplastics5010015 - 19 Jan 2026
Viewed by 249
Abstract
Microplastic (MP) contamination along coastlines is a globally recognized environmental concern. This paper investigates the seasonal and cross-shore distribution of large and small microplastics (LMPs and SMPs) at four sites along the Ferrara coast in the northern Adriatic Sea (Italy). A combination of [...] Read more.
Microplastic (MP) contamination along coastlines is a globally recognized environmental concern. This paper investigates the seasonal and cross-shore distribution of large and small microplastics (LMPs and SMPs) at four sites along the Ferrara coast in the northern Adriatic Sea (Italy). A combination of sampling and analytical approaches was employed to characterize the typology, morphology, and size of MPs. A subsample of LMPs was analyzed by Raman spectroscopy to determine polymers’ composition. The mean abundances recorded were 5.66 ± 13.15 LMPs/m2 and 2402.19 ± 1169.85 SMPs/m2. Among the LMPs, pellets and fragments, essentially cream and white in color, were dominant. The samples were predominantly composed of polyethylene, polypropylene, and polyethylene terephthalate. SMPs primarily consisted of black fibers. LMPs and SMPs displayed their lowest abundances in winter and cross-shore patterns indicated preferential accumulation at dune foot and crest. Since the study sites are located downstream of the Po and Reno river mouths, urban and riverine discharges, as well as emissions from plastic-processing industries, are likely major contributors to the observed MPs. Full article
Show Figures

Figure 1

26 pages, 5059 KB  
Article
Morphological and Phenological Diversity of Pod Corn (Zea mays Var. Tunicata) from Mexico and Its Functional Traits Under Contrasting Environments
by Teresa Romero-Cortes, Raymundo Lucio Vázquez Mejía, José Esteban Aparicio-Burgos, Martin Peralta-Gil, María Magdalena Armendáriz-Ontiveros, Mario A. Morales-Ovando and Jaime Alioscha Cuervo-Parra
Plants 2026, 15(2), 280; https://doi.org/10.3390/plants15020280 - 16 Jan 2026
Viewed by 205
Abstract
Pod corn (Zea mays var. tunicata) bears leafy glumes that enclose kernels, resembling a partial reversion to wild-forms, yet remains poorly characterized in situ in Mexico. We evaluated Mexican accessions at two contrasting locations to quantify morphological/phenological diversity and to assess [...] Read more.
Pod corn (Zea mays var. tunicata) bears leafy glumes that enclose kernels, resembling a partial reversion to wild-forms, yet remains poorly characterized in situ in Mexico. We evaluated Mexican accessions at two contrasting locations to quantify morphological/phenological diversity and to assess functional traits via proximate kernel composition. Standard descriptors captured variation in plant architecture, tassel/ear traits (including glume length), and reproductive timing. Accessions showed strong plasticity and significant accession × environment effects on ear morphology and maturation. Grain yield ranged from 6.32 to 10.78 t ha−1, with peak values comparable to commercial hybrids and above-typical yields reported for native Mexican races (2.7–6.6 t ha−1). Proximate analysis showed that milling with the tunic increased moisture/ash (up to 3.07% vs. 1.80% in dehulled grain), tended to lower fat and protein, and yielded lower crude fiber than dehulled samples (0.78–0.96% vs. 1.59–1.77%); protein varied widely (1.05–6.64%). Thus, the tunic modulates elemental composition, informing processing choices (with vs. without tunic). Our results document a spectrum of morphotypes and highlight developmental diversity and field adaptability. The observed accession × environment responses provide a practical baseline for comparisons with native and improved varieties, and help guide product development strategies. Collectively, these data underscore the high productive potential of pod corn (up to 10.78 t ha−1 under optimal management) and show that including the tunic substantially alters proximate composition, establishing a quantitative foundation for genetic improvement and food applications. Overall, pod corn’s distinctive ear morphology and context-dependent composition reinforce its value for conservation, developmental genetics, and low-input systems. Full article
(This article belongs to the Section Plant Genetic Resources)
Show Figures

