A Facile Synthesis of Red-Shifted Bis-Quinoline (BisQ) Surrogate Base
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of PNA Backbone
2.2. Synthesis of BisQ-CH2-COOH
2.3. Synthesis of BisQ PNA Monomer
2.4. Synthesis and Biophysical Studies on a Model 11-Mer FIT-PNA
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Chemical Synthesis of BisQ Monomer
3.3. FIT-PNA Synthesis
3.4. Tm Analysis
3.5. UV-Vis Titrations and Fluorescence Measurements for Determining Quantum Yields
3.6. Fluorescence Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S.M.; Driver, D.A.; Berg, R.H.; Kim, S.K.; Norden, B.; Nielsen, P.E. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 1993, 365, 566–568. [Google Scholar] [CrossRef]
- Nielsen, P.E.; Egholm, M.; Berg, R.H.; Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991, 254, 1497–1500. [Google Scholar] [CrossRef]
- Brodyagin, N.; Katkevics, M.; Kotikam, V.; Ryan, C.A.; Rozners, E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J. Org. Chem. 2021, 17, 1641–1688. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Mishra, A.; Puri, N. Peptide nucleic acids: Advanced tools for biomedical applications. J. Biotechnol. 2017, 259, 148–159. [Google Scholar] [CrossRef] [PubMed]
- MacLelland, V.; Kravitz, M.; Gupta, A. Therapeutic and diagnostic applications of antisense peptide nucleic acids. Mol. Ther. Nucleic Acids 2024, 35, 102086. [Google Scholar] [CrossRef] [PubMed]
- Montazersaheb, S.; Hejazi, M.S.; Nozad Charoudeh, H. Potential of Peptide Nucleic Acids in Future Therapeutic Applications. Adv. Pharm. Bull. 2018, 8, 551–563. [Google Scholar] [CrossRef]
- Papi, C.; Gasparello, J.; Zurlo, M.; Manicardi, A.; Corradini, R.; Cabrini, G.; Gambari, R.; Finotti, A. Combined Treatment of Bronchial Epithelial Calu-3 Cells with Peptide Nucleic Acids Targeting miR-145-5p and miR-101-3p: Synergistic Enhancement of the Expression of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene. Int. J. Mol. Sci. 2022, 23, 9348. [Google Scholar] [CrossRef]
- Popella, L.; Jung, J.; Do, P.T.; Hayward, R.J.; Barquist, L.; Vogel, J. Comprehensive analysis of PNA-based antisense antibiotics targeting various essential genes in uropathogenic Escherichia coli. Nucleic Acids Res. 2022, 50, 6435–6452. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, S.P.; Malik, S.; Slack, F.J.; Bahal, R. Unlocking the potential of chemically modified peptide nucleic acids for RNA-based therapeutics. RNA 2023, 29, 434–445. [Google Scholar] [CrossRef]
- Saarbach, J.; Sabale, P.M.; Winssinger, N. Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics. Curr. Opin. Chem. Biol. 2019, 52, 112–124. [Google Scholar] [CrossRef]
- Tsylents, U.; Siekierska, I.; Trylska, J. Peptide nucleic acid conjugates and their antimicrobial applications—A mini-review. Eur. Biophys. J. 2023, 52, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Clausse, V.; Amarasekara, H.; Mazur, S.J.; Botos, I.; Appella, D.H. Variation of Tetrahydrofurans in Thyclotides Enhances Oligonucleotide Binding and Cellular Uptake of Peptide Nucleic Acids. JACS Au 2023, 3, 1952–1964. [Google Scholar] [CrossRef] [PubMed]
- Koehler, O.; Jarikote, D.V.; Seitz, O. Forced intercalation probes (FIT probes): Thiazole orange as a fluorescent base in peptide nucleic acids for homogeneous single-nucleotide-polymorphism detection. ChemBioChem 2005, 6, 69–77. [Google Scholar] [CrossRef]
- Karunakaran, V.; Pérez Lustres, J.L.; Zhao, L.; Ernsting, N.P.; Seitz, O. Large dynamic Stokes shift of DNA intercalation dye Thiazole Orange has contribution from a high-frequency mode. J. Am. Chem. Soc. 2006, 128, 2954–2962. [Google Scholar] [CrossRef] [PubMed]
- Bethge, L.; Jarikote, D.V.; Seitz, O. New cyanine dyes as base surrogates in PNA: Forced intercalation probes (FIT-probes) for homogeneous SNP detection. Bioorganic Med. Chem. 2008, 16, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Kummer, S.; Knoll, A.; Socher, E.; Bethge, L.; Herrmann, A.; Seitz, O. PNA FIT-Probes for the Dual Color Imaging of Two Viral mRNA Targets in Influenza H1N1 Infected Live Cells. Bioconjugate Chem. 2012, 23, 2051–2060. [Google Scholar] [CrossRef] [PubMed]
- Kolevzon, N.; Hashoul, D.; Naik, S.; Rubinstein, A.; Yavin, E. Single point mutation detection in living cancer cells by far-red emitting PNA-FIT probes. Chem. Commun. 2016, 52, 2405–2407. [Google Scholar] [CrossRef]
