Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = monomethine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10507 KiB  
Article
Bioaggregachromism of Asymmetric Monomethine Cyanine Dyes as Noncovalent Binders for Nucleic Acids
by Sonia Ilieva, Nikolay Petkov, Raimundo Gargallo, Christo Novakov, Miroslav Rangelov, Nadezhda Todorova, Aleksey Vasilev and Diana Cheshmedzhieva
Biosensors 2025, 15(3), 187; https://doi.org/10.3390/bios15030187 - 14 Mar 2025
Viewed by 685
Abstract
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes—(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b [...] Read more.
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes—(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b)—were confirmed through NMR spectroscopy and MALDI-TOF mass spectrometry. A new methodology was developed to study monocationic dyes in the absence of a matrix and cationizing compounds in MALDI-TOF mass experiments. The newly synthesized dyes contain hydrophobic functional groups attached to the chromophore, enhancing their affinity for the hydrophobic regions of nucleic acids within the biological matrix. The dyes’ photophysical properties were investigated in aqueous solutions and DMSO, as well as in the presence of nucleic acids. The dyes exhibit notable aggregachromism in both pure aqueous and buffered solutions. The observed aggregation phenomena were further elucidated using computational methods. Fluorescence titration experiments revealed that upon contact with nucleic acids, the dyes exhibit bioaggregachromism–aggregachromism on the surfaces of the respective biomolecular matrix (RNA or DNA). This bioaggregachromism was further confirmed by CD spectroscopy. Given the pronounced aggregachromism detected, we conclude that the dyes investigated in this study are highly suitable for use as fluorogenic probes in biomolecular recognition techniques. The unique absorption and fluorescence spectra of these dyes make them promising fluorogenic markers for various bioanalytical methods related to biomolecular recognition. Full article
(This article belongs to the Special Issue Advanced Fluorescence Biosensors)
Show Figures

Figure 1

18 pages, 6186 KiB  
Article
Nanoconfined Chlorine-Substituted Monomethine Cyanine Dye with a Propionamide Function Based on the Thiazole Orange Scaffold—Use of a Fluorogenic Probe for Cell Staining and Nucleic Acid Visualization
by Nikolay Ishkitiev, Maria Micheva, Marina Miteva, Stefaniya Gaydarova, Christo Tzachev, Vesela Lozanova, Valentin Lozanov, Diana Cheshmedzhieva, Meglena Kandinska, Sonia Ilieva, Raimundo Gargallo, Stanislav Baluschev, Stoyno Stoynov, Teodora Dyankova-Danovska, Marina Nedelcheva-Veleva, Katharina Landfester, Zornitsa Mihaylova and Aleksey Vasilev
Molecules 2024, 29(24), 6038; https://doi.org/10.3390/molecules29246038 - 21 Dec 2024
Cited by 1 | Viewed by 1475
Abstract
The development of fluorescence-based methods for bioassays and medical diagnostics requires the design and synthesis of specific markers to target biological microobjects. However, biomolecular recognition in real cellular systems is not always as selective as desired. A new concept for creating fluorescent biomolecular [...] Read more.
The development of fluorescence-based methods for bioassays and medical diagnostics requires the design and synthesis of specific markers to target biological microobjects. However, biomolecular recognition in real cellular systems is not always as selective as desired. A new concept for creating fluorescent biomolecular probes, utilizing a fluorogenic dye and biodegradable, biocompatible nanomaterials, is demonstrated. The synthesis of a new dicationic asymmetric monomethine cyanine dye with benzo[d]thiazolium-N-propionamide and chloroquinoline end groups is presented. The photophysical properties of the newly synthesized dye were examined through the combined application of spectroscopic and theoretical methods. The applicability of the dye as a fluorogenic nucleic acid probe was proven by UV-VIS spectroscopy and fluorescence titration. The dye–nucleic acid interaction mode was investigated by UV-Vis and CD spectroscopy. The newly synthesized dicationic dye, like other similar fluorogenic structures, limited permeability, which restricts its use as a probe for RNA and DNA. To enhance cellular delivery, we utilized a patented technology that employs solid, insoluble lipid nanoparticles. This method ensures the complete introduction of the dye into cells while minimizing activity outside the cells. In our study involving two human cell lines, we observed improved penetration through the cell membrane and distinctive selectivity in visualizing nucleic acids within the cytoplasm and nucleus. Full article
Show Figures