Figure 1

13 pages, 10805 KB  
Article
Influence of Coffee Oil Epoxide as a Bio-Based Plasticizer on the Thermal, Mechanical, and Barrier Performance of PHBV/Natural Rubber Blends
by Rinky Ghosh, Xiaoying Zhao, Marie Genevieve Boushelle and Yael Vodovotz
Polymers 2026, 18(2), 240; https://doi.org/10.3390/polym18020240 - 16 Jan 2026
Viewed by 238
Abstract
This work evaluated the effect of coffee oil epoxide (COE), produced from coffee waste, on thermal, mechanical, barrier, and exudation resistance properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/natural rubber (PHBV/NR) blends. Building upon previously published 0.3% COE results, this study examined 0.4% and 0.75% concentrations to optimize [...] Read more.
This work evaluated the effect of coffee oil epoxide (COE), produced from coffee waste, on thermal, mechanical, barrier, and exudation resistance properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/natural rubber (PHBV/NR) blends. Building upon previously published 0.3% COE results, this study examined 0.4% and 0.75% concentrations to optimize performance. Thermal analysis revealed that COE incorporation significantly enhanced chain mobility, with glass transition temperature depressions of 6.1 °C and 7.4 °C for 0.4% and 0.75% COE formulations, respectively, compared to unplasticized PHBV/NR blends. Crystallinity decreased from 54.5% (PHBV/NR) to 52.6% and 51.9% with increasing plasticizer concentration, while melting temperatures decreased by 3.9% and 4.9%, confirming improved polymer chain mobility. Mechanical properties demonstrated COE’s plasticizing effectiveness, with tensile strength decreasing by 13.3% (0.4% COE) and 16.2% (0.75% COE) compared to PHBV/NR blends. Young’s modulus similarly decreased by 21.0% and 24.0%, while elongation at break improved slightly with increasing COE content. Barrier properties improved substantially across all concentrations: water vapor transmission rates decreased from 4.05 g/m2·h (PHBV/NR) to 1.55 g/m2·h (0.3% COE) and 0.67 g/m2·h for 0.4% and 0.75% COE, attributed to COE’s hydrophobic nature. SEM morphological analysis confirmed improved phase compatibility at 0.40% COE, with reduced rubber droplet size and homogeneous surface morphology. Exudation testing revealed excellent retention (0.21–0.53 wt% loss over 63 days). Results indicate 0.40% COE as optimal, achieving superior barrier properties while maintaining mechanical performance for sustainable packaging applications. Full article
(This article belongs to the Special Issue Degradation and Recycling of Polymer Materials, 2nd Edition)
Show Figures

Figure 1

24 pages, 3149 KB  
Article
Screening, Identification, and Degradation Mechanism of Polyester Fiber-Degrading Bacteria
by Zixuan Chen, Jing Tang, Shengjuan Peng, Qin Chen, Jianfeng Bai and Weihua Gu
Microorganisms 2026, 14(1), 207; https://doi.org/10.3390/microorganisms14010207 - 16 Jan 2026
Viewed by 251
Abstract
Polyester fibers are extensively used in textiles, packaging, and industrial applications due to their durability and excellent mechanical properties. However, high-crystallinity polyester fibers represent a major challenge in plastic waste management due to their resistance to biodegradation. This study evaluated the biodegradation potential [...] Read more.
Polyester fibers are extensively used in textiles, packaging, and industrial applications due to their durability and excellent mechanical properties. However, high-crystallinity polyester fibers represent a major challenge in plastic waste management due to their resistance to biodegradation. This study evaluated the biodegradation potential of environmental Bacillus isolates, obtained from mold-contaminated black bean plastic bags, toward polyethylene terephthalate (PET) and industrial-grade polyester fibers under mesophilic conditions. Among thirteen isolates, five (Bacillus altitudinis N5, Bacillus subtilis N6, and others) exhibited measurable degradation within 30 days, with mass losses up to 5–6% and corresponding rate constants of 0.04–0.05 day−1. A combination of complementary characterization techniques, including mass loss analysis, scanning electron microscopy (SEM), gel permeation chromatography (GPC), and gas chromatography/mass spectrometry (GC/MS), together with Fourier-transform infrared spectroscopy (FTIR), thermogravimetric/differential scanning calorimetry (TGA/DSC), and water contact angle (WCA) analysis, was employed to evaluate the biodegradation behavior of polyester fibers. Cross-analysis of mass loss, surface morphology, molecular weight reduction, and degradation products suggests a surface erosion-dominated degradation process, accompanied by ester-bond hydrolysis and preferential degradation of amorphous regions. FTIR, TGA/DSC, and WCA analyses further reflected chemical, thermal, and surface property changes induced by biodegradation rather than directly defining the degradation mechanism. The findings highlight the capacity of mesophilic Bacillus species to partially depolymerize polyester fibers under mild environmental conditions, providing strain resources and mechanistic insight for developing low-energy bioprocesses for polyester fiber waste management. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