- Hovelmann, F.; Seitz, O. DNA Stains as Surrogate Nucleobases in Fluorogenic Hybridization Probes. Acc. Chem. Res. 2016, 49, 714–723. [Google Scholar] [CrossRef]
- Hoevelmann, F.; Gaspar, I.; Chamiolo, J.; Kasper, M.; Steffen, J.; Ephrussi, A.; Seitz, O. LNA-enhanced DNA FIT-probes for multicolour RNA imaging. Chem. Sci. 2016, 7, 128–135. [Google Scholar] [CrossRef]
- Fang, G.-m.; Chamiolo, J.; Kankowski, S.; Hövelmann, F.; Friedrich, D.; Löwer, A.; Meier, J.C.; Seitz, O. A bright FIT-PNA hybridization probe for the hybridization state specific analysis of a C → U RNA edit via FRET in a binary system. Chem. Sci. 2018, 9, 4794–4800. [Google Scholar] [CrossRef]
- Tepper, O.; Peled, I.; Fastman, Y.; Heinberg, A.; Mitesser, V.; Dzikowski, R.; Yavin, E. FIT-PNAs as RNA-Sensing Probes for Drug-Resistant Plasmodium falciparum. ACS Sens. 2022, 7, 50–59. [Google Scholar] [CrossRef]
- Stafforst, T.; Diederichsen, U. Solid-phase synthesis of acid-sensitive N-(2-aminoethyl)glycine-PNA oligomers by the Fmoc/Bhoc strategy. Eur. J. Org. Chem. 2007, 2007, 681–688. [Google Scholar] [CrossRef]
- Wojciechowski, F.; Hudson, R.H.E. A convenient route to N-[2-(Fmoc)aminoethyl]glycine esters and PNA oligomerization using a bis-N-boc nucleobase protecting group strategy. J. Org. Chem. 2008, 73, 3807–3816. [Google Scholar] [CrossRef]
- Sonar, M.V.; Wampole, M.E.; Jin, Y.-Y.; Chen, C.-P.; Thakur, M.L.; Wickstrom, E. Fluorescence Detection of KRAS2 mRNA Hybridization in Lung Cancer Cells with PNA-Peptides Containing an Internal Thiazole Orange. Bioconjugate Chem. 2014, 25, 1697–1708. [Google Scholar] [CrossRef]
- Tepper, O.; Zheng, H.C.; Appella, D.H.; Yavin, E. Cyclopentane FIT-PNAs: Bright RNA sensors. Chem. Commun. 2021, 57, 540–543, Erratum in: Chem. Commun. 2023, 59, 11593. [Google Scholar] [CrossRef] [PubMed]
- Hashoul, D.; Shapira, R.; Falchenko, M.; Tepper, O.; Paviov, V.; Nissan, A.; Yavin, E. Red-emitting FIT-PNAs: “On site” detection of RNA biomarkers in fresh human cancer tissues. Biosens. Bioelectron. 2019, 137, 271–278. [Google Scholar] [CrossRef]
- Sato, Y.; Miura, H.; Tanabe, T.; Okeke, C.U.; Kikuchi, A.; Nishizawa, S. Fluorescence Sensing of the Panhandle Structure of the Influenza A Virus RNA Promoter by Thiazole Orange Base Surrogate-Carrying Peptide Nucleic Acid Conjugated with Small Molecule. Anal. Chem. 2022, 94, 7814–7822. [Google Scholar] [CrossRef] [PubMed]
- Insuasty, D.; Cabrera, L.; Ortiz, A.; Insuasty, B.; Quiroga, J.; Abonia, R. Synthesis, photophysical properties and theoretical studies of new bis-quinolin curcuminoid BF2-complexes and their decomplexed derivatives. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 230, 118065. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Badger, D.B.; Liang, Y.; Gebhard, A.W.; Santiago, D.; Murray, P.; Kaulagari, S.R.; Gauthier, T.J.; Nair, R.; Kumar, M.; et al. Bioactivity improvement via display of the hydrophobic core of HYD1 in a cyclic β-hairpin-like scaffold, MTI-101. Pept. Sci. 2021, 113, e24199. [Google Scholar] [CrossRef]
- Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 2013, 8, 1535–1550. [Google Scholar] [CrossRef]
FIT-PNA Duplex (1:1) | λmax | Ɛ [mM−1 cm−1] | Ex. (nm) | ɸF [%] | BR [mM−1 cm−1] | I/I0 | Tm [oC] |
---|---|---|---|---|---|---|---|
11-mer BisQ PNA/RNA | 587 | 53.62 | 580 | 9.33 | 5 | 24 | 45.2 (±0.2) |
11-mer TO PNA/RNA | 516 | 21.73 | 499 | 5.41 | 1.17 | 1.85 | 49 (±0.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazzal, H.; Gupta, M.K.; Fadila, A.; Yavin, E. A Facile Synthesis of Red-Shifted Bis-Quinoline (BisQ) Surrogate Base. Molecules 2024, 29, 4136. https://doi.org/10.3390/molecules29174136
Nazzal H, Gupta MK, Fadila A, Yavin E. A Facile Synthesis of Red-Shifted Bis-Quinoline (BisQ) Surrogate Base. Molecules. 2024; 29(17):4136. https://doi.org/10.3390/molecules29174136
Chicago/Turabian StyleNazzal, Huda, Manoj Kumar Gupta, Amer Fadila, and Eylon Yavin. 2024. "A Facile Synthesis of Red-Shifted Bis-Quinoline (BisQ) Surrogate Base" Molecules 29, no. 17: 4136. https://doi.org/10.3390/molecules29174136
APA StyleNazzal, H., Gupta, M. K., Fadila, A., & Yavin, E. (2024). A Facile Synthesis of Red-Shifted Bis-Quinoline (BisQ) Surrogate Base. Molecules, 29(17), 4136. https://doi.org/10.3390/molecules29174136