Graphical abstract

23 pages, 3802 KiB  
Article
A New Demand for Improved Selectivity and Potency of Cyanine Dyes as Antiproliferative Agents Against Colorectal Cancer Cells
by Ana Maia, Cathy Ventura, Adriana O. Santos, Maria J. Nunes, Renato E. F. Boto, Ângela Sousa, Samuel M. Silvestre, Paulo Almeida and João L. Serrano
Molecules 2024, 29(23), 5581; https://doi.org/10.3390/molecules29235581 - 26 Nov 2024
Viewed by 1208
Abstract
Cancer treatment remains a significant challenge, with chemotherapy still being one of the most common therapeutic approaches. Based on our initial studies of symmetric monomethine cyanine dyes, which showed potential against colorectal cancer, this study explored several asymmetric cyanines, aiming to develop more [...] Read more.
Cancer treatment remains a significant challenge, with chemotherapy still being one of the most common therapeutic approaches. Based on our initial studies of symmetric monomethine cyanine dyes, which showed potential against colorectal cancer, this study explored several asymmetric cyanines, aiming to develop more potent and selective antitumor agents, particularly against colorectal cancer. In pursuit of this goal, we have designed, synthesized, and structurally characterized twelve new cyanine dyes. Their antiproliferative effects were then investigated in vitro against both tumor and non-tumor cell lines. Notably, the two most promising dyes in terms of potency and selectivity against Caco-2 colorectal cancer cells were derived from the combination of N-methylbenzoxazole and N-methylquinoline (dye 5), as well as N-ethylbenzothiazole and N-ethyl-6-nitrobenzothiazole (dye 10). The potential mechanisms behind their antiproliferative action were also explored, revealing that both dyes penetrate cells and localize within the cytoplasm and nucleus. Furthermore, dye 5 was found to slightly induce apoptosis without causing significant cell cycle arrest, in contrast to dye 10, which increased the number of cells in the G0/G1 phase. Interestingly, both dyes exhibited marked topoisomerase II inhibitory effects, particularly cyanine 5, which may further explain their antiproliferative activity. Additionally, drug-likeness properties were predicted for both dyes. Overall, cyanine 5 emerged as the most promising candidate for further investigation as a potential treatment for colorectal cancer. Full article
Show Figures

Graphical abstract

10 pages, 2737 KiB  
Article
A Facile Synthesis of Red-Shifted Bis-Quinoline (BisQ) Surrogate Base
by Huda Nazzal, Manoj Kumar Gupta, Amer Fadila and Eylon Yavin
Molecules 2024, 29(17), 4136; https://doi.org/10.3390/molecules29174136 - 31 Aug 2024
Cited by 1 | Viewed by 1244
Abstract
Forced intercalation peptide nucleic acids (FIT-PNAs) are DNA mimics that act as RNA sensors. The sensing event occurs due to sequence-specific RNA hybridization, leading to a substantial increase in fluorescence. The fluorophore in the FIT-PNA is termed a surrogate base. This molecule typically [...] Read more.
Forced intercalation peptide nucleic acids (FIT-PNAs) are DNA mimics that act as RNA sensors. The sensing event occurs due to sequence-specific RNA hybridization, leading to a substantial increase in fluorescence. The fluorophore in the FIT-PNA is termed a surrogate base. This molecule typically replaces a purine in the PNA sequence. BisQ is a surrogate base that connects two quinolines via a monomethine bond. BisQ-based FIT-PNAs have excellent biophysical features that include high brightness and red-shifted emission (λem, max = 613 nm). In this report, we detail two chemical approaches that allow for the facile synthesis of the BisQ PNA monomer. In both cases, the key compound used for the synthesis of BisQ-CH2COOH is the tBu-ester-modified quinoline synthon (compound 5). Subsequently, one method uses the Alloc acid-protected PNA backbone, whereas the other uses the tBu ester-protected PNA backbone. In the latter case, the overall yield for BisQ acid (compound 7) and BisQ PNA monomer syntheses was 61% in six synthetic steps. This is a substantial improvement to the published procedures to date (7% total yield). Lastly, we have prepared an 11-mer FIT-PNA with either BisQ or thiazole orange (TO) and studied their photophysical properties. We find superior photophysical properties for the BisQ FIT-PNA in terms of the brightness and selectivity, highlighting the added value of using this surrogate base for RNA sensing. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