16 pages, 6698 KB  
Article
Sustainable High Corrosion Resistance in High-Concentration NaCl Solutions for Refractory High-Entropy Alloys with High Strength and Good Plasticity
by Shunhua Chen, Xinxin Liu, Chong Li, Wuji Wang and Xiaokang Yue
Entropy 2026, 28(1), 105; https://doi.org/10.3390/e28010105 - 15 Jan 2026
Viewed by 220
Abstract
Among corrosive environments, Cl is one of the most aggressive anions which can cause electrochemical corrosion and the resultant failures of alloys, and the increase in Cl concentration will further deteriorate the passive film in many conventional alloys. Here, we report [...] Read more.
Among corrosive environments, Cl is one of the most aggressive anions which can cause electrochemical corrosion and the resultant failures of alloys, and the increase in Cl concentration will further deteriorate the passive film in many conventional alloys. Here, we report single-phase Nb25Mo25Ta25Ti20W5Cx (x = 0.1, 0.3, 0.8 at.%) refractory high-entropy alloys (RHEAs) with excellent corrosion resistance in high-concentration NaCl solutions. According to potentiodynamic polarization, electrochemical impedance spectroscopy, corroded morphology and the current–time results, the RHEAs demonstrate even better corrosion resistance with the increase in NaCl concentration to 23.5 wt.%, significantly superior to 304 L stainless steel. Typically, the corrosion current density (icorr) and over-passivation potential (Et) reached the lowest and highest value, respectively, in the 23.5 wt.% NaCl solution, and the icorr (2.36 × 10−7 A/cm2) of Nb25Mo25Ta25Ti20W5C0.1 alloy is nearly two orders lower than that of 304 L stainless steel (1.75 × 10−5 A/cm2). The excellent corrosion resistance results from the formation of passive films with fewer defects and more stable oxides. Moreover, with the addition of the appropriate C element, the RHEAs also demonstrated improved strength and plasticity simultaneously, for example, the Nb25Mo25Ta25Ti20W5C0.3 alloy exhibited an average yield strength of 1368 MPa and a plastic strain of 19.7%. The present findings provide useful guidance to address the conflict between the excellent corrosion resistance and high strength of advanced alloys. Full article
(This article belongs to the Special Issue Recent Advances in High Entropy Alloys)
Show Figures