17 pages, 10593 KiB  
Article
Asymmetric Monomethine Cyanine Dyes with Hydrophobic Functionalities for Fluorescent Intercalator Displacement Assay
by Sonia Ilieva, Nadezhda Bozova, Miroslav Rangelov, Nadezhda Todorova, Aleksey Vasilev and Diana Cheshmedzhieva
Molecules 2024, 29(1), 114; https://doi.org/10.3390/molecules29010114 - 23 Dec 2023
Cited by 1 | Viewed by 1899
Abstract
A new green procedure has been applied for the synthesis and purification of asymmetric monomethine cyanine dyes. The photophysical properties of the newly synthesized compounds have been examined by combined application of spectroscopic and theoretical methods. The structural characteristics of the molecules and [...] Read more.
A new green procedure has been applied for the synthesis and purification of asymmetric monomethine cyanine dyes. The photophysical properties of the newly synthesized compounds have been examined by combined application of spectroscopic and theoretical methods. The structural characteristics of the molecules and dimer formation were characterized by quantum chemical computation and juxtaposed to the aggregachromism in UV/Vis spectra. The applicability of the dyes as fluorogenic nucleic acid probes has been proven by fluorescence titration, and their binding constants have been calculated. The mode of ligand–dsDNA/RNA interaction was rationalized by means of CD spectroscopy, molecular docking analysis, and fluorescent intercalator displacement experiments. Full article
Show Figures

Figure 1

26 pages, 6005 KiB  
Article
Photonics of Some Monomethine Cyanine Dyes in Solutions and in Complexes with Biomolecules
by Pavel G. Pronkin and Alexander S. Tatikolov
Int. J. Mol. Sci. 2023, 24(18), 13954; https://doi.org/10.3390/ijms241813954 - 11 Sep 2023
Viewed by 1423
Abstract
In search of new probes for biomolecules, the spectral fluorescent study of four monomethine cyanine dyes (MCD), both unsymmetrical and symmetrical, has been carried out in different organic solvents, in aqueous buffer solutions, and in the presence of DNA and HSA. The complexation [...] Read more.
In search of new probes for biomolecules, the spectral fluorescent study of four monomethine cyanine dyes (MCD), both unsymmetrical and symmetrical, has been carried out in different organic solvents, in aqueous buffer solutions, and in the presence of DNA and HSA. The complexation of MCD with biomacromolecules leads to a steep growth of the fluorescence intensity. Complexes of MCD with dsDNA and HSA of various types were modeled in silico by molecular docking. Experiments on thermal dissociation of dsDNA in the presence of MCD showed the formation of intercalative complexes of MCD with DNA. Quenching of intrinsic fluorescence of HSA by MCD occurred with rate constants much higher than the diffusion limit, that is, in dye–HSA complexes. Effective constants of MCD complexation with the biomacromolecules were estimated. MCD 1 has the best characteristics as a possible fluorescent probe for dsDNA and can serve as a sensitive and selective probe for dsDNA in the presence of HSA. Photochemical properties of MCD complexed with DNA have been also studied. An increase in the quantum yield of the triplet states of MCD in complexes with DNA has been found, which may be important for using these dyes as potential candidates in photodynamic therapy. Full article
(This article belongs to the Special Issue Noncovalent Interactions: New Developments in Experiment and Theory)
Show Figures

Graphical abstract

35 pages, 12337 KiB  
Review
Fluorescent Probes for Biomacromolecules Based on Monomethine Cyanine Dyes
by Pavel G. Pronkin and Alexander S. Tatikolov
Chemosensors 2023, 11(5), 280; https://doi.org/10.3390/chemosensors11050280 - 7 May 2023
Cited by 5 | Viewed by 3682
Abstract
Monomethine cyanine dyes (MCDs) are widely applied as biomolecular probes and stains in biochemical and biomedical research. This is based on the ability of MCDs to associate with biomolecules (mostly nucleic acids) with significant fluorescent growth. The present review considers the works devoted [...] Read more.
Monomethine cyanine dyes (MCDs) are widely applied as biomolecular probes and stains in biochemical and biomedical research. This is based on the ability of MCDs to associate with biomolecules (mostly nucleic acids) with significant fluorescent growth. The present review considers the works devoted to the properties of MCDs and the influence of noncovalent interactions with biomacromolecules on their properties, as well as their use as noncovalent probes and stains for various biomacromolecules. The synthesis and photonics (photophysics and photochemistry; in particular, the generation of the triplet state) of MCDs are also considered. Areas and prospects of the practical applications of MCDs in biochemistry and biomedicine are discussed. Full article
(This article belongs to the Special Issue Application of Luminescent Materials for Sensing)
Show Figures