Figure 1

19 pages, 4130 KB  
Article
Performance Evaluation of the Sizing of Cotton Warp Yarns Using Low-Cost Carboxymethyl Cellulose Derived from Saudi Wheat Straw
by Samah Maatoug and Elham Abu Nab
Polymers 2026, 18(2), 226; https://doi.org/10.3390/polym18020226 - 15 Jan 2026
Viewed by 167
Abstract
Sizing is a critical operation in woven fabric production, as it enhances weaving efficiency by improving warp yarn performance. Conventional sizing agents include maize starch, polyvinyl alcohol (PVA), and commercial carboxymethyl cellulose (CMC). In this study, a low-cost and biodegradable carboxymethyl cellulose derived [...] Read more.
Sizing is a critical operation in woven fabric production, as it enhances weaving efficiency by improving warp yarn performance. Conventional sizing agents include maize starch, polyvinyl alcohol (PVA), and commercial carboxymethyl cellulose (CMC). In this study, a low-cost and biodegradable carboxymethyl cellulose derived from wheat straw (CMCws) was investigated as an alternative sizing agent for cotton open-end yarns with a count of Nm 12.2. The high degree of substitution (DS = 1.23) of CMCws indicates extensive carboxymethylation, which enhances the polymer’s hydrophilicity and solubility in water. This, in turn, contributes to a higher apparent viscosity (η = 903.03 cP at 300 s−1), reflecting stronger molecular chain interactions and better film-forming ability. CMCws was applied using a high-pressure squeezing technique, and its effect on yarn performance was evaluated in terms of tensile properties, film characteristics, and yarn surface morphology. The results showed that CMCws provided a tenacity gain of 28.57%, a hairiness reduction of 54.34%, and an abrasion resistance gain of 37.14%. These values fall within acceptable industrial ranges and are comparable to those obtained using conventional sizing agents. Furthermore, the optimized CMCws formulation, containing plasticizer and lubricant additives, exhibited good desizing efficiency, with effective removal achieved in hot water. The findings indicate that wheat-straw-derived CMCws is a viable, sustainable alternative to traditional sizing agents for woven fabric production. Full article
(This article belongs to the Special Issue Advanced Study on Polymer-Based Textiles)
Show Figures

Figure 1

24 pages, 14631 KB  
Article
Influences of (Al, Si) Equi-Molar Co-Addition on Microstructure, Mechanical Properties and Corrosion Resistance of Co-Free Fe-Rich High Entropy Alloys
by Shufeng Xie, Ziming Chen, Chuanming Qiao, Wanwan Sun, Yanzhe Wang, Junyang Zheng, Xiaoyu Wu, Lingjie Chen, Bin Kong, Chen Chen, Kangwei Xu and Jiajia Tian
Metals 2026, 16(1), 92; https://doi.org/10.3390/met16010092 - 14 Jan 2026
Viewed by 213
Abstract
In this paper, a series of Co-free FeCr0.6Ni0.6(AlSi)x (x = 0, 0.1, 0.12, 0.14, 0.16) high-entropy alloys (HEAs) were designed and fabricated by suction casting, and the effects of equi-molar (Al, Si) co-addition in these Fe-rich Fe-Cr-Ni-based HEAs [...] Read more.
In this paper, a series of Co-free FeCr0.6Ni0.6(AlSi)x (x = 0, 0.1, 0.12, 0.14, 0.16) high-entropy alloys (HEAs) were designed and fabricated by suction casting, and the effects of equi-molar (Al, Si) co-addition in these Fe-rich Fe-Cr-Ni-based HEAs on microstructure, mechanical properties, and corrosion resistance were systematically investigated. It is found that equi-molar (Al, Si) co-addition could cause the phase formation from FCC to FCC + BCC, while the morphologies of the phases change from dendrite-type to sideplate-type. Moreover, trade-off between strength and plasticity occurs with the increase in (Al, Si) co-addition, and the production of ultimate tensile strength and plasticity reaches the highest value when x = 0.12, while there exists a narrow region for x values to realize excellent comprehensive mechanical properties. In addition, similar corrosion resistance in 3.5 wt.% NaCl solution higher than 316L stainless steel could be realized in the HEAs with x = 0.12 and 0.14, while the latter one is slightly lower in pitting corrosion and the width of passive region, which is possibly caused by the increase in the density of phase boundaries. This work provides a novel insight on designing high-performance cost-effective Fe-rich and (Al, Si)-containing (Fe-Cr-Ni)-based HEAs combining high mechanical properties and corrosion resistance. Full article
(This article belongs to the Section Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

Back to TopTop