Graphical abstract

20 pages, 3979 KiB  
Article
Selenium-Substituted Monomethine Cyanine Dyes as Selective G-Quadruplex Spectroscopic Probes with Theranostic Potential
by Ivana Fabijanić, Atanas Kurutos, Ana Tomašić Paić, Vanja Tadić, Fadhil S. Kamounah, Lucija Horvat, Anamaria Brozovic, Ivo Crnolatac and Marijana Radić Stojković
Biomolecules 2023, 13(1), 128; https://doi.org/10.3390/biom13010128 - 7 Jan 2023
Cited by 5 | Viewed by 3763
Abstract
The binding interactions of six ligands, neutral and monocationic asymmetric monomethine cyanine dyes comprising benzoselenazolyl moiety with duplex DNA and RNA and G-quadruplex structures were evaluated using fluorescence, UV/Vis (thermal melting) and circular dichroism (CD) spectroscopy. The main objective was to assess the [...] Read more.
The binding interactions of six ligands, neutral and monocationic asymmetric monomethine cyanine dyes comprising benzoselenazolyl moiety with duplex DNA and RNA and G-quadruplex structures were evaluated using fluorescence, UV/Vis (thermal melting) and circular dichroism (CD) spectroscopy. The main objective was to assess the impact of different substituents (methyl vs. sulfopropyl vs. thiopropyl/thioethyl) on the nitrogen atom of the benzothiazolyl chromophore on various nucleic acid structures. The monomethine cyanine dyes with methyl substituents showed a 100-fold selectivity for G-quadruplex versus duplex DNA. Study results indicate that cyanines bind with G-quadruplex via end π-π stacking interactions and possible additional interactions with nucleobases/phosphate backbone of grooves or loop bases. Cyanine with thioethyl substituent distinguishes duplex DNA and RNA and G-quadruplex structures by distinctly varying ICD signals. Furthermore, cell viability assay reveals the submicromolar activity of cyanines with methyl substituents against all tested human cancer cell lines. Confocal microscopy analysis shows preferential accumulation of cyanines with sulfopropyl and thioethyl substituents in mitochondria and indicates localization of cyanines with methyl in nucleus, particularly nucleolus. This confirms the potential of examined cyanines as theranostic agents, possessing both fluorescent properties and cell viability inhibitory effect. Full article
(This article belongs to the Special Issue Polynucleotides)
Show Figures

Graphical abstract

25 pages, 3072 KiB  
Article
An Insight into Symmetrical Cyanine Dyes as Promising Selective Antiproliferative Agents in Caco-2 Colorectal Cancer Cells
by João L. Serrano, Ana Maia, Adriana O. Santos, Eurico Lima, Lucinda V. Reis, Maria J. Nunes, Renato E. F. Boto, Samuel Silvestre and Paulo Almeida
Molecules 2022, 27(18), 5779; https://doi.org/10.3390/molecules27185779 - 7 Sep 2022
Cited by 9 | Viewed by 3148
Abstract
Cancer remains one of the diseases with the highest worldwide incidence. Several cytotoxic approaches have been used over the years to overcome this public health threat, such as chemotherapy, radiotherapy, and photodynamic therapy (PDT). Cyanine dyes are a class of compounds that have [...] Read more.
Cancer remains one of the diseases with the highest worldwide incidence. Several cytotoxic approaches have been used over the years to overcome this public health threat, such as chemotherapy, radiotherapy, and photodynamic therapy (PDT). Cyanine dyes are a class of compounds that have been extensively studied as PDT sensitisers; nevertheless, their antiproliferative potential in the absence of a light source has been scarcely explored. Herein, the synthesis of eighteen symmetric mono-, tri-, and heptamethine cyanine dyes and their evaluation as potential anticancer agents is described. The influences of the heterocyclic nature, counterion, and methine chain length on the antiproliferative effects and selectivities were analysed, and relevant structure–activity relationship data were gathered. The impact of light on the cytotoxic activity of the most promising dye was also assessed and discussed. Most of the monomethine and trimethine cyanine dyes under study demonstrated a high antiproliferative effect on human tumour cell lines of colorectal (Caco-2), breast (MCF-7), and prostate (PC-3) cancer at the initial screening (10 µM). However, concentration–viability curves showed higher potency and selectivity for the Caco-2 cell line. A monomethine cyanine dye derived from benzoxazole was the most promising compound (IC50 for Caco-2 = 0.67 µM and a selectivity index of 20.9 for Caco-2 versus normal human dermal fibroblasts (NHDF)) and led to Caco-2 cell cycle arrest at the G0/G1 phase. Complementary in silico studies predicted good intestinal absorption and oral bioavailability for this cyanine dye. Full article
(This article belongs to the Special Issue Bioactive Compounds: Design, Synthesis and Biological Evaluation)
Show Figures

Graphical abstract

15 pages, 4835 KiB  
Article
Theoretical Modeling of Absorption and Fluorescent Characteristics of Cyanine Dyes
by Sonia Ilieva, Meglena Kandinska, Aleksey Vasilev and Diana Cheshmedzhieva
Photochem 2022, 2(1), 202-216; https://doi.org/10.3390/photochem2010015 - 4 Mar 2022
Cited by 8 | Viewed by 3492
Abstract
The rational design of cyanine dyes for the fine-tuning of their photophysical properties undoubtedly requires theoretical considerations for understanding and predicting their absorption and fluorescence characteristics. The present study aims to assess the applicability and accuracy of several DFT functionals for calculating the [...] Read more.
The rational design of cyanine dyes for the fine-tuning of their photophysical properties undoubtedly requires theoretical considerations for understanding and predicting their absorption and fluorescence characteristics. The present study aims to assess the applicability and accuracy of several DFT functionals for calculating the absorption and fluorescence maxima of monomethine cyanine dyes. Ten DFT functionals and different basis sets were examined to select the proper theoretical model for calculating the electronic transitions of eight representative molecules from this class of compounds. The self-aggregation of the dyes was also considered. The pure exchange functionals (M06L, HFS, HFB, B97D) combined with the triple-zeta basis set 6-311+G(2d,p) showed the best performance during the theoretical estimation of the absorption and fluorescent characteristics of cyanine dyes. Full article
Show Figures

Figure 1

20 pages, 5405 KiB  
Article
Polycationic Monomeric and Homodimeric Asymmetric Monomethine Cyanine Dyes with Hydroxypropyl Functionality—Strong Affinity Nucleic Acids Binders
by Ivana Mikulin, Ivana Ljubić, Ivo Piantanida, Aleksey Vasilev, Mihail Mondeshki, Meglena Kandinska, Lidija Uzelac, Irena Martin-Kleiner, Marijeta Kralj and Lidija-Marija Tumir
Biomolecules 2021, 11(8), 1075; https://doi.org/10.3390/biom11081075 - 21 Jul 2021
Cited by 7 | Viewed by 3174
Abstract
New analogs of the commercial asymmetric monomethine cyanine dyes thiazole orange (TO) and thiazole orange homodimer (TOTO) with hydroxypropyl functionality were synthesized and their properties in the presence of different nucleic acids were studied. The novel compounds showed strong, micromolar and submicromolar affinities [...] Read more.
New analogs of the commercial asymmetric monomethine cyanine dyes thiazole orange (TO) and thiazole orange homodimer (TOTO) with hydroxypropyl functionality were synthesized and their properties in the presence of different nucleic acids were studied. The novel compounds showed strong, micromolar and submicromolar affinities to all examined DNA ds-polynucleotides and poly rA–poly rU. The compounds studied showed selectivity towards GC-DNA base pairs over AT-DNA, which included both binding affinity and a strong fluorescence response. CD titrations showed aggregation along the polynucleotide with well-defined supramolecular chirality. The single dipyridinium-bridged dimer showed intercalation at low dye-DNA/RNA ratios. All new cyanine dyes showed potent micromolar antiproliferative activity against cancer cell lines, making them promising theranostic agents. Full article
(This article belongs to the Special Issue Polynucleotides)
Show Figures

Figure 1

15 pages, 3922 KiB  
Article
Benz[c,d]indolium-containing Monomethine Cyanine Dyes: Synthesis and Photophysical Properties
by Eduardo Soriano, Cory Holder, Andrew Levitz and Maged Henary
Molecules 2016, 21(1), 23; https://doi.org/10.3390/molecules21010023 - 24 Dec 2015
Cited by 26 | Viewed by 12286
Abstract
Asymmetric monomethine cyanines have been extensively used as probes for nucleic acids among other biological systems. Herein we report the synthesis of seven monomethine cyanine dyes that have been successfully prepared with various heterocyclic moieties such as quinoline, benzoxazole, benzothiazole, dimethyl indole, and [...] Read more.
Asymmetric monomethine cyanines have been extensively used as probes for nucleic acids among other biological systems. Herein we report the synthesis of seven monomethine cyanine dyes that have been successfully prepared with various heterocyclic moieties such as quinoline, benzoxazole, benzothiazole, dimethyl indole, and benz[e]indole adjoining benz[c,d]indol-1-ium, which was found to directly influence their optical and energy profiles. In this study the optical properties vs. structural changes were investigated using nuclear magnetic resonance and computational approaches. The twisted conformation unique to monomethine cyanines was exploited in DNA binding studies where the newly designed sensor displayed an increase in fluorescence when bound in the DNA grooves compared to the unbound form. Full article
Show Figures

Graphical abstract

Back to TopTop